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YET ANOTHER p-ADIC HYPERBOLIC DISC :
HILBERT DISTANCE FOR p-ADIC FIELDS

ANTONIN GUILLOUX

We describe in this paper a geometric construction in the projective
p-adic plane that gives, together with a suitable notion of p-adic convex-
ity, some open subsets of P2(Qp) naturally endowed with a “Hilbert”
distance and a transitive action of PGL(2,Qp) by isometries. These
open sets are natural analogues of the hyperbolic disc, more precisely
of Klein’s projective model. But, unlike the real case, there is not only
one such hyperbolic disc. Indeed, we find three of them if p is odd (and
seven if p = 2).

Let us stress out that neither the usual notion of convexity nor that
of connectedness as known for the real case are meaningful in the p-adic
case. Thus, there will be a rephrasing game for the definitions of real
convexity until we reach a formulation suitable for other local fields.
It will lead us to a definition of p-adic convexity by duality. Although
we will not recover the beautiful behaviour of real convexity, we will
still be able to define the most important tool for our goals, namely
the Hilbert distance.

We construct our analogues of the hyperbolic disc (once again, via
the projective model of the hyperbolic plane) in a quite geometric, even
naive, way. Our construction gives 2-dimensional objects over Qp. It is
very different, in spirit and in facts, of Drinfeld p-adic hyperbolic plane
[BC91]. The possible relations between the two objects remain still
unexplored. Another object often viewed as an analogue of the hyper-
bolic disc is the tree of PGL(2,Qp) [Ser03]. We explore the relations
between our discs and this tree, constructing a natural quasi-isometric
projection from the discs to the tree. Eventually we explore the trans-
formation groups of our discs. And, whereas the transformation group
of the tree is huge, we prove that only PGL(2,Qp) acts on the discs
preserving the convex structure.
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1. Looking for a two-sheeted hyperboloid

In this section we follow the usual construction of the hyperboloid
model for the hyperbolic space but over a local field k. The point is to
analyse the properties of squares in k. We are mainly interested in the
action of PGL(2,k) on k3 via the adjoint representation:

Ad : PGL(2,k)→ SL(3,k).

It is an isomorphism with the group SO(Q), where Q denotes the qua-
dratic form on k3 given by Q(x, y, z) = xz − y2. This section de-
scribes the level surfaces of Q in k3 \ {0}. Each of them is a single
PGL(2, k)-orbit (by Witt’s theorem). We look at their decomposition
into PSL(2, k)-orbits, like the two-sheeted hyperboloid in the real case.
These level sets can be of one of the three following types:

• the isotropic cone, which is a finite union of PSL(2,k)-orbits,
• a single PSL(2,k)-orbit (a one-sheeted hyperboloid),
• the union of two PSL(2,k)-orbits (a two-sheeted hyperboloid).
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The latter case is the most interesting for our concerns. A hyperbolic
disc will be, in some sense, a positive cone on sheets of these hyper-
boloids (see section 2.2). We will achieve its construction in a fully
elementary way. But, due to the lack of connectedness argument, some
proofs rely on direct algebraic computations ; we will postpone it to
an annex. Keeping in mind the real counterpart of these results should
guide the intuition. We begin by recalling some general facts about
orthogonal groups and gradually focus on the orthogonal group SO(Q)
described above.

1.1. Special orthogonal groups and level sets. Consider k a field
of characteristic different from 2, an integer n ≥ 1, a n+ 1-dimensional
k-vector space V and a quadratic form q on V . Then Witt’s theorem
[O’M00, 42.F] implies that the special orthogonal group SO(q) acts
transitively on each level set of q in V \ {0}.

Consider the formQ(x0, . . . , xn) = x0xn−x2
1−. . .−x2

n−1 on V = kn+1.
The isotropic cone C of Q, i.e. the set of vectors v with Q(v) = 0,
decomposes into two orbits under the action of SO(Q): the singleton
{0} and its complement.

Let us now assume moreover that k has the following property: x2
1 +

. . .+x2
n−1 is a non-zero square for any non-zero vector (x1, . . . , xn−1) ∈

kn−1 \ {0}. This holds for any n if k = R and for any field k if n = 2.
We prove then that the isotropic cone contains a positive semi-cone
defined by the fact that x0 is a square in k ("positive" is an analogy
with the real case in which the squares are the positive numbers). This
semi-cone is stabilized by an explicit normal subgroup of SO(Q) which
is of finite index for any local field k. The real case tells us a useful
interpretation for this finite index subgroup: it becomes the connected
component SOo(Q) - in the case k = R, the quadratic form Q has
signature (1, n). Let (k∗)2 be the set of squares (invertible) elements in
k∗ and ᾱ = α(k∗)2 the class modulo the squares of an element α ∈ k∗.
We get the following proposition:

Proposition 1.1. Consider the form Q over a field k (char(k) 6= 2)
where x2

1 + · · · + x2
n−1 is a non-zero square for any non-zero vector

(x1, . . . , xn−1) ∈ kn−1 \ {0}. For any class ᾱ in k∗/(k∗)2, define the
semi-cones:

Cᾱ = {(x0, . . . , xn) ∈ C \ {0} such that x0 and xn belong to ᾱ ∪ {0}}.
Then C \ {0} decomposes into the disjoint union of the semi-cones

over the elements of k∗/(k∗)2. Moreover SO(Q) acts by permutations
on the set of semi-cones and we have an isomorphism

SO(Q)/ Stab(C1̄) ' k∗/(k∗)2.
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Before proving the proposition, let us describe an avatar of Iwazawa
decomposition of the group SO(Q). Let Q′ be the quadratic form
x2

1 + . . .+x2
n−1. Consider the three following subgroups of SL(n+1,k):

• N+ =

1 2twA Q′(w)
0 A w
0 0 1

 for A ∈ SO(Q′) and w ∈ kn−1.

• N− =

 1 0 0
v B 0

Q′(v) 2tvB 1

 for B ∈ SO(Q′) and v ∈ kn−1.

• H =

x 0 0
0 Id 0
0 0 1

x

 (x ∈ k∗).

In the real case, the three following facts may be proven using geo-
metric considerations. But elementary linear algebra leads to the same
conclusion and works on any field.

Fact 1. • All three are subgroups of SO(Q) and H normalizes
both N+ and N−.

• The subgroup N+ is the stabilizer of v0 =


1
0
...
0

 in SO(Q).

• The group SO(Q) decomposes as the product N−HN+.

With this fact, we are ready to proceed with the proof of the propo-
sition.

Proof. First of all, we may remark that any non-zero isotropic element
v = (x0, . . . , xn) belongs to one of the semi-cones. Indeed, v being
isotropic, we have the equation

x0xn = Q′(x1, . . . , xn−1).

We assumed that Q′ takes only square values, hence x0xn is either zero
if (x1, . . . , xn) = 0 or a non-zero square. In the first case, as v 6= 0,
we get that x0 6= 0 or xn 6= 0. In the second case, the class x̄0 and x̄n
are the same, as x0xn ∈ (k∗)2. In any case, there is a unique class ᾱ
modulo square such that ᾱ∪{0} contains both x0 and xn. This proves
the first part of the proposition.

To prove the second point, let us remark that both N+ and N−

stabilize each semi-cone. Let us justify this for N+ by considering an
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arbitrary element

n =

1 2twA Q′(w)
0 A w
0 0 1

 .

Consider an element v =

x0
...
xn

 in C \ {0}. If x0 6= 0 then v belongs to

Cx0 . And n(v) has the same first coordinate as v. So it also belong to
Cx0 . Otherwise, x0 vanishes and so do all the x1, . . . , xn−1 (asQ(v) = 0).
In this case, v belongs to Cxn , and n(v) is the vector:

n(v) =

Q′(w)xn
xnw
xn

 .

It still belongs to Cxn .
The isomorphism SO(Q)/ Stab(C1̄) ' k∗/(k∗)2 is now easily ob-

tained. Indeed, using the previous fact, we may write:

SO(Q)/ Stab(C1̄) = HN−N+/ Stab(C1̄).

The product N−N+ is contained in Stab(C1̄). Hence we have a first
isomorphism:

SO(Q)/ Stab(C1̄) ' H/ StabH(C1̄).

And the stabilizer in H of the semi-cone C1̄ is clearly the subgroup:x 0 0
0 Id 0
0 0 1

x

 for x ∈ (k∗)2.

Hence the quotient H/ StabH(C1̄) is isomorphic to k∗/(k∗)2 �

1.2. The groups Ad(PSL(2,k)) and SO(Q). We focus now our at-
tention on the case n = 2. We note Q(x, y, z) = xz − y2. In this case,
the adjoint representation is an isomorphism between PGL(2,k) and
SO(Q). The determinant modulo squares gives an isomorphism:

PGL(2,k)/PSL(2,k)
∼−→ k∗/(k∗)2.

Under the adjoint representation, this isomorphism is exactly the same
as the one of the proposition 1.1. It translates into an isomorphism
between the quotient SO(Q)/Ad(PSL(2,k)) and k∗/(k∗)2. For each
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class ᾱ ∈ k∗/(k∗)2 represented by some α ∈ k∗, the following diagonal
matrix belongs to the corresponding class in SO(Q)/Ad(PSL(2,k)):

dα =

α 1
α−1

 .

We denote by dᾱ the class dα Ad(PSL(2,k)) in SO(Q)/Ad(PSL(2,k)).
The group Ad(PSL(2,k)) thus identifies with the stabilizer of the semi-
cones.

One may describe more precisely the case of k a non-archimedean lo-
cal field of characteristic 6= 2. Recall that the group k∗/(k∗)2 is of order
4 and isomorphic to (Z/2Z)2 if the characteristic p of the residual field
is odd. So there are 4 semi-cones in general. For characteristic 0 and
residual characteristic 2, the situation is more complicated [O’M00].
Consider the case Q2: then there are 8 classes modulo squares, and the
group is isomorphic to (Z/2Z)3. So we have 8 semi-cones for Q2.

We have decomposed the isotropic cone into semi-cones. We may
now look at the hyperboloids, i.e. the decomposition of the other level
sets of Q under the action of the subgroup Stab(C1̄). Shall we recover
the hyperboloids of one or two sheets? Recall that we are looking
for a model of the hyperbolic disc. In the real case, the first step is
to see the two-sheeted hyperboloids. From now on, the field k is a
non-archimedean local field of characteristic different from 2.

1.3. Hyperboloids of one or two sheets. Throughout this section,
k is a non-archimedean local field of characteristic different from 2.

The homotheties of k3 change the value of Q by a square. So, up
to homotheties, there are Card(k∗/(k∗)2) level surfaces for Q different
from the isotropic cone. Let ᾱ be a class in k∗/(k∗)2 and α an element
of ᾱ. Define

vα =

α0
1

 .

Then we have Q(vα) = α. We want to understand the stabilizer in
SO(Q) of vα, in order to decompose the hyperboloid SO(Q).vα into
sheets. The situation is as follow:

Proposition 1.2. Let ᾱ be a class in k∗/(k∗)2 and α an element of ᾱ.
(1) If −1 belongs to ᾱ, then SO(Q).vα is a one-sheeted hyperboloid,

i.e.
SO(Q).vα = Ad(PSL(2,k)).vα;
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(2) else SO(Q).vα is a two-sheeted hyperboloid, i.e. SO(Q).vα de-
composes in two distinct PSL(2,k)-orbits.

Proof. First case: −1 belongs to ᾱ: then the orbit SO(Q).vα is homo-
thetic to the orbit SO(Q).v−1. But we have Q(−1, 0, 1) = Q(0, 1, 0).
Witt’s theorem implies that the orbit SO(Q).v−1 coincide with the orbit

SO(Q).

0
1
0

 .

One may see that this latter orbit is a one-sheeted hyperboloid: the
group

Stab

0
1
0


contains all the matrices

dβ =

β 1
β−1

 , for β ∈ k∗.

Hence we have

Ad(PSL(2,k)) Stab(0, 1, 0) = SO(Q),

which proves that

SO(Q).(0, 1, 0) = Ad(PSL(2,k)).(0, 1, 0).

Second case: −1 does not belong to ᾱ: then the stabilizer of vα is the
orthogonal group of Q restricted to v⊥α . The form Q|v⊥α is equivalent to
the form Qα(u, v) = −αu2 − v2. The latter is anisotropic: Q(u, v) = 0

would imply α = − v2

u2 , so −1 would belong to ᾱ. In order to under-
stand Ad(PSL(2,k)) Stab(vα), we shall understand how the action of
Stab(vα) permutes the semi-cones.

Let P be the affine plane v⊥α + 1
α
vα. The plane P is invariant under

Stab(vα) and has equation:ab
c

 ∈ P iff αc+ a = 1.

Look at the intersection P ∩C of P and the isotropic cone. The action
of Stab(vα) on C will be transitive on the component of P ∩ C. So we
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compute the set of β̄ ∈ k∗/(k∗)2 such that P intersects Cβ̄. A vector
t(a, b, c) belongs to P ∩ C if and only if its entries satisfy:{

αc+ a = 1
ac = b2 .

We are only interested in the common class β̄ modulo squares of a and
c (in order to determine the semi-cone Cβ̄ the solution belongs to). The
β̄’s which are solutions are exactly those verifying:

1 ∈ β̄ + αβ̄.

As −1 6∈ ᾱ, this implies that 1 ∈ β̄ or 1 ∈ αβ̄. So those β̄ are exactly
the elements of:

{[α + y2] ∈ k∗/(k∗)2 for y ∈ k∗}.
In other terms, this set is the norm group N[k[

√
−α];k] (modulo squares)

of the quadratic extension k[
√
−α] (see [O’M00]).

We know [O’M00, 63:13a] that this set is always an index 2 subgroup
of k∗/(k∗)2. As said before, the subgroup Stab(vα) permutes the Cβ’s
which intersect P (by Witt’s theorem). Hence it has two distinct orbits
among the Cβ̄’s, and the orbit of vα is a two-sheeted hyperboloid. �

Remark. For the very last point in the above proof, and k = Qp, in-
stead of referring to [O’M00], one may alternatively check the following
without difficulties:

• P always intersects the semi-cone C1̄ associated to the class of
squares,
• if p is odd, and ᾱ has an even valuation in k, P intersects the
two Cβ̄’s for β̄ of even valuation,
• if p is odd, and ᾱ has an odd valuation, P intersects C1 and Cᾱ,
• if k = Q2, one verifies for each class that P intersects four
semi-cones. For example, in Q2, if ᾱ is the class of squares, P
intersects Cβ̄ for β̄ equals 1̄, 2̄, 5̄ and 1̄0.

Another way to state the previous proposition is that for each sub-
group K̄ of index 2 in k∗/(k∗)2, there is a vector vα in k3 such that
the group Stab(vα) Ad(PSL(2,k))/Ad(PSL(2,k)) is isomorphic to K̄.
Those subgroups K̄ are the norm groups (modulo squares) of a qua-
dratic extension of k. We get the following corollary:

Corollary 1. Let K̄ be a subgroup of index 2 in k∗/(k∗)2.
There is a unique ᾱ in k∗/(k∗)2 such that K̄ is the set {[α + y2] ∈

k∗/(k∗)2 for y ∈ k∗} for any α in ᾱ. The group K̄ is equivalently
described as the norm group (modulo squares) of the extension k[

√
−α].
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Moreover for every α in this ᾱ, the orbit SO(Q).vα is a two-sheeted
hyperboloid.

We prefer to work with subgroups of k∗ and we hereafter denote by
Kᾱ the subgroup of k∗ such that, for any α in ᾱ, we have:

Kᾱ = {αx2 + y2 ∈ k∗ for x, y ∈ k∗}

2. Projectivization and duality

A crucial point for the (real) projective model of the hyperbolic disc
consists in the fact that the positive semi-cone over one sheet of the
two-sheeted hyperboloid is a convex cone. It allows the construction
of the natural Hilbert distance for an open convex subset of the sphere
which turns out to be exactly the hyperbolic distance.

2.1. The positive semi-cones. We try here to understand the “pos-
itive semi-cone” over one of the previously defined sheets. In other
terms, we will projectivize the geometry of the previous section, but
only under action of "positive" homotheties, i.e. with ratio in Kᾱ. We
fix an ᾱ in k∗/(k∗)2 such that −1 does not belong to ᾱ. We are now
interested in the orbits of Kᾱ Ad(PSL(2,k)) (the positive semi-cones)
among the set

{v ∈ k3 such that Q(v) ∈ ᾱ}.
Once again, we will study stabilizers of points and indices of subgroups
to build up the geometry of the situation.

The group k∗ SO(Q) acts transitively on the latter set. The index of
Kᾱ Ad(PSL(2,k)) in k∗ SO(Q) is 8 for odd residual characteristic (16
if k = Q2). Consider the usual vector

vα =

α0
1


for some α in ᾱ. Of course we have Q(vα) = α ∈ ᾱ. And the stabi-
lizer of vα in k∗ SO(Q) is generated by its stabilizer in SO(Q) and the
diagonal matrix

d =

1
−1

1

 = −d−1.

We therefore get the following lemma:

Lemma 2.1. Consider the set

{v ∈ k3 such that Q(v) ∈ ᾱ}.
The number of disjoint Kᾱ Ad(PSL(2,k))-orbits it decomposes into is:
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• 4 orbits if −1 belongs to Kᾱ.
• 2 orbits if −1 does not belong to Kᾱ.

Proof. We have seen that Ad(PSL(2,k)) Stab(vα) is of index 2 in SO(Q).
So the index of the group

Kᾱ Ad(PSL(2,k)) Stab(vα)

in k∗ SO(Q) is 4 or 2 depending on whether d belongs toKᾱ Ad(PSL(2,k))
or not. Now, −1 belongs toKᾱ if and only if d belongs toKᾱ Ad(PSL(2,k)).

�

As we are interested in the semi-cones, we will need an ad-hoc sphere,
rather than the projective space:

Definition 2.1. For ᾱ in k∗/(k∗)2 such that −1 does not belong to ᾱ,
the ᾱ-sphere is:

Sᾱ = (k3 \ {0})/Kᾱ.

Of course, the ᾱ-sphere is a 2-covering of the projective space.

2.2. Duality. We are now prepared to deal with convexity properties.
Convexity, in the usual real sense, may be interpreted as a positivity
condition: a subset of the plane is convex if it is an intersection of
half-spaces; or equivalently if it is the set of points which take positive
values on a set of affine forms. We will here follow this idea, translating
"positive" into "belonging to Kᾱ".

The polar form of Q is the bilinear form B defined by:

B(v, v′) =
1

2
[Q(v + v′)−Q(v − v′)].

Recall that C1̄ is the semi-cone associated to the class of squares:

C1̄ = {(a, b, c) ∈ k3 \ {0} such that ac = b2 and a and c are squares }
First of all, for any α in ᾱ, and w ∈ C1̄, one checks that B(vα, w)

belongs to Kᾱ. Using the action of Kᾱ.Ad(PSL(2,k)), we even get the
following duality phenomenon:

∀α ∈ ᾱ, ∀v ∈ Kᾱ Ad(PSL(2,k)).vα and ∀w ∈ C1̄, we have B(v, w) ∈ Kᾱ.

The hope for a possible theory of p-adic convexity raises up with the
following theorem:

Theorem 2.2. Let ᾱ be an element of k∗/(k∗)2 such that −1 6∈ ᾱ.
We have equality between the two following sets:
(1) {Kᾱ Ad(PSL(2,k)).vα for α ∈ ᾱ},
(2) Hᾱ = {v ∈ k3 such that for all w ∈ C1, we have B(v, w) ∈

Kᾱ}.
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Hᾱ is the union of one or two Kᾱ Ad(PSL(2,Qp))-orbits: two if −1
belongs to Kᾱ, else one.

Remark. The projectivization of Hᾱ will be our hyperbolic discs. One
should not be disappointed by the possibility for them to be the union
of two distinctKᾱ Ad(PSL(2,k))-orbits. This will even be our preferred
case later on. Let us recall, maybe in a yet cryptic way, that the tree
of PSL(2,Qp) is the union of two disjoint orbits under PSL(2,Qp).

Proof. The set {v ∈ k3 such that Q(v) ∈ ᾱ} is a single k∗ SO(Q)-orbit.
It splits into Hᾱ and its complementary, which is also the image of Hᾱ

under the following matrix, for any y not belonging to Kᾱ:

dy =

y 1
y−1

 .

Both of them are Kᾱ Ad(PSL(2,k))-invariant. Moreover, as dy normal-
izes Ad(PSL(2,k)), they decompose in the same number of orbits under
Kᾱ Ad(PSL(2,k)). The previous lemma 2.1 implies that Hᾱ splits into
two orbits if −1 belongs to Kᾱ, else is a single orbit. �

We found our hyperbolic discs ! This section ends with the following
definition:

Definition 2.2. Let ᾱ be an element of k∗/(k∗)2 such that −1 6∈ ᾱ.
The ᾱ-hyperbolic disc, denoted by Dᾱ, is the projection of Hᾱ to the
ᾱ-sphere Sᾱ.

Those are the main characters of our paper. We will endow them
with a distance and study their geometry. Let us stress out that for
each field k one find several hyperbolic discs: one for each class ᾱ not
containing −1. There are 3 of them if the residual characteristic is odd
and 7 for Q2. And they are different, in the sense that the action of
PSL(2,k) on them is different. It may have one or two orbits and the
stabilizer of a point are not conjugated for different classes ᾱ.

3. Convexity and Hilbert distance for open sets in the
projective plane of local fields

The present section tries to lay down the basis of a Hilbert geometry
over local fields. We first define a notion of convexity inspired by (and
applicable to) the hyperbolic discs just constructed ; then a natural
distance for these convex sets (the Hilbert distance).

Hilbert geometries [Hil95, dlH93, Bea99, Ver05] are fascinating and
well-studied objects. We deliberately focus in this text on the exam-
ple of the hyperbolic discs and use the convexity as a way to define
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an interesting structure on our Dᾱ. We nevertheless think that the
existence of these examples gives a good motivation for studying in a
more systematic way the hereafter proposed notion of convexity. As
another example of a convex set and its Hilbert distance we describe
the triangle.

3.1. Convexity in the setting of local fields. We propose here
a definition for convexity in the setting of local fields, hoping it will
prove convenient and useful. We choose to work in duality, copying the
fact that a convex set in R2 may be defined as the positive side of a
set of affine forms. This definition is also motivated by our example
of hyperbolic discs and by the possibility (to be seen afterwards) to
construct a Hilbert distance.

Fix a local field k and H a subgroup of finite index in the multi-
plicative group k∗. Choose an integer n ≥ 2, V a n + 1-dimensional
k-vector space and define the H-sphere of V :

SH(V ) = (V \ {0})/H.
It is a finite covering of the projective space P(V ). The H-spheres of V
and its dual V ∗ are naturally in duality: for a ∈ SH(V ) and b ∈ SH(V ∗)
the class b(a) is well-defined in k∗/H. We define the (H-)dual Ω◦ of a
set Ω in SH(V ) as the set of forms taking values in H on points of Ω:

Ω◦ = {f ∈ SH(V ∗) such that ∀x ∈ Ω, f(x) ∈ H}.
We may now take the bidual (Ω◦)◦. By definition, Ω is included in

its bidual (Ω◦)◦.

Definition 3.1. A subset Ω of SH(V ) is H-convex if Ω coincides with
its bidual (Ω◦)◦.

One can alternatively say that Ω is H-convex if there is some set Ω′

in SH(V ∗) such that Ω is the H-side of Ω′: Ω is the set of ω such that
for all ω′ ∈ Ω′, we have ω′(ω) ∈ H. Indeed, one take Ω′ = Ω◦.

The previous definition immediately leads to the definition of a con-
vex hull:

Definition 3.2. The convex hull of a subset C of SH(V ) is the subset
Hull(C) = (C◦)◦ of SH(V ).

Observe that Hull(C) is the smallest of SH(V ) containing C.
When k = R and H = R>0, definitions 3.1 and 3.2 coincide with the

usual definitions. When k is any field and H = k∗, the projection to
the H-sphere of the complement to a finite union of hyperplanes is an
example of convex set. And, in view of our theorem 2.2, the hyperbolic
discs Dᾱ we just defined are Kᾱ-convex.
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Any polytope will be H-convex: take a finite set of forms and their
common H-side. One may describe more precisely the triangle: for
any local field k and a finite index subgroup H of k∗, we define the
H-triangle TH : it is the set of points [x, y, z] in the H-sphere whose
three coordinates are in H. Then TH is the dual of set {e1, e2, e3} of
the three coordinates forms.

3.2. Hilbert distance, revisited. This subsection is devoted to a
rephrasing of the Hilbert distance in the real case. We want to redefine
it without any mention to the ordering on R. This is possible, even if
the definition proposed might seem highly artificial for this real case.
We will then move on in the next subsection to other fields, trying to
transpose our new definition.

x

y

b∂Ω

a

Figure 1. The Hilbert distance on Ω

We fix here an open, relatively compact and convex set Ω in the
space Rn and take V = Rn+1, H = R>0. Via the adjunction of an
hyperplane at infinity to Rn, Ω becomes an open and proper convex
set in the projective space P(V ). So we have a convex lift (still called
Ω) in the (usual) sphere. The Hilbert distance is classically defined in
the following way:

for x and y in Ω, let a and b be the intersections between the line
(xy) and the frontier ∂Ω of Ω, such that a, x, y, b are in this order on
the line (xy) (see figure 1). Consider (noting zt the distance between
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two points z and t):

DΩ(x, y) = [a, b, x, y] =
ay

ax

bx

by

and take its logarithm:

dΩ(x, y) = ln ([a, b, x, y]) = ln

(
ay

ax

bx

by

)
.

It is well known that dΩ is a distance [Hil95, Bea99]. The only point
necessitating a proof is the triangular inequality. Moreover, it is in-
variant under projective transformation. Once again, we will not get
further into the theory of Hilbert distance. We just want to define it
in another way.

The first problem of this definition for other fields than R is the word
"boundary". In totally disconnected fields such boundaries tend to be
void. We prefer to use the duality. So if ϕ and ϕ′ belong to V ∗, x and
x′ belong to V with neither ϕ(x) nor ϕ′(x′) null, we note:

[ϕ, ϕ′, x, x′] =
ϕ(x′)

ϕ(x)

ϕ′(x)

ϕ′(x′)

This formula is invariant under homothety on V or V ∗, and under
the action of GL(V ) conjointly on V and V ∗.

Lemma 3.1. Let Ω be an open proper convex set in the sphere, Ω◦ be
its dual. Then we have, for all x and y in Ω:

DΩ(x, y) = max
ϕ,ϕ′∈Ω◦

[ϕ, ϕ′, x, y]

So the Hilbert distance is the logarithm of this maximum.

Proof. Consider a′ (resp. b′) the intersection point between ker(ϕ)
(resp. ker(ϕ′)) and the line (xy). By convexity, and the fact that
ϕ ∈ Ω◦, a′ and b′ do not belong to Ω. And the theorem of Thales
implies that ϕ(x)

ϕ(y)
equals a′−x

a′−y (see figure 2) and the same with ϕ′ and
b′. Hence we get the equality between [ϕ, ϕ′, x, y] and [a′, b′, x, y]. The
maximum of the latter is attained for a′ = a and b′ = b, i.e. ker(ϕ) a
supporting hyperplane of Ω through a, and ker(ϕ′) through b. �

At this point we do not mention ∂Ω any more, which is the first step.
But we use the notion of maximum, unavailable in other fields. The
following step is given by this lemma:

Lemma 3.2. Let Ω be an open proper convex set in the sphere, Ω◦ be
its dual. Then we have, for all x and y in Ω:
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x

y

a

ker(ϕ)

a′

Figure 2. Rewriting the Hilbert distance

{[ϕ, ϕ′, x, y] for ϕ, ϕ′ ∈ Ω◦} = [DΩ(x, y)−1, DΩ(x, y)].

Proof. First of all, we check that [ϕ, ϕ′, x, y] = [ϕ′, ϕ, x, y]−1, so the
first set contains DΩ(x, y) (its maximum by the previous lemma) and
DΩ(x, y)−1 and is contained in the interval [DΩ(x, y)−1, DΩ(x, y)]. Now
Ω◦ is convex hence connected. We conclude by continuity. �

We may now redefine the Hilbert distance via the Haar measure on
R∗. Choose the Haar measure µ on R∗ defined by the following, for
t > 1:

µ[t−1, t] = ln(t).

Then, the previous lemma yields immediately:

Proposition 3.3. Let Ω be an open proper convex set in the sphere,
Ω◦ be its dual. Then the distance dΩ(x, y) is given by:

dΩ(x, y) = µ ({[ϕ, ϕ′, x, y] for ϕ, ϕ′ ∈ Ω◦}) .

We have reached our goal: the latter number may be defined on any
field and recovers the Hilbert distance in the real case.

Remark. In this form, the triangular inequality becomes easy, once we
check that (with obvious notation) [ϕ, ϕ′, x, y] = [ϕ, ϕ′, x, z][ϕ, ϕ′, z, y]
(see lemma 3.5). Easy indeed, but one still needs to use some properties
of the real numbers, e.g. an ordering. This will be a further problem.
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3.3. A generalized Hilbert distance. We now come back to a more
general situation: let k be R or some non-archimedean local fields k
(of characteristic different from 2) and |.| its norm. Let H be a finite
index subgroup of k∗ and V an n+ 1-dimensional k-vector space. Fix
a Haar measure µ on k∗. We define a notion of symmetric ball:

Definition 3.3. The symmetric ball of radius r is the set

{x ∈ k such that |x− 1| ≤ r and |x−1 − 1| ≤ r}.

We may also define the notion of proper convex set, extending the
notion of properness in the real case:

Definition 3.4. Let Ω be a H-convex set in SH(V ). The set Ω is
proper if the intersection ∩ϕ∈Ω◦ ker(ϕ) equals {0}.

We are now able to define a Hilbert distance on proper convex sets.

Theorem 3.4. Let Ω be an open and proper H-convex set in SH(V ),
Ω◦ be its dual. For x, y in Ω, define dΩ(x, y) as the measure for µ of
the smallest symmetric ball containing {[ϕ, ϕ′, x, y] for ϕ, ϕ′ ∈ Ω◦}.

Then dΩ is a distance on Ω.

Proof. For this proof, we note BΩ(x, y) the smallest symmetric ball
containing the set {[ϕ, ϕ′, x, y] for ϕ, ϕ′ ∈ Ω◦}.

First of all, if x ∈ Ω, we have dΩ(x, x) = µ({1}) = 0. More-
over, if x 6= y are in Ω, fix X and Y some representatives in V (re-
call that Ω lives in the H-sphere). We cannot have some element
l ∈ k such that ϕ(X) = lϕ(Y ) for all ϕ ∈ Ω◦, because X − lY
would be in every ker(ϕ), contradicting the properness. Hence the
set {[ϕ, ϕ′, x, y] for ϕ, ϕ′ ∈ Ω◦} is not restricted to {1} and the small-
est symmetric ball containing it has a non empty interior. Its measure
is not 0 and dΩ(x, y) 6= 0.

We have [ϕ, ϕ′, x, y] = [ϕ′, ϕ, y, x]. Hence we haveBΩ(x, y) = BΩ(y, x)
and dΩ is symmetric: dΩ(x, y) = dΩ(y, x).

We have already mentioned that [ϕ, ϕ′, x, y] = [ϕ, ϕ′, x, z][ϕ, ϕ′, z, y].
Hence, BΩ(x, y) is included in the set BΩ(x, z).BΩ(z, y). We check the
following lemma:

Lemma 3.5. If B and B′ are two symmetric balls, we have µ(BB′) ≤
µ(B) + µ(B′).

Proof. If k = R, the symmetric balls of radius t in R∗+ is [t−1, t] and
we have µ([t−1, t]) = ln(t) (up to a constant). Hence we have

µ
([
t−1, t

] [
s−1, s

])
= µ

([
t−1s−1, st

])
= ln(t) + ln(s).
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If k is a non archimedean local field, note O the ring of integers, q−1

the norm of an uniformizer (for k = Qp, this means O = Zp and q = p),
let Bt be the symmetric ball of radius qt, Bs of radius qs (with t ≤ s
integers). Then µ(Bt) = 1

q−1
qt+1 if t < 0 and t+1 if t ≥ 0 (normalizing

µ by µ(O∗) = 1). Moreover one checks that the product BtBs is Bs if
t ≤ 0 or Bt+s. Hence the results also hold in this case. �

It yields that dΩ verifies the triangular inequality, and even in the
p-adic case, an ultrametric inequality if a distance is lesser than 1. �

Remark that in the real case, we just redefined the Hilbert distance,
nothing more. We hope that this definition may give some nice non-
standard Hilbert geometries. We shall try to get some insights on
the possible geometries elsewhere. We focus in this paper on the first
important examples, namely the hyperbolic discs Dᾱ. We study in the
following section their geometry.

Let us discuss a bit the triangle before that. Let k = Qp and H be
the subgroup of squares. Then one checks that the dual (TH)◦ of the
triangle is composed of exactly three points in the H-sphere of (Q3

p)
′:

the projection of the three coordinate forms, denoted e1, e2 and e3.
As the dual is finite, we really need to consider symmetric balls to fill

up the sets of cross-ratios involved in the definition of distance. Indeed,
if we had not filled up, we would always compute the measure of a finite
set. With the definition we gave, take two points P1 = [pn1x : 1 : pn2y]
and P2 = [pm1a : 1 : pm2b] in the triangle (with x, y, a and b in Z∗p).
Let N = n1−m1, M = n2−m2. Then we have (normalizing the Haar
measure µ on Qp such that µ(Z∗p) = 1:

Proposition 3.6. The distance in TH between P1 and P2 is the fol-
lowing:

• If N = M = 0, then the distance is less than 1.
• Else, it is max {N,M,−N,−M,N −M,M −N}+ 1.

Moreover, on the balls of radius 1, the distance is ultrametric.

The proof is a direct application of the definition. An interesting
consequence is the following one: with the notation above, one can
define a map π from TH to Z[j = e

2iπ
3 ] by sending [pn1x : 1 : pn2y] to

(n1 + n2j). This map shrinks the balls Bn1,n2 of radius 1 in TH to a
point in Z[j]. But if you equip Z[j] with the hexagonal norm, the map
sends two points of TH at distance d to two points in Z[j] at distance
d− 1. The figure 3 shows the image of the ball of center [1 : 1 : 1] and
of radius 2. This exhibits a striking analogy with the Hilbert distance
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on the triangle in the real case, which is isometric to the hexagonal
norm on the plane R2.

0 1

1 + jj

−1

−j − 1 −j

π

n

m

B0,0 B1,0

B1,1B0,1

B−1,0

B−1,−1 B0,−1

Figure 3. The Hilbert distance on the triangle

4. Geometry of the hyperbolic discs

The hyperbolic discs give nice examples of convex sets. The general-
ized Hilbert distance is defined and endow them with a geometry. We
will describe a bit this geometry: what are their duals and isometry
groups. Then we will actually compute the Hilbert distance.

Recall the setting of sections 1 and 2 : we work in a non-archimedean
local field k of characteristic 6= 2, ᾱ is a fixed class in k∗/(k∗)2 which
does not contain −1. We associated to it a subgroup Kᾱ of index
2 in k∗/(k∗)2. We studied the quadratic form Q(x, y, z) = xz − y2,
and called B its polar form. We have defined the isotropic semi-cone
C1̄ ⊂ k3 and we denoted Cᾱ its projection in the Kᾱ-sphere1. Thanks
to B we have an identification between k3 and its dual, and so between
their Kᾱ-spheres. With the definitions of the previous section, the
meaning of theorem 2.2 is that the disc Dᾱ is the convex (Cᾱ)◦.

4.1. The duals. The description of the duals of the discs is required
to compute the generalized Hilbert distance.

Proposition 4.1. If −1 is a square in k, or if ᾱ 6= 1, then the dual
D◦ᾱ of Dᾱ is exactly the semi-cone Cᾱ.

If −1 is not a square, and ᾱ = 1, then the dual D◦1̄ is D1̄ ∪ C1̄.

1It is only a slight abuse of notation, as the projections of the semi-cones C1̄ and
Cᾱ in the Kᾱ-sphere are the same.
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Proof. We know by theorem 2.2 that Cᾱ is included in D◦ᾱ and even
that Dᾱ = C◦ᾱ. Moreover D◦ᾱ does not intersect Cβ̄ for β 6∈ Kᾱ:

B((α, 0, 1), (β, 0, 0)) = β 6∈ Kᾱ.

Now, take some v outside of the isotropic cone. If v does not belong
to Dᾱ we may use the action of PSL(2,k) to send it (at the limit) in
a semi-cone Cβ̄ for β̄ 6= ᾱ (the isotropic cone is the limit set for the
action of PSL(2,k) on P(k3)). Hence v does not belong to D◦ᾱ.

If v belongs to Dᾱ, up to the action of PSL(2,k) (and homothety),
one may assume that v = (αx2, 0, 1) for some x ∈ k. We then get that,
for any v′ = (a, b, c) ∈ Dᾱ:

B(v, v′) = (αx2c+ a) ∈ Kᾱ

Choose v′ = (αy2, 0, 1). Then, we get B(v, v′) = α(x2 + y2). This
belongs to Kᾱ for any y if and only if −1 is not a square, and ᾱ = 1̄.

We conclude by the following: if −1 is not a square, and ᾱ = 1̄, take,
v and w in D1̄. Then up to the action of K1̄ Ad(PSL(2,k)), one may
assume that v = (x2, 0, 1) and w = (y2, 0, 1) for some x, y in k. And
we have B(v, w) = x2 + y2 ∈ K1̄. �

The second situation described (−1 not a square, ᾱ = 1̄) reminds us
of the real case. The existence of the other ones shows the limits of the
analogy. But in any case, the dual is big enough and Dᾱ is a proper
and open Kᾱ-convex set:

Corollary 2. The hyperbolic disc Dᾱ is a proper and open Kᾱ-convex
set. It inherits a Hilbert distance dDᾱ.

We will effectively compute the distance in section 4.4. Before that,
let us try to describe a bit the geometry and isometries of these discs.

4.2. Lines, short and long. We have a natural notion of line in the
disc Dᾱ. Consider a point v ∈ Dᾱ. Any (linear) plane in k3 projects
to a projective line in Sᾱ. We call line in Dᾱ the intersection of a line
in Sᾱ with Dᾱ.

Hence through two distinct points in Dᾱ, there is a unique line in
Dᾱ. But there are two distinct kind of lines: short lines, which are
compact in Sᾱ, and long lines, for which the closure intersects Cᾱ in
exactly two points.

Indeed, consider a point v ∈ Dᾱ. A line through v is determined by
a vector w in v⊥, such that the line is the projectivization of the plane
Pw generated by v and w. Now we have seen that Q restricted to v⊥
is equivalent to the form −αx2 − y2. Hence it takes values exactly in
−Kᾱ. So there are two cases:
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• If Q(w) ∈ −ᾱ, then Q restricted to Pw is isotropic and the
projection of Pw in Sᾱ intersects Cᾱ in two points. We call it a
long line.
• If Q(w) 6∈ −ᾱ, then Q restricted to Pw is anisotropic and the
projection of Pw in Sᾱ does not intersect Cᾱ. Then the projec-
tion of Pw in Sᾱ is the union of two disjoint compact sets: the
points in Dᾱ and its complementary. We call it a short line.

For a line l in Dᾱ, we note P (l) the plane in k3 such that l is the
projectivization of P (l) (intersected with Dᾱ). For two lines through
a point v, there is a well-defined notion of orthogonality, thanks to the
bilinear form B:

Definition 4.1. Two lines l1 and l2 through a point v in Dᾱ are or-
thogonal if P (l1) ∩ v⊥ and P (l2) ∩ v⊥ are orthogonal for B.

One checks that if −1 is not a square and ᾱ = 1̄, then the orthogonal
of a long line is a long line.

4.3. The projective isometry group. We are now able to describe
the group of projective isometries, and the transitivity of its action.
We will discuss later (see section 6) the existence of non-projective
isometries.

Proposition 4.2. The group Isom(Dᾱ) of projective maps in GL(3,k)/Kᾱ

preserving Dᾱ acts by isometries on Dᾱ. It is isomorphic to PGL(2,k),
an element g of PGL(2,k) acting by det(g) Ad(g).

Its action is transitive on Dᾱ × Cᾱ.
Its action is transitive on the sets of long lines, and of short lines.
Its action is transitive on the flags “a point in a long line”.
Its action preserves orthogonality.

Remark. From now on, the action of PGL(2,k) on Dᾱ will always be
the one described above.

Proof. The first part is classical in Hilbert geometry: a projective trans-
formation preserves Dᾱ if and only if it preserves its dual. Hence
it preserves the Hilbert distance defined. Moreover, an element of
GL(3,k)/Kᾱ which preserves Cᾱ preserves the isotropic cone of Q. So it
belongs to the projective orthogonal group PO(Q). As it shall preserve
Dᾱ, one easily sees that it is the group described.

Now the stabilizer of Cᾱ is generated by Ad(PSL(2,k)) and dα. Fix
the point Kᾱ.(1, 0, 0) in Cᾱ. Its stabilizer is generated by dα and Ad(P )

where P is the parabolic subgroup
(
x y
0 x−1

)
. Moreover any point in

Cᾱ, represented by a triple (x2, xy, y2) is the image of (1, 0, 0) under
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Ad

(
x 0
y
2

x−1

)
, proving the transitivity of the action on Cᾱ. Remark

that any point in Dᾱ is represented by a triple (αc−2 +c−2b2, cb, c2) (up

to the action ofKᾱ). By the action of Ad(P ) (namely of Ad

(
c b
0 c−1

)
),

this point is sent to vα = (α, 0, 1). This proves the first transitivity
claimed.

Now fix a short line l (resp a long line L) through vα. Take another
short line l′ (resp. long line L′). Using the transitivity of Isom(Dᾱ)
on Dᾱ, we send l′ (resp L′) on a short (resp. long) line through vα.
Eventually the stabilizer of v acts transitively on the set of directions
< w > in v⊥ such that Q(w) 6∈ −ᾱ (resp. Q(w) ∈ −ᾱ). So you may
send l′ to l, and L′ to L.

The stabilizer of the long line {(x, 0, y), x, y ∈ Kᾱ} acts transitively
on this line (indeed, it contains all the diagonal matrices with entries
in Kᾱ). Using the transitivity on the long lines, we get the transitivity
on the flags.

The last point is straightforward. �

We may describe more precisely the action of PGL(2,k) on Cᾱ:

Fact 2. The action of PGL(2,k) on Cᾱ is isomorphic to its projective
action on P1(k) via the bijection:

Kᾱ(x2, xy, y2) 7→ k(x, y).

4.4. The Hilbert distance on the discs. Of course it is possible to
effectively compute the distance. We only prove the result when k = Qp

with p 6= 2 and ᾱ has even valuation. Here we choose the Haar measure
on Qp such that µ(Z∗p) = 1 and fix α ∈ ᾱ of valuation 0. Thanks to
the transitivity of the isometry group, we just have to compute two
distances: first the distance between the point vα = (α, 0, 1) and a
point v1 = (αx2, 0, 1) (for which vα and v1 define a long line), second
the distance between vα and some v2 = ((1 − ay)α, 1, 1 + ay), where
a ∈ Z∗p is such that 1 + αa2 does not belong to −ᾱ. Indeed in the
second case, one checks that vα and v2 define a short line.

Proposition 4.3. Assume p 6= 2 and ᾱ has even valuation.
First case : The Hilbert distance dDᾱ between the points vα = (α, 0, 1)

and v1 = (αx2, 0, 1) on a long line is given by
• dDᾱ(vα, v1) = 2n+ 1, if max(|x2 − 1|, |x−2 − 1|) = p2n ≥ 1.
• dDᾱ(vα, v1) = 1

p−1
pn+1, if max(|x2 − 1|, |x−2 − 1|) = pn < 1.

Second case : The Hilbert distance dDᾱ between the points vα =
(α, 0, 1) and v2 = ((1 − ay)α, y, (1 + ay)) on a short line is always
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lesser than one. If |y| = 1, it is 1. If |y| = pn < 1, it is given by
1
p−1

pn+1.

Remark. If ᾱ has an odd valuation, one checks that the only mod-
ifications needed are the following. In the first case (long line), if
max(|x2 − 1|, |x−2 − 1|) = p2n ≥ 1, then one gets dDᾱ(vα, v1) = 2n+ 1

2
.

In the second case (short line), if |y| = 1, the distance becomes 1
2
.

Proof. We sketch the computation.
First case: Fix w = (a, b, c) and w′ = (a′, b′, c′) in the dual D◦ᾱ,

choosing a, a′, c and c′ squares in Zp. We want to evaluate the cross-
ratio:

B(w, v1)

B(w, vα)

B(w′, vα)

B(w, v1)
=
αcx2 + a

αc+ a

αc′ + a′

αc′x2 + a′
.

Taking w = (1, 0, 0) and w′ = (0, 0, 1), the cross-ratio takes the value
x2. Permuting w and w′, it equals x−2. Let us show that all the cross-
ratios belong to the smallest symmetric ball containing x2.

Suppose first that |x2| = p2n ≥ 1. It is easily seen that the first ratio
has a norm between 1 and p2n (recall that there is no simplification
between a square and α times a square). The second ratio has a norm
between p−2n and 1. Hence the cross-ratio has a norm between p−2n

and p2n. This means it belongs to the symmetric ball in Kᾱ containing
x2 and x−2. And this symmetric ball is the union:

∪−n≤k≤np2kZ∗p.

It has the stated measure.
If we have |x2 − 1| = pn < 1, i.e. x2 = 1 + x′, then we may rewrite

the cross-ratio:
B(w, v1)

B(w, vα)

B(w′, vα)

B(w, v1)
=

1 + x′ αc
αc+a

1 + x′ αc′

αc′+a′

.

It is closer to 1 than x2, so belongs to the smallest symmetric ball
containing x2, i.e. to 1 + pnZp. It has measure 1

p−1
pn+1.

Second case: first of all, we have Q(v2) = α − (1 + αa2)y. As it
belongs to ᾱ and we supposed that −(1 + αa2) does not belong to ᾱ,
it implies that |y| ≤ 1. Fix w = (d, e, f) and w′ = (d′, e′, f ′) in D◦ᾱ. We
compute the cross-ratio:

B(w, v2)

B(w, vα)

B(w′, vα)

B(w, v2)
=

1− ay(1 + 2e
a(αf+d)

)

1− ay(1 + 2e′

a(αf ′+d′)
)
.

One sees that the smallest symmetric ball containing these cross-ratios
is Z∗p if |y| = 1, else 1 + |y|Zp. �
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A remark on this proposition: the values taken by dDᾱ are 1
p−1

pn+1

for negative n, and 2n+1 for positive n (or 2n+ 1
2
). It proves that this

distance is ultrametric at distance less than one. We will see that at
large scales, it is not any more ultrametric. We define the ultrametric
locus around a point:

Definition 4.2. For some point ω in Dᾱ, we denote by U(ω) its ultra-
metric neighbourhood:

U(ω) = {ω′ such that dDᾱ(ω, ω′) ≤ 1}.

Remarky that, for two points in a long line, we have a much more
precise notion than the distance:

Definition 4.3. Let v and v′ be two points in Dᾱ defining a long line
L. Let w and w′ be the two intersection points between L and the
isotropic semi-cone, ϕ = B(w, .) and ϕ′ = B(w′, .).

We denote by Dᾱ(v, v′) the set {[ϕ, ϕ′, v, v′], [ϕ′, ϕ, v, v′]}, and call it
the multiplicative (Hilbert) distance between v and v′.

The Hilbert distance dᾱ is a function of Dᾱ, justifying the name of
multiplicative distance:

Fact 3. Let v and v′ be two points in Dᾱ defining a long line. Let
{x, x−1} = Dᾱ(v, v′). Let pn = max{|x− 1|, |x−1 − 1|}.

Then dᾱ is given by n+ 1 if n ≥ 0, else by 1
p−1

pn+1.

5. Links with the tree

We clarify here the links between the hyperbolic disc associated to
an ᾱ of even valuation in Qp with p 6= 2 and the more classical tree T of
PSL(2,Qp). We will not treat the case of a general non-archimedean
local field in order to avoid heavy notations. However, it should be
clear that the same phenomenon occurs in this more general case. The
situation is a bit different for the discs associated to an ᾱ of odd val-
uation. Let us recall briefly that the tree may be defined as follows
[Ser03]:

• The vertices are the orders (up to isometry) in Q2
p, i.e. the free

Zp-modules of rank 2. It is also the set PGL(2,Qp)/PGL(2,Zp).
• Two orders are linked by an edge if they are of index p one in
the other.

The action of PSL(2,Qp) has two distinct orbits: the orbit of Z2
p and

the orbit of Zp·(1, 0)⊕Zp·(0, p). Two linked vertices belongs to different
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orbits. One sees that this graph is a complete p+1-tree2. Its boundary
at infinity is naturally identified with P1(Qp). Two distinct points in
P1(Qp) represented by vectors v1 and v2 define a unique geodesic in
the tree, composed by the orders of the form Zp · xv1 ⊕ Zp · yv2.

The hyperbolic disc Dᾱ and the tree are both homogeneous sets
under PGL(2,Qp). The normalizer of a point in Dᾱ is a compact
subgroup, so it is included in a conjugate of PGL(2,Zp). We will check
(by a tedious computation, unfortunately) that it is included in only
one maximal compact subgroup. This holds because we supposed ᾱ
has even valuation. Hence, we have a well-defined and natural map
from Dᾱ to T which turns out to be the collapse of each ultrametric
locus on a vertex in the tree. This map is a covariant quasi-isometry:

Theorem 5.1. For any v ∈ Dᾱ, there is a unique point p := πᾱ(v) ∈ T
such that the stabilizer of p in PGL(2,Qp) contains the stabilizer of v
in PGL(2,Qp). The projection πᾱ : Dᾱ → T defines a quasi-isometry
covariant for the action of PGL(2,Qp).

Moreover, πᾱ induces a bijection between the set of long lines in Dᾱ

and the set of geodesics in T .

Remark. Before going on with the proof, let us point out the similarity
with the case of the triangle (see section 3.3): in both cases, the pro-
jection collapsing the ultrametric loci maps our convex to a discretized
version of their real counterpart. For the triangle, the vertices of an
hexagonal net reflected the hexagonal norm on the plane, and here the
vertices of a tree look very much like a discretized hyperbolic disc.

Proof. I have no other proof of the first point than a direct computation:
choose some α ∈ ᾱ of valuation 0. The stabilizer Stab(vα) of vα =
(α, 0, 1) in GL(2,Qp) is composed of the elements g of the form:(

a αεc
c αa

)
,

where ε = det(g) = ±1 and a and c are tied by the relation c2 =
1
α

(ε− a2).
As −α is not a square, it yields that a ∈ Zp and then g ∈ PGL(2,Zp).
Now take an element of h ∈ PGL(2,Qp), represented by a matrix(

x y
z αt

)
2Let us also mention that one may interpret the whole tree (edges included) as

the set of norms on Q2
p [GI63].
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in GL(2,Qp) of determinant D verifying |D| = 1 or p. The assumption
h Stab(vα)h−1 ⊂ PGL(2,Qp) gives us the system of conditions:

a(tx− εyz) + c(ty + αεyz) ∈ DZp(1)
axy(ε− 1)− c(y2 + αεx2) ∈ DZp(2)
atz(−ε+ 1) + c(t2 + αεz2) ∈ DZp(3)

a(−zy + εtx)− c(ty + αεzx) ∈ DZp(4)

It should be verified for every ε = ±1 and a, c tied by the relation
c2 = 1

α
(ε − a2). We deduce that x2, y2, z2, t2, tx, yz, ty... belong to

DZp. So |D| = 1 and x, y, z and t belong to Zp. We conclude that h
belongs to PGL(2,Zp).

This proves that the only maximal compact subgroup of PGL(2,Qp)
containing Stab(vα) is PGL(2,Zp). As all the stabilizers are conju-
gated, the first point is proven.

The covariance is clear. So it is enough to understand πᾱ along a
long line, using the transitivity of PGL(2,Qp). One easily identifies
the projection along the long line between (1, 0, 0) and (0, 0, 1):

πᾱ(αx2, 0, 1) = Zp.(x, 0)⊕ Zp.(0, 1).

Hence if v and v′ are at distance d in Dᾱ, their projections πᾱ(v)
and πᾱ(v) are at distance E(d

2
). The projection is a quasi-isometry. It

is nothing else than the collapse of the ultrametric loci in Dᾱ to points
in the tree.

The projection πᾱ extends to the bijection Kᾱ(a2, ab, b2) 7→ [a : b]
from the isotropic cone Cᾱ to P1(Qp). As a long line (above) or a
geodesic (in the tree) is uniquely defined by its ends in (respectively)
Cᾱ and P1(Qp), the projection πᾱ defines a covariant bijection between
the long lines and the geodesics. �

Remark. We won’t be precise, but when the valuation of ᾱ is odd and
−1 is not a square, then each point in Dᾱ has a well-defined projection
to an edge of T . It explains why PSL(2,Qp) may act transitively on
these Dᾱ.

6. The group of automorphisms

We show here that a transformation of Dᾱ that preserves the mul-
tiplicative Hilbert distance is projective ; i.e. it belongs to Isom(Dᾱ).
It does not hold under the weaker hypothesis of preserving the Hilbert
distance because the latter lacks precision. For example, the Hilbert
distance by itself does not allow to define long lines as “geodesics”,
whereas the multiplicative Hilbert distance does.
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Throughout this section, ᾱ is a fixed element in k∗/(k∗)2, represented
by some α ∈ k∗.

6.1. Multiplicative Hilbert distance. Recall that we defined the
notion of multiplicative Hilbert distance (definition 4.3). This notion
will be enough to characterize in the following the action of PGL(2,k).
Of course the multiplicative Hilbert distance is invariant under the
action of PGL(2,k).

The action of PGL(2,k) becomes transitive on the pair of points at
equal multiplicative distance:

Lemma 6.1. For any x in k∗, the action of PGL(2,k) on the set
{(v, v′) ∈ D2

ᾱ such that D(v, v′) = {x, x−1}} is transitive

Proof. Fix a pair (v, v′) of points such that D(v, v′) = {x, x−1}. The
group PGL(2,k) acts transitively on the flags (i.e. a point in a long line)
by lemma 4.2, hence it sends v on vα = Kᾱ(α, 0, 1), and v′ on a point
of the form Kᾱ(αy2, 0, 1). As PGL(2,k) preserves the multiplicative

distance, we have either y = x or y = x−1. The action of
(

0 −x
1
x

0

)
fixes vα and maps Kᾱ(αx2, 0, 1) to Kᾱ(α, 0, x2) = Kᾱ(αx−2, 0, 1).

So the action of some element in PGL(2,k) maps the points v and
v′ to Kᾱ(α, 0, 1) and Kᾱ(αx2, 0, 1), proving the transitivity. �

We define now the notion of automorphism of Dᾱ by asking that it
preserves the multiplicative Hilbert distance. Indeed it seems reason-
able to consider that this multiplicative distance is a natural invariant
for two points in Dᾱ lying on a long line. So a transformation of Dᾱ

which preserves its convex structure should preserve the multiplicative
Hilbert distance:

Definition 6.1. Let T be a transformation of Dᾱ. It is an automor-
phism of Dᾱ if it preserves the multiplicative distance, i.e.:

• if v and v′ lie on a long line, so do T (v) and T (v′).
• for any v and v′ on a long line, we have D(T (v), T (v′)) =
D(v, v′).

The next section shows that any automorphism is indeed given by
an element of PGL(2,k).

6.2. Every automorphism is projective.

Theorem 6.2. Consider an automorphism T of Dᾱ.
Then T is a projective transformation preserving the quadratic form

Q, i.e. T belongs to Isom(Dᾱ).
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The proof is the same as in the real case: up to the action of
Isom(Dᾱ), we may assume that T has a pointwise fixed long line and
another fixed point. We prove that the multiplicative distance to these
fixed points characterize any point in Dᾱ. We will need the notion of
circle:

Definition 6.2. Let v be a point inDᾱ and x ∈ k∗. The circle centered
at v and of multiplicative radius {r, r−1} is the set:

C(v, r) = {v′ ∈ Dᾱ such that D(v, v′) = {r, r−1}}.

Remark. The multiplicative Hilbert distance is defined for points on a
long line. So for any v′ in the circle C(v, r), the line (vv′) is a long one.

We then study intersections of circles:

Lemma 6.3 (Two circles intersect in at most two points). Consider
two distinct points v and v′ in Dᾱ on a long line. Fix r and r′ in
k∗ \ {1}.

Then there are at most two points in the intersection between the
circles C(v, r) and C(v′, r′). If there are effectively two points, there is
an involution g ∈ Isom(Dᾱ) which fixes v and v′ and permutes these
two points.

Proof. Once again, one may assume that we have v = Kᾱ(α, 0, 1) and
v′ = Kᾱ(αx2, 0, 1) and the proof is a calculus. The idea is that both
circles are curves of degree 2, hence may intersect in at most two points.

The circle C(v, r) is the orbit of Kᾱ(αr2, 0,−1) under Stab(v). And
one may similarly see the circle C(v′, r′) as the orbit:x2 0 0

0 x 0
0 0 1

 Stab(v) . Kᾱ(αr′2, 0, 1).

We have already described Stab(v):

Stab(v) =

{
Ad

(
a −αεc
c εa

)
for ε = ±1 and αc2 = ε− a2

}
.

Note that in the previous description one may transform (a, c) in (−a,−c)
without changing the element in Stab(v). Hence the elements of C(v, r)
have coordinates:(

αεa2r2 + (1− εa2); (r2 − 1)εac; (1− εa2)r2 + εa2
)
,

where ε = ±1 and αc2 = ε− a2. For C(v′, r′) we get:(
x2(αε′a′2r′2 + (1− ε′a′2)); (r′2 − 1)ε′a′c′; ((1− ε′a′2)r′2 + ε′a′2)

)
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where ε′ = ±1 and αc′2 = ε′ − a′2. As v and v′ are distinct, we have
x 6= 1. Hence the equality of the first and the third coefficients gives
a linear system in the unknowns εa2 and ε′a′2 which has at most one
solution. Using the equality between the second coefficient, there are
at most two solutions (r, s, t) and (r,−s, t). Hence these two solutions
are mapped one onto the other by the matrix:1 0 0

0 −1 0
0 0 1

 ∈ Stab(v) ∩ Stab(v′).

�

We are now able to see that three multiplicative distances are enough
to define a point in Dᾱ:

Lemma 6.4 (A point is defined by three multiplicative distances). Let
v1, v2 and v3 be three distinct points in Dᾱ, any two of them lying on
a long line, but the three of them not lying on the same long line.

Then, for any r1, r2 and r3 in k∗ there is at most one point in Dᾱ

at multiplicative distance {ri, r−1
i } of the point vi for i = 1, 2 and 3.

Proof. Fix the vi’s and ri’s. Suppose by contradiction that two points
v 6= v′ in Dᾱ are at multiplicative distances {ri, r−1

i } of the point vi
for i = 1, 2 and 3. One may assume that all the ri are different of 1,
because if ri = 1, the only possible solution is vi.

One of the vi, say v2, does not belong to the line (vv′), because the
vi’s do not belong to the same line. Using the previous lemma, for any
i 6= j there is an involution tij in Isom(Dᾱ) fixing vi and vj such that
tij(v) = v′. Hence t12t23 fixes the three distinct points v, v′ and v2 which
are not on the same line. Hence t12t23 is a projective transformation
of k3 which fixes pointwise the two distinct projective lines (vv′) and
(vv2). Hence it is an homothety. We get t12 = t23.

It implies that the lines (v1v2) and (v2v3) are the same, which contra-
dicts the assumption that the vi’s do not belong to the same line. �

The proof of the theorem follows:

Proof of theorem 6.2. Consider an automorphism T . Consider 3 points
v1, v2 and v3, two of them defining a long line, but the three of them
not belonging to the same line.

The group Isom(Dᾱ) acts transitively on the couple of points at
same multiplicative distance (lemma 6.1). So there is an element g1 in
Isom(Dᾱ) such that g1T fixes v1 and v2. As g1T is still an automor-
phism, it sends v3 to one of the at most two points at distance D(v1, v3)
of v1 and D(v2, v3) of v2. One then may choose, using lemma 6.3, some
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g2 in Isom(Dᾱ) such that g2g1T fixes v1, v2, and v3. By the lemma 6.4,
g2g1T is the identity.

It proves that T is a projective map, i.e. it belongs to Isom(Dᾱ). �

Conclusion

It seems to the author that the construction described along this
paper raises numerous questions. The notions of p-adic convexity and of
Hilbert distance may not be suitably defined her ; but it would at least
be interesting to test it on other examples and to see how rich p-adic
Hilbert geometries are. As for the hyperbolic discs, their existence gives
a geometric object whose transformation group is PGL(2,k). They
also deserve further studies. One may wonder if some problems or
applications around the hyperbolic disc may be given a p-adic analogue.
Here are three questions that seem worth exploring to me.

First of all, as mentioned in the introduction, the automorphisms of
the tree form a huge group. We proved that if such an automorphism
comes from an automorphism of the discs, then it acts as an element of
PGL(2,k). But the geometry of the discs gives us a lot of invariants.
For example, we get a notion of pencil of geodesics: a pencil of geodesics
in the tree is (the projection of) a set of lines passing through a point
in the disc above. What does the group of automorphisms of the tree
which map pencils to pencils looks like? And there are other notions
to study, e.g. orthogonality of long lines.

Secondly, one is tempted to see a lattice in PGL(2,k) as the funda-
mental group of the quotient of hyperbolic discs by its action. Can we
describe the p-adic surfaces that one obtains by this construction? In
other words, what are the surfaces uniformized by the p-adic hyperbolic
discs ?

Eventually, and that was the starting point of this work, the notion
of convexity in the real projective plane (and projective spaces of higher
dimension) is the very starting point of the theory of divisible convex
sets and relates with the Hitchin component of representations of a sur-
face group (see [Ben08] for a survey on divisible convex sets). Though
we lack the mere notion of connectedness, are we able to develop an
analogue of some parts of these beautiful theories ?

Annex : Proof of fact 1

Recall the setting of our Iwazawa decomposition of the group SO(Q).
Let Q′ be the quadratic form x2

1 + . . . + x2
n−1. Consider the three

following subgroups of SL(n+ 1,k):
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• N+ =

1 2twA Q′(w)
0 A w
0 0 1

 for A ∈ SO(Q′) and w ∈ kn−1.

• N− =

 1 0 0
v B 0

Q′(v) 2tvB 1

 for B ∈ SO(Q′) and v ∈ kn−1.

• H =

x 0 0
0 Id 0
0 0 1

x

 (t ∈ k∗).

The three following facts may be proven with geometric considerations
in the real case. But elementary linear algebra leads to the same con-
clusion and works on any field.

Fact 4. • All three are subgroups of SO(Q) and H normalizes
both N+ and N−.

• The subgroup N+ is the stabilizer of v0 =


1
0
...
0

 in SO(Q).

• The group SO(Q) decomposes as the product N−HN+.

Proof. Let P be the matrix representing the quadratic form 2Q in the
standard basis of kn+1:

P =

0 0 1
0 −2Id 0
1 0 0

 ,

such that Q(v) = 1
2
tvPv for any v ∈ kn+1. The group SO(Q) is the

group of matrices M in SL(n+ 1, k) verifying tMPM = P .
It is clear that H preserves Q and normalizes N− and N+.
Let us prove that N+ is the stabilizer of v0 in SO(Q) (it will also

prove it is indeed a subgroup of SO(Q) !): a matrix in SO(Q) stabilizing
the vector v0 also stabilizes its orthogonal. The latter is the subspace
kn × {0} of vectors having the last coordinate equals to 0. Hence a

matrix M stabilizing v0 has a first column =


1
0
...
0

 and the last line

(0, . . . , 0, x) for some x ∈ k. In other words, one may write:

M =

1 tv y
0 A w
0 0 x
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where A is a (n − 1) × (n − 1)-matrix, and v, w belong to kn−1. A
straightforward computation gives:

tMPM =

0 0 x
0 −2tAA xv − 2tAw
x t(xv − 2tAw 2xy − 2tww

 .

The equality tMPM = P leads to, successively, x = 1, v = 2tAw,
tAA = Id, y = tww. The last two may be translated into: A ∈ SO(Q′)
and y = Q′(w), which proves the fact. One may prove along the same

lines that N− is the stabilizer of the vector


0
...
0
1

.

For the third claim, one shows that the product N−H = HN− send

v0 to any isotropic vector v =

x0
...
xn

 ∈ C \ {0}. Let v′ =
 x1

...
xn−1

 and

define the following matrix of N−:

n− =

 1 0 0
v′ Id 0

Q′(v′) 2tv′ 1

 .

Then n−(v0) =

 1
v′

Q′(v′)

. Now v is isotropic, i.e. Q(v) = x0xn −

Q′(v′) = 0, so x0xn = Q′(v′). It remains to consider the following
matrix of H:

h =

x0 0 0
0 Id 0
0 0 1

x0

 .

It verifies hn−(v0) = v.
We may conclude: let g be an element of SO(Q) and choose two

elements n− and h such that n−h(v0) = g(v0). Then (n−h)−1g fixes v0.
So it belongs to N+ and g belongs to n−hN+. �
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