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1 Introduction
Consider an homogeneous space under a locally compact group G and a
lattice Γ in G. Then the lattice naturally acts on the homogeneous space.
Looking at a dense orbit, one may wonder how to describe its repartition.
One then adopt a dynamical point of view and compare the asymptotic
distribution of points in the orbits with the natural measure on the space.
In the setting of Lie groups and their homogeneous spaces, several results we
will present afterwards showed an equidistribution of points in the orbits.

We address here this problem in the setting of p-adic and S-arithmetic
groups.

1.1 Historical background

Ten years ago, F. Ledrappier [13] explained how Ratner’s theory (in this
particular case, he needed a theorem of Dani [4]) shall be used to understand
the asymptotic properties of the action of SL(2,Z) on the euclidean plane
R2. He proved the following:

Theorem 1.1 (Ledrappier [13]). Let Γ be a lattice of SL(2,R) of covolume
c(Γ), ‖.‖ the euclidean norm on the algebra of 2× 2-matrices M(2,R), and
v ∈ R2 with non-discrete orbit under Γ.

Then we have the following limit, for all ϕ ∈ Cc(R2 \ {0}):

1

T

∑
γ∈Γ ,‖γ‖≤T

ϕ(γv)
T→∞−−−→ 1

|v|c(Γ)

∫
R2\{0}

ϕ(w)
dw

|w|
.

Remark. Nogueira [17] proved also the previous theorem for Γ = SL(2,Z)
using different techniques.

1



After that A. Gorodnik develloped the strategy for the space of frames
[8] and eventually A. Gorodnik and B. Weiss gave an abstract theorem for
this problem in Lie groups and then applied it to different situations [10].

Recently F. Ledrappier and M. Pollicott [14], and independently the au-
thor in its PhD thesis [11], proved a p-adic analog of the first theorem for
lattices of SL(2,Qp) acting on the p-adic plane.

In this paper we adapt this strategy to handle the case of homogeneous
space under S-arithmetic groups. Our work can be viewed as the analog of
[10] in this setting.

1.2 The S-arithmetic setting

We will work in the following arithmetic setting: let K be a number field,
O its integer ring and V the set of its places. We fix a finite set S in V
containing the archimedean ones. For all ν ∈ V , we note Kν the completion
of K associated to ν and KS the module product of all Kν for ν ∈ S. This
ring has a set of integer, noted OS.

Consider G a semisimple simply connected K-group. We note G :=
G(KS) its S-points, and we fix Γ an arithmetic lattice - i.e. commensurable
to G(OS). Recall that, according to Margulis superrigidity theorem, as soon
has the total rank of G is greater than 2, any lattice in G is an arithmetical
one. Then let H be a subgroup of G which is a product

∏
ν∈S

Hν of closed

subgroups of G(Kν). For example, one can think to the stabilizer of a point
for an action of G defined over K, i.e. H = gH̄g−1 where H̄ is the KS-
points of a K-group and g an element in G. We will always assume that the
subgroup H is unimodular. Some references for these objects are to be found
in [18] and [15].

We are interested in the asymptotic distribution of orbits of Γ in H\G
so we will always assume this orbit to be dense, or equivalently that HΓ is
dense in G. This last asumption is quite different of some recent works in
the same area ([9], [6]...) where H is supposed to have a closed projection
in G/Γ and the dynamic appears by looking at larger and larger orbits. In
particular, there won’t be any adelic arguments in this work.

1.2.1 Measures and projections

Definition 1.1. We say that a triple (G,H,Γ) is under study if we are in
the precedent case, that is if there is a number field K, a finite set S of places
containing the archimedean ones, and a K-group G, K-reductive and with
simply connected semisimple part, such that :
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• G is the KS points of G,

• Γ is an arithmetic lattice in G,

• H is the product of unimodular Kν-subgroups of G(Kν) for ν ∈ S,

• HΓ is dense in G and H is not compact,

• H is a semidirect product HssoHu of a semisimple part and an unipo-
tent radical.

We now fix some notations for projections and measures : the Haar mea-
sure on G is noted mG ; on H, mH ; and m the probability on G/Γ locally
proportional to mG. On H\G, as H is unimodular, we have a unique - up
to scaling - G-invariant measure. We normalize the measure mH\G on H\G
such that mG is locally the product of mH and mH\G. The notations for the
projections are as shown:

G
τ ↙ ↘ π
H\G G/Γ

1.2.2 Balls and volume

In order to adopt a dynamical point of view, we need to instillate some
evolution in the so far static situation. So we consider families (Gt)t∈R of
open and bounded subsets in G (often called balls), and consider the sets
Γt = Γ ∩ Gt. Letting t go to ∞, we may now consider the asymptotic
distribution of the sets H\HΓt in H\G. Of course we will usually consider
family (Gt) that are increasing and exhausting (the union of Gt covers G).

We introduce a notation for the intersection of such a family (Gt) and its
translates with subsets of G:

Definition 1.2. Fix (Gt)t∈R a family of open subset G, L a subset of G and
g an element of G. Then for all real t, we note Lt := L ∩Gt the intersection
of Gt ad L and Lt(g) the intersection L ∩Gtg

−1.
As the restriction of the so-called balls of G, we call the sets Lt balls in

L, and skew-balls the sets Lt(g).

When L is a subgroup, we can compare the growth of volume of its normal
subgroup with respect to the sets (Gt). It may happens that a strict subgroup
grows as fast as the whole group. Such a subgroup is exhibited in [10, Section
12.3]. We will call such a subgroup dominant:
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Definition 1.3. Let L be a unimodular subgroup of G and mL be its Haar
measure. Fix Gt a family of open bounded subsets of G, increasing and
exhausting.

A normal subgroup L′ is said to be dominant in L if for some compact C
in L, the volume of C.L′t grows as fast as the volume of Lt, i.e.

mL(C.L′t)
mL(Lt)

does
not converge to 0 with t.

Eventually we need an explicit way to define balls in Γ. Going back to
Ledrappier’s theorem, we see that the balls are constructed considering a
norm on the algebra of matrices. Moreover, Gorodnik and Weiss [10] defined
their balls in the same spirit, first representing the group G and then using
a norm on the matrix algebra in which G is embedded. Our strategy is the
same, but for technical reasons we assume firstly that the unipotent radical
and the semisimple part are somehow orthogonal with respect to the norm
and secondly that the norms are "algebraic".

Definition 1.4. A size function D from G to R+ is any function constructed
in the following way : consider a K-representation ρ of G in a space V and
for all ν ∈ S a norm | . |ν on the space End(V(Kν)) verifying :

1. for all hν = (hssν , h
u
ν) in H, its norm |hν |ν is an increasing function of

both |hssν |ν and |huν |ν .

2. If ν is archimedean, the norm |.|ν may be written in a suitable basis as
the Lp-norm for p in N∗ ∪ {∞}. If ν is ultrametric, we assume that it
is the max-norm in some basis.

Now define D for all g = (gν)ν∈S by the formula D(g) = max{|gν |ν for ν ∈
S}.

In this setting given a size function, we have a family of open bounded
subsets Gt := {g ∈ G such that F (g) < t} in G.
Remark. These two assumptions, especially the first one, are annoying. The
second one does not seem to be an important one and in numerous applica-
tions our work may be applied without it. For the first one, I do not know
wether it is necessary or not. The positive point is that for applications
we may verify it (see section 7): e.g. there is no condition when H is ei-
ther unipotent or semisimple. Morever every example given in the historical
section fit into the framework of our article.

1.3 Statement of the main result

We prove in this article the following result:

4



Theorem 1.2. Let (G,H,Γ) be a triple under study, D be a size function on
G and (Gt)t>0 be the associated family of balls. Assume that every dominant
subgroup H ′ verifies H ′Γ is dense in G.

Then there is a finite partition I1, . . . , Il of R>0, and, for each 1 ≤ i ≤ l,
a function αi : H\G → R>0 such that the orbit of the sets Γt = Gt ∩ Γ for
t ∈ Ii becomes distributed in H\G according to the density αi with respect to
mH\G. That means, for all ψ ∈ Cc(H\G), we have:

1

mH(Ht)

∑
γ∈Γt

ψ(τ(γ))
t→+∞−−−−→
t∈Ii

∫
H\G

ψ(x)αi(x)dmH\G(x) .

The partition of the parameter space in a finite number of subspaces is
not needed when there is no non-archimedean places as in [10] but appears
even with very simple examples as soon as ultrametric part is to be taken
in consideration. Let us also precise that the densities αi are explicitely de-
scribed and effectively computable in examples given afterwards (see theorem
2.1).

We present here some examples of applications. Of course one may look
at numerous situations. I just present here some variations about linear
actions of the special linear group on points or subspaces. I believe that
these examples show how to apply the previous theorem to specific situations,
using algebraic features such as strong approximation in the special linear
group. The proofs are postponed to section 7.

1.3.1 Applications to SL(2)

Consider the group G = SL(2,R)× SL(2,Qp) for p a prime number, and fix
the lattice Γ = SL(2,Z[1

p
]). We fix here (for sake of simplicity) the standard

euclidean norm |.|∞ on the matrix algebra M(2,R) and the max-norm |.|p
onM(2,Qp). For a point v in R2, we note also |v|∞ the norm of the matrix
whose first column is v and the second one is 0. We define similarly the norm
of a point in Q2

p. We choose a Haar measure m = m∞ ⊗mp on G.
First we look at the action on the real plane, proving a result similar to

Ledrappier’s theorem but for the action of matrices in Γ subject to congruence
conditions on their coefficients modulo p:

Application 1.1. Let O be a bounded open subset of SL(2,Qp). Note ΓOT
the set of elements γ ∈ Γ such that |γ|∞ ≤ T and γ ∈ O as an element of
SL(2,Qp). Let v be a point of the plane R2\{0} with coordinates independant
over Q.
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Then we have the following limit, for any function ϕ continuous with
compact support in R2 \ {0}:

1

T

∑
ΓOT

ϕ(γ(v))
T→∞−−−→ mp(O)

m(G/Γ)|v|∞

∫
R2

ϕ(w)
dw

|w|∞

Another action of Γ of interest is on the product of real and p-adic planes.
A precision : on the p-adic plane, we normalize the measure such that it
gives mass 1 to Z2

p. The result is that if your beginning point generates the
whole plane among the Q-subspaces, then its orbit is dense and you get a
distribution result (the function E appearing is the integer part):

Application 1.2. Let (v∞, vp) be an element of (R2 \ 0)× (Q2
p \ 0). Suppose

that any Q-subspace V of Q2 verifying v∞ ∈ V ⊗Q R and vp ∈ V ⊗Q Qp is
Q2. Denote ΓT the set of elements γ ∈ Γ with |γ|∞ ≤ T and |γ|p ≤ T .

Then, for all function ϕ continuous with compact support in (R2 \ 0) ×
(Q2

p \ 0), we have the following limit:

1

TpE(lnp(T ))

∑
ΓT

ϕ(γv∞, γvp)
T→∞−−−→ p2 − 1

p2m(G/Γ)|v∞|∞|vp|p

∫
R2×Q2

p

ϕ(v, w)
dvdw

|w|∞|w|p

All these results may be extended with the tools presented in the paper
for any norm on the matrix algebras and by considering not only a prime
number but a finite number of them.

1.3.2 Applications to SL(n)

We look here at a generalization in greater dimension. We consider the action
of Γ = SL(n,Z) on the k-th exterior power Λk(Rn), or the space of k-planes
equipped with a volume. Once again we fix the standard euclidean norm |.|
onM(n,R), but this time it is necessary to apply our theorem (see section
7). We consider also the standard euclidean norm |.| on Λk(Rn). And m is a
Haar measure on SL(n,R). We get:

Application 1.3. Let v be a non-zero element of Λk(Rn) such that its cor-
responding k-plane of Rn contains no rational vector. Denote ΓT the set of
elements γ ∈ Γ with |γ| ≤ T .

Then we have a positive real constant c (independant of Γ and v) such
that for all function ϕ continuous with compact support on Λk(Rn) \ {0}:

1

T n2+k2−nk−n

∑
ΓT

ϕ(γv)
T→∞−−−→ c

m(G/Γ)|v|

∫
Λk(Rn)

ϕ(v′)
dv′

|v′|
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The S-arithmetic generalization of the previous result holds of course. I
prefer to postpone its statement and its proof to the section 7. Moreover I
do not want to multiply here applications but one may think at examples in
special unitary groups or Spin groups instead of the special linear one.

1.4 Organization of the paper

The organization of the paper is the following : in the next section we work
out the so-called duality phenomenon, reducing the stated theorem to two
results : a statement on volume of balls in the group and an analog of a
result of Shah about equidistribution of balls of H in G/Γ. The third section
is devoted to the study of volume of balls, using p-adic integration. In the
fourth section we review some tools we need to prove the analog of Shah
theorem : mainly Ratner theorem for unipotent flows in a p-adic setting and
several results due to G. Tomanov for polynomial dynamics in S-arithmetic
homogeneous spaces. The fifth section is the devoted to some technical work.
We conclude the proof in the sixth section. Eventually we treat the examples
in the last section.
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2 Duality
The duality phenomenon, as used by F. Ledrappier [13] and A. Gorodnik-B.
Weiss [10], is a consequence of the following idea : a property of the action
of Γ on H\G reflects in a property of the action of H on G/Γ. The simplest
example is the density of an orbit : Hg has dense orbit under Γ in H\G if
and only if gΓ has dense orbit under H in G/Γ. This consideration leads to
the key point in the proof of Ledrappier : instead of looking at the orbit of
the lattice Γ in the space H\G, we prefer to translate the problem in terms
of the action of H in G/Γ. And then we may use the precise description of
unipotent orbits in the space G/Γ, namely Ratner’s theory (cf section 4) to
prove some equidistribution results. However, for asymptotic distribution of
points, this phenomenon is not granted and requires additional assumptions
we will review in this section.

We may remark that if H is symmetric, Y. Benoist and H. Oh used other
techniques - i.e. the mixing property - to study asymptotic distribution of
orbits [1].

In [10, Corollary 2.4], Gorodnik and Weiss presented an axiomatic frame
for duality. Unfortunately we cannot use directly their statement as we
miss some continuity hypothesis on the distance function - once again the
ultrametric part has to be handled specifically, even if the final result holds.
So we present a slightly adapted version of their result in the theorem 2.1.

In the setting defined in the precedent section, consider an increasing and
exhausting family Gt of open bounded subsets in G. We need an hypothesis
of regularity on this family. We choose to state it using the right action of
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open subsets of G and asking the sets Gt to be uniformly almost invariant by
some open set. As we are interested in the intersections with H, the precise
(and classical) definition is:

Definition 2.1. Let (Gt)t∈I be a family of open bounded subsets of G. We
say that it is almost (right)-invariant if for every ε > 0 one can find on open
neighborhood Uε of id in G such that the two following inequalities hold for
every t ∈ I:

• the set GtUε is not too big with respect to Gt inside H:

mH(H ∩GtUε \Gt) ≤ εmH(H ∩Gt) ,

• Not too much points inside Gt are Uε-closed to its complement inside
H :

mH(H ∩Gt \Gc
tUε) ≥ (1− ε)mH(H ∩Gt) .

One easily checks that the balls Gt defined by a size function on G are
almost invariant. Indeed for the archimedean part, any norm on the matrix
algebra is continuous. And for the ultrametric part the max-norm is invariant
under some open neighborhood of identity.

We also need a result of existence of limits for ratios of volumes of skew-
balls in H (Hypothesis D2 in [10]). Recall the definition 1.2 : for g ∈ G and
t ∈ I, Ht(g) is the set H ∩Gtg

−1.

Definition 2.2. We say that a family (Gt)t∈I admits volume ratio limits for
H if for all g in G the ratio mH(Ht(g))

mH(Ht)
admits a limit as t goes to +∞ in I.

The corollary 2.4 of [10] (and its proof) implies the following one :

Theorem 2.1. Let (G,H,Γ) be a triple under study. Let (Gt)t∈I be a family
of bounded open subsets of G almost invariant, admitting volume ratio limits
for H and such that the volumes of Ht = H∩Gt go to +∞. Assume moreover
that the orbit of Ht in G/Γ becomes equidistributed with respect to mG/Γ ;
i.e. for all ϕ ∈ Cc(G/Γ), we have:

1

mH(Ht)

∫
Ht

ϕ(π(h))dmH(h)
t→+∞−−−−→
t∈I

∫
G/Γ

ϕdmG/Γ .

Then the orbit of Γt = Gt∩Γ is distributed in H\G according to a density
with respect to mH\G ; i.e. for all ψ ∈ Cc(H\G), we have:

1

mH(Ht)

∑
γ∈Γt

ψ(τ(γ))
t→+∞−−−−→
t∈I

∫
H\G

ψ(H.g)
mH(HTg)

mH(HT )
dmH\G(Hg) .
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Particularly the density of the limit measure is described as limit ratio of
volumes of balls. We will see in the next section a proof of existence of these
ratios. But we will not in this paper go into precise and general estimates of
these volumes. Our theorem still benefits of these estimation when available,
e.g. in the applications (see section 7). Maucourant [16] get very precise
estimations for H real semisimple.

Proof. The proof is the same as [10, Part 3 and 4]: the almost invariance
replacing the hypothesis of right continuity of the distance function in their
paper.

Now we have to understand the right setting to apply this theorem. There
are two difficulties : the existence of volume ratio limits and the equidistri-
bution of H-orbits in G/Γ. The next section address the first problem. We
will prove the following theorem:

Theorem 2.2. Let (G,H,Γ) be a triple under study, D a size function on
G. Consider (Gt)t∈R the family of balls for F . Suppose that the volume of
Ht goes to +∞.

Then there exists a finite partition of R in unbounded subsets I1, . . . , Ik
such that for all 1 ≤ l ≤ k the family (Gt)t∈Il admits volume ratio limits for
H.

We shall exhibit in the following section a very simple example showing
that we really need this partition.

The second part of the paper is to prove the equidistribution property
under the hypothesis of theorem 1.2: H is a semidirect product of a semisim-
ple and a unipotent groups and every dominant subgroup has dense orbit in
G/Γ. We will prove in section 6 the following theorem:

Theorem 2.3. Let (G,H,Γ) be a triple under study, D a size function and
Ht the induced family of balls in H. Assume that every dominant subgroup
H ′ of H has dense orbit in G/Γ.

Then the orbits of Ht becomes equidistributed in G/Γ with respect to mG/Γ

; i.e. for all ϕ ∈ Cc(G/Γ), we have:

1

mH(Ht)

∫
Ht

ϕ(π(h))dmH(h)
t→+∞−−−−→

∫
G/Γ

ϕdmG/Γ .

Theorem 1.2 is then a direct consequence of the three previous results.
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3 Asymptotic developments of volumes

3.1 An example

The following part is a little bit technical and may be misunderstood without
any example in mind. Let us show on a very simple example that we have
to be careful in describing the asymptotics of volumes of balls.

We will take here G = SL(3,R) × SL(3,Qp) for some prime p and H
the image under the adjoint representation of SL(2) of the upper triangular
nilpotent subgroup:

H =

h(t∞, tp) =

1 2t∞ t2∞
0 1 t∞
0 0 1

 ,

1 2tp t2p
0 1 tp
0 0 1

 ; t∞ ∈ R and tp ∈ Qp


We choose the max-norm on bothM3(R) andM3(Qp) such that:

Hpn =
{
h(s∞, sp) for s∞ ∈ R with |s2

∞| ≤ pn and sp ∈ Qp with |s2
p|p ≤ pn

}
.

Hence the volume of Hpn is equal to p
n
2

+E(n
2

) (E is the integer part).

Now let us have a look on a specific skew-ball : Hpn(Id,

p 0 0
0 1 0
0 0 p−1

),

and we note g = (Id,

p 0 0
0 1 0
0 0 p−1

). Then the skew-ball is described by:

Hpn(g) =
{
h(s∞, sp) for |s∞|2 ≤ pn and |p−1s2

p|p ≤ pn
}
,

hence its volume mH(Hpn(g)) is equal to p
n
2

+E(n−1
2

). We see that the ratio
mH(Hpn (g))

mH(Hpn )
is equal to pE(n

2
)−E(n−1

2
). This sequence does not admit any limit

as n goes to∞. But we can split it in two subsequences: n odd or even. And
then both subsequences admit a limit (respectively p and 1).

Keeping this example in mind we will now explain why we are always able
to do this: split the space of parameters t in a finite number of subspaces in
which the hypothesis of admitting volume ratio limits is fulfilled.

3.2 Volume ratio limits

We will prove here the theorem 2.2 stated above. We will use the fact that
if two functions have an asymptotic development on the same (reasonnable)
scale and their ratio is bounded, then this ratio admits a limit.
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In order to get this asymptotic behaviour, we use the algebraic hypothesis
on the norm. Then, following Benoist-Oh [1, Part 16], we get the wanted
result as consequence of resolution of singularities in the archimedean case
and Denef’s Cell decompostion theorem in the non-archimedean one. These
result are the two following propositions:

Proposition 3.1 (Benoist-Oh, [1] Proposition 7.2). Let H be the group of
R-points of an algebraic R-group, ρ : H → GL(V ) a R-representation of
H, mH the Haar measure on H and | . | an algebraic norm on End(V ).

Then, for all g ∈ GL(V ), the volume mH(Ht(g)) = mH{h ∈ H |ρ(h)g| ≤
t} has an asymptotic development on the scale taln(t)b with a ∈ Q+ and
b ∈ N.

For the ultrametric part, we do not get exactly an asymptotic develop-
ment rather a finite number of asymptotic developments. This was already
noted in [1] but we need here a slightly more precise result, namely a unifor-
mity on the number of simple functions needed:

Proposition 3.2 (Benoist-Oh). Let k be a finite extension of Qp, q be the
norm of an uniformizer, H the group of k-points of an algebraic k-group,
ρ : H → GL(V )a k-representation of H, mH the Haar measure on H and
| . | a max-norm on End(V ). Let St(g) be the sphere of radius t : St(g) :=
{h ∈ H such that |hg| = t}.

Then there exist N0 an integer such that for all g ∈ G and for each
0 ≤ j0 ≤ N0 one of the following holds:

1. Sqj(g) is empty for all j = j0 mod N0.

2. There exist dj0 ∈ Q≥0, ej0 an integer and cj0 > 0 such thatmH(Sqj(g)) ∼
cj0q

dj0jjej0 for all j = j0 mod N0.

Proof. I will not go into details as the proof is the same as [1, Corollary 16.7].
I will just say that applying a theorem of Denef [5, Theorem 3.1 and remark
below], we get the following:

for any polynomial map f(x, λ) from Qm+d
p to some GL(V ), for any semi-

algebraic measure µ on a semialgebraic set S ⊂ Qm
p , there are some functions

γi(λ, n) and βi(λ, n) for 1 ≤ i ≤ e such that the measure I(λ, n) of the set of
element x ∈ S with |f(x, λ)| = qn is of the form :

I(λ, n) =
e∑
i=1

γi(λ, n)pβi(λ,n)

Moreover the functions γi and βi are simple in the following sense: for
any of these functions (hereafter denoted α) there exists an integer N such
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that for all λ, the map n 7→ α(λ, n) is affine along at most N arithmetic
progressions in N which cover N up to a finite set.

Now, the above proposition is just this result in the case where S is the
image under the representation ρ of H, µ is the Haar measure on H and
f(λ, x) = λ.x for λ ∈ GL(V ) and x ∈ H.

We may go on with the proof of theorem 2.2. Let us write more explicitly
the informations we get on the function mH(Ht(g)) from this two results.
Fix some g in G. Consider the set Sf of finite places in S. For each ν ∈ Sf ,
we note qν the norm of the uniformiser of Kν . The previous proposition gives
us an integer Nν and for all 0 ≤ j ≤ Nν − 1 some dν,j ∈ Q, dν,j ∈ N and
cν,j > 0 describing the volume of spheres in the group Hν . Moreover for the
archimedean part, the proposition 3.1 gives some triple d∞ ∈ Q>0, e∞ ∈ N
and c∞ > 0 such that the volume of (H∞)t is equivalent to c∞te∞ed∞t. With
this data we are able to describe the volume of Ht:

Lemma 3.3. With the data above, mH(Ht(g)) is equivalent, as t goes to ∞,
to :

c∞t
d∞(ln t)E∞

∏
ν∈Sf

E(lnqν t)∑
j=0

cν,j[Nν ]q
dν,j[Nν ]j
ν jeν,j[Nν ]

 . (3.1)

Moreover, let d = d∞×
∏
ν∈Sf

max0≤j≤Nνdν,j and e = e∞×
∏
ν∈Sf

max0≤j≤Nνeν,j.

Then mH(Ht(g)) lies between two constants times teedt.

Proof. By definition of the size function, the ball Ht(g) is the product for
all ν in S of the balls (Hν)t(gν) in the group Hν . For each of these balls
the two previous theorems give us an equivalent for the volume in Hν (all
functions are positive so there is no trouble summing equivalent). Now the
Haar measure on H is the product of the Haar measures on the Hν ’s. And
the formula of the previous theorem is just the product of these equivalences.

The second part directly comes from the first one.

The following lemma is the last step:

Lemma 3.4. Under the hypothesis of theorem 2.2 fix an element g in G.
Then there exists a constant c > 1 such that the ratio mH(Ht(g))

mH(Ht)
lies between

c−1 and c for all t.

13



Proof. The element g acts continuously on the module End(V(KS)) (recall
that in order to define balls in G we fixed some representation of G in a
vector space V). So there are two constants A and B such that we have for
all h in H (recall that D denotes the size function) :

A.D(h) ≤ D(hg) ≤ B.D(h)

That implies that the set Ht(g) contains HAt and is contained in HBt.
But the second part of the previous lemma implies that the ratios mH(HAt)

mH(Ht)

and mH(HBt)
mH(Ht)

are bounded. Hence we have proven the lemma.

We now have the tools to proceed with the proof of theorem 2.2:

Proof. Each finite place leads to a finite partition of the space of parameters
in the following way: For ν ∈ Sf we have qν the norm of the uniformizer
and the integer Nν given by the theorem 3.2. For 0 ≤ j ≤ Nν − 1 we
call Iν,j the set of real numbers t such that E(lnqν t) is equal to j mod-
ulo Nν . The theorem 3.2 implies that on the sets Iν,j and for all g ∈ G
we have a asymptotic development of the volume of (Hν)t(g) of the form:
mH((Hν)t(g)) ∼ Cν,jt

Eν,jeDν,jt.
Now consider the finite partition I1, . . . , Il of R given by the intersection

of all these partitions. Then on a set Ij of this partition and for all g in G,
the volume mH(Ht(g)) is equivalent to some Cj(g)tEj(g)eDj(g)t. But we know
by the previous lemma that the ratio mH(Ht(g))

mH(Ht)
is bounded.

At this point we are done: since the ratio is bounded, we have Ej(g) =
Ej(Id) and Dj(g) = Dj(Id). Hence the ratio admits a limit (depending on
the set Ij), namely Cj(g)

Cj(Id)
.

4 Polynomial dynamic in homogeneous spaces
We here recall some facts about polynomial dynamic in S-arithmetic groups.
The result we need can mainly be found in Tomanov [21]. They are also used
in [9]. The main difference here - which is only a technical one - is that we
need to extend all the results to orbit of polynomial in several variables. This
does not change deeply the proof of the theorems. The interested reader may
refer to the author’s PhD thesis [11] for details.
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4.1 Measure on G/Γ invariant under the action of a
unipotent subgroup

4.1.1 Measure rigidity in an S-arithmetic setting

We need the rigidity theorem for measures invariant under an unipotent
group, often called Ratner’s theorem. For p-adic groups, it has been proved
by Ratner and Margulis-Tomanov. But in an S-arithmetic setting a more
precise version can be found in [21].

Accordingly to [21], we define the notion of subgroup of class F :

Definition 4.1. Let A be a Q-subgroup of G. Then A belongs to the class
F if and only if A(KS) is the Zariski closure of the group generated by the
unipotent elements of A(KS).

Recall from [21] that for a class F -group P, the subgroup P ∩Γ is a lattice
in P . It implies that the projection of P in G/Γ is closed.

We can now state the measure rigidity theorem :

Theorem 4.1 (Ratner, Margulis-Tomanov, Tomanov). Let G be a Q-group,
Γ an arithmetic subgroup of G = G(KS) and U a subgroup of G generated
by its one-parameter unipotent subgroups.

Then for all probability measure µ on G/Γ which is U-invariant and U-
ergodic, there exist a class F-subgroup P of G and P ′ a finite index subgroup
of P = P(KS) such that the probability µ is the P ′-invariant probability on
a translate of a P ′-orbit in G/Γ.

This theorem allows a complete description of U -invariant probability
measures.

4.1.2 The non-ergodic case

Let U be a subgroup of G generated by its one-parameter unipotent sub-
groups and µ be a U -invariant probability measure on G/Γ.

For each class F subgroup of G, the precedent theorem defines a class of
U -ergodic probability measures. To understand the decomposition of µ into
ergodic components, we have to define some subsets of G :

Definition 4.2. Let P be a class F subgroup of G. Then the sets X(P,U)
and S(P,U) are defined in the following way :

X(P,U) = {g ∈ G such that Ug ⊂ gP}
S(P,U) =

⋃
P′∈F , P′⊂P

X(P ′, U)
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We remark that X(P,U) is an algebraic subvariety of G.
For each class F subgroup P of G, let µP be the restriction of µ to

π(X(P,U) − S(P,U)). Then each ergodic component of µP is of the form
given by the precedent theorem for this group P. Moreover, since the sets
π(X(P,U)−S(P,U)) are disjoint we get the following decomposition of µ in
a denombrable sum :

µ =
∑
P∈F

µP .

This decomposition enlightens the following fact : in order to understand
a measure U -invariant, we have to understand the behaviour of trajectories
near the variety π(X(P,U) − S(P,U)). The goal of this section is to get a
such a result. But first of all, we will define some useful representations of
the group G.

4.2 A suitable representation

We fix here a class F -subgroup P. Chevalley’s theorem [2, 5.1] grants the
existence of a K-representation ρP of G such that P is the stabilizer of a line
D in the space VP of the representation.

We fix a point vP in D(K). Moreover we consider vP as a point of the
KS-module VP = VP (KS). We now get a function ηP from G to V given by
the following formula :

ηP (g) = ρP (g).vP .

The normalizer N(P) of P fix the line D but not the point vP . So we
define N1(P) to be the fixator of the point vP .

The following lemma will be useful, as a link between properties of subset
in G/Γ and in VP :

Lemma 4.2. • The set ηP (Γ) is discrete in VP .

• The set N1(P )Γ/Γ is closed in G/Γ.

Proof. First the subgroup VP (OS) is discrete in VP = VP (KS) and ρP is
a K-representation. So the set ρP (G(OS)).vP is discrete in VP . Moreover
Γ is supposed to be arithmetic, so ηP (Γ) is contained in a finite number of
translates of ρP (G(OS)).vP . Hence it is a discrete set.

Second, let gk = nkγk be a sequence of points in N1(P )Γ and assume that
gk converges to a point g. We want to prove that gΓ/Γ belongs to N1(P )Γ/Γ.
We rewrite the definition of gk : γ−1

k = g−1
k nk. By definition of N1(P ), we

then get ηP (γ−1
k ) = ηP (g−1

k ). We just showed that ηP (Γ) is discrete. So the
sequence γk is stationary equal to a γ for k large enough. Then gkγ−1 fixes
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vP for k large enough. That is gkγ−1 belongs to N1(P ). So does its limit and
we can conclude : g belongs to N1(P )Γ.

We conclude with a last definition involving the group U . The setX(P,U)
is N(P )-invariant hence N1(P )-invariant by right multiplication and it is a
Zariski closed set of G. So its image by the function ηP , which is Zariski-
open and surjective on ηP (G), is Zariski-closed in ηP (G). However there is
no reason for it to be Zariski-closed as well in VP . So we define F (P,U) as
the Zariski-closure of ηP (X(P,U)) in VP .

Remark. To avoid confusion, let us describe the Zariski topology in KS-
modules : a polynomial Q of KS[X1, . . . , Xn] is nothing else than a collection
of polynomial Qν for all ν in S. A Zariski-closed subset of a KS-module
M =

∏
ν∈S

mν is then naturally an intersection of products of Zariski-closed

subsets of each Mν

4.3 Behavior of polynomial functions

We now state a theorem allowing to control polynomial dynamics along the
sets π(X(P,U) − S(P,U)). Let us begin by the definition of a polynomial
function in the KS-points G of a K-group G with a faithful linear repre-
sentation ρ: a function f = (fν)ν∈S from (KS)m to G is said polynomial of
degree d if for all ν ∈ S, the matrix entries of ρ ◦ fν are all polynomial of
degree d. The set of functions from Km

S to G polynomial of degree at most
d will be noted Pd,m(G). Moreover we note θ =

⊗
νinS θν the Haar measure

on KS normalized such that the volume of KS/OS equals 1 and θm =
⊗m θ

the induced measure on Km
S .

Recall the definition of η from G to some K-module VG given by Cheval-
ley’s theorem. Moreover F (P,U) has been defined as the Zariski closure of
η(X(P,U)) inside VG. Hereafter, we call cube in (KS)m a product of balls∏m

i=1

∏
ν∈S Bi,ν .

Theorem 4.3 (Tomanov). Let G be a K-group, Γ an arithmetic subgroup
of G = G(KS), U be a subgroup of G generated by its one-parameter unipo-
tent subgroups and P a class F-subgroup. Let C be a compact subset of
X(P,U)Γ/Γ, d and m two integers and ε > 0.

Then there exists a compact subset D of F (P,U) such that for all relatively
compact neighbourhood W0 of D in VG, there exists a neighbourhood W of C
in G/Γ, such that for all m, for all cube B in (KS)m, and all function f in
P(d,m)(G) we have :

• either we can find γ in Γ such that η(f(B)γ) ⊂ W0
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• or θm({t ∈ B such that (f(t)Γ/Γ) ∈ W}) < εθm(B).

In [21] the theorem was not stated for functions in Pd,m but for one
parameters unipotent orbits. However there is no conceptual jump in the
proof of the above theorem. Moreover the real cases of this theorem (and
of all this section) is well known [19]. The interested reader may find more
technical details in the author’s PhD thesis [11].

4.4 Non-divergence of polynomial orbits

We need a last result in order to control the divergence of polynomial orbit.
The following theorem is a kind of analog of a result of Eskin-Margulis-Shah
[7]. However, we won’t need the whole precision of their result, we may just
use a slight adaptation of [12, Theorem 8.4 and 9.1] :

Theorem 4.4 (Kleinbock-Tomanov). Let G be a K-group, Γ an arithmetic
subgroup of G = G(KS). Fix d and m two integers.

Then there are a finite number of parabolic subgroups Pk of G and their
associated Chevalley representations ρk in a space Vk with a marked point
vk ∈ Vk in a line stabilized by Pk such that :

for all ε > 0 there are a compact D in G/Γ and compact subsets Dk in
each Vk verifying: for all f in P(d,m)(G), for all cube B in (KS)m, one of the
following holds :

1. θm({t ∈ B such that (f(t)Γ/Γ) 6∈ D}) < εθm(B).

2. There is an integer k such that there exists γ ∈ Γ with : ρk(f(B)γ).vk ⊂
Dk.

5 Some tools: Cartan decomposition, decom-
position of measures and representations

Our proof of theorem 2.3 requires some technical tools. The first one is more
than classical: the Cartan decomposition in the semisimple part, which we
recall to settle some notations. The second one is merely a way to note all the
measures (and their translates) we will consider in the sequel, together with
some basic lemmas. The third and last one is a lemma on representations of
H. It is an extension of [19, Part 5] to our setting.
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5.1 Cartan Decomposition in Hss

The groupH is a semidirect product of a semisimple partHss and a unipotent
one Hu. For the semisimple part we have a Cartan decomposition: for all
ν in S such that Hν is non-compact we choose a maximal Kν-split torus Aν
in Hν . We choose then a system of positive simple restricted roots Φν thus
defining the associated sub-semigroup A+

ν of Aν . Then there exists maximal
compact subgroups Cν and finite sets Dν in the normalizer of Aν such that
the following Cartan decomposition holds: Hν is the disjoint union of the
double class CνdaCν for a ∈ A+

ν and d ∈ Dν . For the existence of these
objects we refer to [20]. When Hν is compact we just choose Cν = Hν , Aν
and Dν are reduced to the identity.

Let A+ =
∏

ν∈S A
+
ν and similarly C and D are the products of the Cν ’s

and Dν ’s. Let Φ be the union of the Φν . For α ∈ Φν ⊂ Φ and a = (aν)ν∈S
we define α(a) = α(aν).

Consider a sequence an of elements of A+.

Definition 5.1. A sequence an of elements of A+ is simplified if for all α in
Φ we have the alternative:

• either α(an) is bounded,

• or α(an) goes to +∞

Associated to such a simplified sequence, we consider the contracted
unipotent subgroup of Hss.

U+ =

{
h ∈ Hss such that lim

n→+∞
a−1
n han = e

}
.

Remark. We did not assume that a simplified sequence an is unbounded. So
the group U+ associated may be equal to the trivial group.

5.2 Decomposition of measures

The idea is simple: given some measure µ on the ball (Hss)t, we want to define
a probability measure on the ball Ht which disintegrates (in the product
H = HssoHu) on µ and the Haar measure in the fibers. The notations may
seem tedious as we must work at each place in parallel. But it will proove
useful later.

The assumptions made on the norm ensure the following : for all hss in
Hss
ν , the set of elements in Hu

ν such that hsshu belongs to (Hν)t is a ball of
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radius some l[ν,t](hss) in Hu
ν and moreover depends continuously on hss and

t. So for all t, there is a continuous function l[ν,t] from Hss
ν to R+ such that :

(Hν)t =
⋃

h∈Hss
ν

{h} × (Hu
ν )l[ν,t](hss)

This in turn translates in terms of measures. We note mu
ν(l) the restriction

of the Haar measure mHu
ν
to the ball (Hu

ν )l. And for measure µν in Hss
ν , we

may define the measure mν(µν , t) by the formula, for all ϕ continuous with
compact support on Hν :

∫
Hν

ϕdmν(µν , t) =

∫
Hss
ν

∫
(Hu

ν )l[ν,t](o)

ϕ(ob)dmu
ν(l[ν,t](o))(b)dµν(o)

For µ =
⊗

µν a product measure onHss of finite total mass and t positive,
we notem(µ, t) the product

⊗
ν∈Smν(µν , t)’s. Eventually we note P(µ, t) the

renormalized probability measure and Supp(µ, t) its support. Remark that, if
µ proportionnal to the Haar measure of some subgroup S in Hss, thenm(µ, t)
is proportional to the Haar measure in S oHu restricted to (S oHu)t.

Let us immediatly state two lemmas showing that this probability mea-
sures behave well with respect to µ as soon as the support of µ does not
approach the frontier of Ht. First look at translations:

Lemma 5.1. Let µn be a sequence of probability measure on Hss and tn go
to ∞. Let hn go to Id in Hss. Assume that the support of µn is included in
a ball of radius Hss

(1−ε)tn for some ε > 0.
Then the sequence of (signed) measure P(((hn)∗µn), tn) − P(µn, tn) con-

verges to 0.

Proof. The assumption on the supports of µn ensures that the supports of
(hn)∗µn are included in (Hss)tn for n big enough. Moreover (by left-uniform
continuity of the norms) we have for every sequence gn in the support of µ
and for all place ν (here I forget some indices ν to keep the formula readable):

l[ν,tn](hngn)

l[ν,tn](gn)

n→∞−−−→ 1 .

As, eventually, the signed measures (hn)∗µn−µn go to 0, the lemma is proven
by a straightforward calculus.

The second lemma allows to handle also a sequence of measure µn:
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Lemma 5.2. Let µn be a sequence of probability measures on Hss converging
to µ with all these measures supported in a given compact set and absolutely
continuous with respect to some λ. Let tn be a sequence of real numbers going
to +∞ and hn a sequence of elements in Hss.

Then the sequence of (signed) measure P(((hn)∗µn), tn) − P((hn)∗µ, tn)
converge to 0.

Proof. By hypothesis, the signed measure µn−µ has a density going to zero
in L1(λ). But all these densities are supported inside a compact set. Hence
µn − µ has a total variation going to zero : for all ε there is n such that for
all function on Hss, we get:

|
∫
fdµn −

∫
fdµ| ≤ εmax(|f |)

This ensures that its translates under hn go to zero i.e. that P((hn)∗(µn, tn))−
P(((hn)∗µ), tn) go to 0.

5.3 A lemma on linear representation

The first equidistribution result we will prove is for projections of probability
measures of the form P((an)∗l, tn) where l is a probability measure on U+

absolutely continuous with respect to the Haar measure. But we need a
result on the action of the support S((an)∗l, tn) of this measure: it sends
every non-invariant point to∞. For technical reasons, we need this property
directionnally in Hu, i.e. along 1-parameter subgroups in Hu.

The situation of this section is the following one: let (an) be a simplified
sequence. Let Ω be an open and relatively compact subset of U+. Let (tn) be
a sequence of real numbers going to ∞ such that the sets anΩ are included
in balls Hss

tn . Let N ss be the smallest normal subgroup of H such that the
projection of an is bounded in H/N ss.

Lemma 5.3. Let ρ = (ρν)ν∈S be a KS-representation of H in a finite dimen-
sional KS-module V =

∏
Vν. Let O be a 1-parameter subgroup of Hu, On be

the set {o ∈ Ω× O such that for some ω ∈ Ω, D(ano) ≤ tn}. Let NO be the
smallest subgroup of H such that anOn stay in a compact in H/NO.

Let Λ be a discret subset of V with no NO-invariant points and vn a
sequence of elements of Λ.

Then the sequence of sets ρ(anOn)vn is not contained in any compact
subset of V .

This whole subsection will be the proof of this lemma.
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Proof. We split this proof in two cases : whether the sequence an is bounded
or not.

Case 1 : an is bounded
We may assume that all an equal 1. Then U+ is trivial, the On is the

ball D(o) ≤ tn in O and NO is the group O. As tn go to ∞, we may
extract a increasing subsequence of balls covering O. If vn is not bounded,
as Id belongs to On, then the lemma is proven. If not, as Λ is discrete,
we may assume that vn is constantly equal to some v which is not NO-
invariant. Now the exponential function composed with g 7→ ρ(g)v gives
us a polynomial function from the Lie algebra of O to V , and ρ(O)v is the
image of this polynomial function. That means that this function is constant
or unbounded. As it is not constant, it is unbounded, proving the lemma in
this case.

Case 2 : an is not bounded
In this situation, the action of an and U+ alone send non-invariant points

to ∞ (remark that Ω is included in On by definition).
First of all, let V Nss be the N ss-invariant sub-module of V and W an

N ss-invariant complement. Write vn = vN
ss

n + wn. If wn goes to 0, by
discreteness of Λ, vNn goes to ∞. Let C be a compact of G such that anOn

is included in CNO. Then, by definition of U+ and semisimplicity of Hss,
the sets anU+ are included in CN ss. And for any ω ∈ Ω, the sequence
ρ(anω)vn = ρ(anω)(vNn ) + ρ(anω)wn belongs to ρ(C)vNn + W . Hence this
sequence goes to ∞, proving the lemma in this case.

So we may assume that wn does not go to zero. Up to a renormalization
and an extraction, we assume that wn converges to some non-zero element
w ∈ W . It is enough to prove that the sets ρ(anΩ)w leave every compact of
V . Making this reduction we loose the discreteness hypothesis on Λ but we
will not need it anymore.

We now prove the lemma by contradiction: suppose that the above sets
stay in some compact. We prove first that w is N ss-invariant and then N -
invariant.

The first step is to show that we may assume that w is U+-invariant:
let V + be the module of U+-invariant points and V − its an-invariant com-
plement. Note p+ the projection on V + in the direction V −. We have the
following

Lemma 5.4. Let ρ = (ρν)ν∈S be a KS-representation of H in a finite di-
mensional KS-module V =

∏
Vν. Let U be a non-trivial unipotent subgroup,

and Ω an open subset of U .
Then the set ρ(Ω)w is not contained in any complement of the submodule

V U of U-invariant points.
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Proof. Once again we prove it by contradiction: suppose ρ(Ω)w generates
some submodule V ′ in direct sum with V U . And let ω1, . . . , ωk be elements
of Ω such that the ρ(ωi)w generate V ′. Then there is an neighborhood Ω′ of
the identity in U such that all the Ω′ωi are included in Ω.

And V ′ is Ω′ invariant. So it is invariant by the Zariski closure of Ω′ i.e.
by U . The Lie-Kolchin theorem implies that there is a non-zero U -invariant
element in the U -invariant module V ′ (to be very precise, you have to apply
the Lie-Kolchin theorem at each place, restricting the representation in the
obvious way). This is the contradiction: V ′ cannot be in direct sum with
V U .

So, there is some ω ∈ Ω such that p+(ρ(ω)w) is not zero. But we know
that ρ(anω)w is bounded. Hence ρ(an)p+(ρ(ω)w) is bounded. Let us show
that it implies that N ss is contained in the kernel of the representation:

Lemma 5.5. Let v be a U+-invariant and non-zero point of V such that
ρ(an)v is bounded. Then N ss is contained in the kernel of the representation.

Proof. We may assume that at each place ρν is an irreductible representation.
First of all, let W be the sub-KS-module of V containing all the vectors w
such that ρ(an)w is bounded. Consider P− the opposite parabolic subgroup
in Hss:

P− =
{
h ∈ H such that anha−1

n remains bounded
}
.

Then it is clear that ρ(P−)v is included in W . By U+ invariance of v, we
even get that ρ(P−U+)v is included in W . But P−U+ is open in H; so
Zariski-dense. We deduce that ρ(H)v is included in W and by irreducibility
that W = V .

Let us now prove that all the element of V are U+-invariant. We just
have to prove it on eigenvectors for the action of an (V is the sum of the
eigenspaces for this action). Remind that, as an has determinant one and all
the vectors have a bounded orbit under the action of an, all the eigenvalues
of this action are of modulus 1. So let v′ be in V with ρ(an)v′ = λnv

′ and ω
be some element of U+. Fix an open neighborhood of the identity Ω in U+.
Then by definition there is some integer i such that a−1

i ωai belongs to Ω.
Hence ρ(ω)v′ belongs to ρ(ai)(ρ(Ω)λ−1

i v′). But the latter is included in some
compact B independent of i because we have seen that all elements of V have
bounded orbit in V and the sets ρ(Ω)λ−1

i v′ are contained in some compact.
So ρ(U+)v′ is included in B. But U+ is an unipotent subgroup hence ρ(U+)v′

is the whole image of a polynomial function. It can be bounded if and only
if it is constant. Hence v′ is U+-invariant.
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We have just proven that every element of V is U+-invariant. Hence the
kernel of the representation contains the normal subgroup generated by U+,
hence contains N ss.

The situation is now simple: we may forget about the semisimple part
because it acts trivially. And we just have an element w of V such that
ρ(On)w is bounded. Now for each n, the projection of On in O is a ball. If
the On are bounded, then NO = N ss is semisimple and we are done. If not
we may as in case 1 assume that the projections of On on O are increasing
balls and ρ(On)w may be bounded only if w is O-invariant. Here NO is the
subgroup generated by N ss and O and w is NO-invariant.

In both cases we found the contradiction: w is NO-invariant. Hence the
lemma 5.3 is proved.

6 Equidistribution of dense orbits
The aim of this section is to prove the theorem 2.3. First recall the theorem:

Theorem (2.3). Let (G,H,Γ) be a triple under study, D a size function and
Ht the induced family of balls in H. Assume that every dominant subgroup
H ′ of H has dense orbit in G/Γ.

Then the orbit of H becomes equidistributed in G/Γ with respect to mG/Γ:

For all ϕ ∈ Cc(G/Γ),
1

mH(Ht)

∫
Ht

ϕ(π(h))dmH(h)
t→+∞−−−−→

∫
G/Γ

ϕdmG/Γ .

We use in this section the rigidity of the dynamic of unipotent flows
reviewed in the previous section. The article of Shah [19] is the main source
of inspiration for this section.

6.1 Equidistribution over unipotent subgroups

The first equidistribution result is the following one: if an is simplified and
l a probability measure on U+, then the projections of P((an)∗l, tn) in G/Γ
become equidistributed with respect to the Haar measure mG/Γ if its support
Supp((an)∗l, tn) does not stay close to a group with closed orbit:

Proposition 6.1. Let (G,H,Γ) be a triple under study with a size function
D. Let tn be a sequence of positive number going to +∞ and (an) be a
simplified sequence in A+, U+ the contracted unipotent subgroup of Hss and l
a measure on U+ compactly supported and absolutely continuous with respect
to the Haar measure. Let N be the smallest normal subgroup of H such
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that the projections of Supp((an)∗l, tn) remain in a compact subset in H/N .
Assume eventually that NΓ is dense in G.

Then we have the following limit in the space of probability on G/Γ:

lim
n→∞

π∗(P((an)∗l, tn)) = mG/Γ ,

that is, for every function ϕ continuous with compact support on G/Γ, we
have: ∫

H

ϕ(xΓ/Γ)dP((an)∗l, tn)(x)
n→∞−−−→

∫
G/Γ

ϕdmG/Γ .

The proof of this proposition is the core of the theorem 2.3. We will use
here the theory of polynomial orbits and Ratner’s theorem exposed above,
together with lemma 5.3. The derivation of theorem 2.3 from this proposition
won’t present any major difficulty.

Proof. We first show that any weak limit of the sequence studied in the
proposition is a probability invariant by some unipotent subgroup. Then we
will use the theory developed and the previous lemma to show that it can
only be the Haar probability measure on G/Γ.

So consider the sequence of probability measures π∗(P((an)∗l, tn)) and µ a
weak limit. The first step will be to prove that µ is a probability measure on
G/Γ. The second one will be an invariance of µ by some unipotent subgroup,
thus allowing the use of the tools reviewed. Eventually we will prove that
this µ is the Haar measure on G/Γ, proving the proposition.

The group U+ is a unipotent subgroup of G of dimension say m. Hence
the exponential map form its Lie algebra to it is a polynomial map. Up to
adding variables, we have a polynomial parametrisation exp1 from Km

S to
U+. The measure l is absolutely continuous with respect to (exp+)∗(θm).

In the same way, look at the projections of Supp((an)∗l, tn) to Hu. They
are product of balls (Hu

ν )rn(ν) of radius some rn(ν). Moreover we have a poly-
nomial parametrisation exp2 from Kr

S to Hu which verifies that (exp2)∗(θr) =
mHu . And the measure (a−1

n )∗[P((an)∗l, tn)] is absolutely continuous with re-
spect to the image under exp1×exp2 of the Haar measure θm⊗θr onKm

S ×Kr
S.

We even get a uniformity result on the absolute continuity :

Lemma 6.2. Let C be a positive real number. There exist a cube B in Km
S ,

a sequence of subsets Bn in Kr
S and an ε > 0 such that for all measurable

subset E in G/Γ we have :
If 1

θm(B)θr(Bn)
π′∗ ((exp1)∗(θm)⊗ (exp2)∗(θr)) (E) ≤ ε

then π′∗((a−1
n )∗[P((an)∗l, tn)])(E) ≤ C

2
.
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Proof. We choose B to be a cube in Km
S such that Ω is included in exp1(B)

and Bn to be the preimage of
∏

ν H
u
rn(ν) under exp2.

We claim that for a set of positive measure of element ω in Ω, the ball
{u ∈ Hu such that D(anωu) ≤ tn} contains the product of balls of radius
rn(ν)

2
. This is a direct consequence of the fact that Ω is a compact and

the hypothesis made on D; namely the so-called orthogonality between the
semisimple part and the unipotent part.

Hence in the set exp1(B) × exp2(Bn), the set a−1
n Supp((an)∗l, tn) is of

positive and bounded from 0 relative measure, i.e for some C > 0, for all n:

((exp1)∗(θm)⊗ (exp2)∗(θr)) [a−1
n Supp((an)∗l, tn)]

θm(B)θr(Bn)
≥ C

As (a−1
n )∗[P((an)∗l, tn)] is the restriction of the measure l⊗ (exp2)∗(θr) to

its support Supp((an)∗l, tn) renormalized to be a probability measure, and
l is absolutely continuous with respect to (exp1)∗(θm) the conclusion of the
lemma follows.

Step 1:
The measure µ is a probability measure on G/Γ.

Proof. This result is quite classical, at least in the setting of Lie groups. We
will of course use the theorem 4.4. Moreover it is enough to prove it for
the sequence of measures (an)∗(exp1)∗(θm)⊗ (exp2)∗(θr) restricted to B×Bn

thanks to the previous lemma.
Consider the functions Θn(t, s) = anexp1(t)exp2(s). They are polynomi-

als of fixed degree. Fix some 0 < ε < 1. We want to find a compact set D
in G/Γ such that the images of all (but a finite number) the function Θn are
included inside this compact except for a set of relative measure at most ε.

We claim now that the subset D given to us by theorem 4.4 is conve-
nient. The strategy seems clear : apply theorem 4.4 and then show that the
second part of the alternative is impossible for all but finitely many n. But
a difficulty appears : the sets B × Bn on which we look at the functions Θn

are not cube. We overcome this difficulty in a somewhat artificial way : we
restrict our attention 1-parameter subgroups O of Hu instead of the whole
Hu (exactly those subgroups which appear in lemma 5.3). We are then able
to recombine these 1-dimensional estimates to get the wanted result.

So consider O a 1-parameter subgroup in Hu and L its Lie algebra in the
Lie algebra of Hu. L is a line, and (up to the choice of a basis vector in L)
for n big enough, Ln = L ∪Bn is a ball in KS.

Hence we may apply theorem 4.4 to the functions Θn restricted to B ×
Ln which is a cube. And we know, using lemma 5.3, that the action of
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anexp1(B)× exp2(Ln) sends the points vk outside of the compact Dk unless
it is invariant by the group NO.

So for n big enough, either all the points vk appearing in theorem 4.4 are
invariant under N ss and O or the whole cube B × Ln but a set of relative
measure at most ε is mapped inside D. Now the first part of the alternative
means that the subgroup NO is included in the intersection of the parabolic
subgroups Pk and as a corollary its orbit in G/Γ is closed. So this may
happen only along a negligeable set of directions O : as any set B of positive
measure of directions O generatesHu itself, the NO’s for O in B generates the
subgroup N (smallest normal subgroup such that Supp((an)∗l, tn) is bounded
in H/N). And we assumed the group N has a dense orbit in G/Γ.

So for n big enough, the total mass of points (t, s) ∈ B × Ln such that
Θn(t, s) does not belong toD does not exceed 2ε times the mass of B×Ln.

Step 2:
The probability measure µ is left-invariant by some unipotent subgroup

Z.

Proof. We also handle differently the cases according to the behaviour of an:
Case 1 : an is bounded
We may assume that an is constantly equal to Id and U+ is restricted to

{Id}. Hence the set Un = Supp(Id, tn) is an increasing sequence of balls of
radius tn in Hu and the probability measure P(ω, tn) is the Haar measure of
Hu restricted to Un.

Let Z be the center of the unipotent group Hu, z its Lie algebra. Then the
polynomial map P given by the composition of the representation choosen
to define the norm and the exponential map from the Lie algebra hu to Hu

is proper and verifies for all z ∈ z and u ∈ hu:

P (z + u) = P (z)P (u)

Hence, for a fixed z ∈ z, the "norm" D(exp(z) exp(u)) is equivalent to
D(exp(u)), as P (z + u) = P (u) + O(P ′(u)). This proves that the ratio
mHu (exp(z)Un∩Un)

mHu (Un)
tends to 1, which means that µ is left-invariant by Z.

Case 2 : an is not bounded
Then, by construction an has a contracting action on U+. Moreover

u+
∗ µ is the limit of u+

∗ π∗(P((an)∗l, tn)). And the last one may be rewritten
π∗ (P[(an)∗(a

−1
n u+an)∗l, tn]). As a−1

n u+an goes to Id, lemma 5.2 implies that
µ is U+ invariant.

Hence we may use all the tools presented: there exists a class F -subgroup
P of G such that µ(X(P,Z)) is positive. We want to show that P = G. This
is the third and final step:

27



Step 3:
Any class F -subgroup P such that µ(X(P,Z)) > 0 is the group G.

Proof. We will naturally use the theorem 4.3. Fix a compact C of X(P, V )
of positive measure.

Using lemma 6.2, we get an ε such that for all measurable subset E in C
we have :

If 1
θm(B)θr(Bn)

π∗ ((exp1)∗(θm)⊗ (exp2)∗(θr)) (E) ≤ ε

then π∗ ((a−1
n )∗[P((an)∗l, tn)]) (E) ≤ µ(C)

2

Once again we will apply the theorem 4.3 directionally to the function
Θn(t, s) = anexp1(t)exp2(s), restricted to some B × Ln (Ln being a ball in
the Lie algebra L of a 1-parameter subgroup O in Hu), to the compact C
and the ε just defined. Note θ a normalized Haar measure on L. Then there
exists a compact D of F (P, V ) such that for all neighborhood W0 of D there
exists a neighborhood W of C such that for all n we get the alternative:

• There exists γn in Γ such that η(Θn(B × Ln)γn) ⊂ W0

• θm⊗ θ({t, s ∈ B×Ln such that Θn(t, s)Γ/Γ ∈ W}) < εθm⊗ θ(B×Ln)

Now fix any neighborhood W0 of D and suppose we are in the second
case of the previous alternative. Then by construction, we have:

1

θm ⊗ θ(B ×Bn)
π∗((exp1)∗(θm)⊗ (exp2)∗(θ))(a

−1
n )(W ) < ε .

But we have π∗(P((an)∗l, tn))(W ) > µ(C)
2

as W contains C and the mea-
sures π∗(P((an)∗l, tn)) converges to µ. By definition of ε, there is a set of 1-
parameter subgroups O of positive measure for which the previous inequality
does not hold for all n big enough.

Now we use the lemma 5.3. Consider the representation ρ of G in the
K module V associated to P via Chevalley’s theorem. And restrict it to a
representation of H in V . Let Λ be the discrete set η(h0Γ). We want to
show that one of this point is invariant under the action of the group NO

(see lemma 5.3). But this is a direct application of the lemma 5.3: the sets
ρ(anB×Ln)η(γn) = η(Θn(B×Bn)) are included in W0 hence bounded. The
conclusion of lemma 5.3 being violated, the hypothesis is not fulfilled: one of
the points γn is NO-invariant.

And now we may intervert the quantifiers without loosing everything :
there is an integer n such that γn is invariant under NO for a set of positive
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measure of directionsO. As previously noted, this point isN -invariant (N be-
ing the smallest normal subgroup of H containing all the sets Supp((an)∗l, tn)
in a compact neighbourhood).

We have done most of the work. Let us conclude, using notations and
results of the section 4: N is included in γ−1

n N1(P )γn. So the projection of
N1(P ) in G/Γ contains a translate of the projection of N . But the latter is
dense and the first one is closed : N1(P ) projects onto G/Γ hence is Zariski-
dense in G. We conclude that N1(P ) = G. That means that P is a normal
subgroup of G, so is equal to G by simplicity.

To conclude the proof of the proposition 6.1, note that the rigidity the-
orem 4.1 implies that µ is invariant under some finite index subgroup P of
G. As G is a simply connected group, G itself is the unique finite index sub-
group of G. Eventually µ is G-invariant so is the Haar probability measure
on G/Γ.

6.2 Equidistribution of spheres

We need a last step before proving theorem 2.3 : that is a proposition very
similar to proposition 6.1 but more adapted to Cartan decomposition in the
group Hss. Recall that, at the begining of section 6, we defined the Cartan
decomposition Hss = CDA+C. The following proposition holds (compare
with [19, Corollary 1.2]):

Proposition 6.3. Let (G,H,Γ) be a triple under study. Let (hn) be a se-
quence in Hss, tn a sequence of positive number going to +∞ and µ a prob-
ability measure on C absolutely continuous with respect to the Haar proba-
bility measure on C. We assume that for all c in the support of µ, we have
D(hnc) ≤ (1 − ε)tn for some ε > 0. Let N be the smallest normal subgroup
of H such that the projection of the support of P((an)∗µ, tn) is bounded in
H/N . Assume that ΓN is dense in G.

Then the projection of probability measures P((an)∗µ, tn) in G/Γ becomes
equidistributed:

lim
n→∞

π∗(P((an)∗µ, tn)) = mG/Γ ,

that is, for every function ϕ continuous with compact support on G/Γ, we
have: ∫

H

ϕ(hΓ/Γ)dP((an)∗µ, tn)
n→∞−−−→

∫
G/Γ

ϕdmG/Γ .

Proof. We will prove that any weak limit of this sequence of probability
measure is the Haar measure mG/Γ.
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First of all, we may assume that hn is an element of A+. Indeed, using
Cartan decomposition, we write hn = c1

ndnanc
2
n, and, up to an extraction,

the three sequences c1
n, c2

n and dn converge to respectively c1, c2 and d. Now,
let µ′ be the pushforward of µ under c2 : µ′(c2A) = µ(A). The lemma 5.2
guarantees that the equidistribution of π∗(P((hn)∗µ, tn)) is equivalent to the
one of π∗(P((an)∗µ

′, tn)). And by construction, N is also the smallest normal
subgroup such that the projection of Supp((an)∗µ

′, tn) is bounded in H/N .
Moreover, up to another extraction, we assume that an is simplified. Con-

sider now the opposite parabolic subgroup P− to U+ in Hss and U− the
expanded unipotent subgroup :

U− =

{
h ∈ Hss such that lim

n→+∞
anha

−1
n = e

}
.

Every neighbourhood of an element c in C, contains a neighbourhood which
is homeomorphic to a neighbourhood of Id in P− × U+ via the application
(p−, u+) 7→ p−u+c. We may split the support of µ in such sets (up to a
negligible set), or in other words, we assume µ to be supported inside an
open set homeomorphic to an open set Ω−×Ω+ in P−×U+. We furthermore
assume that both Ω− and Ω+ are product set of the form

∏
ν∈S

Ων . Moreover

at the archimedean places, we may "thicken" a little bit µ to construct a
measure absolutely continuous with respect to mHss : let λ be a probability
measure on a sufficently small neighbourhoodO of Id in U−∞ (the archimedean
part of U−) absolutely continuous with respect to the Haar measure on U−∞.
Then λ ⊗ µ is absolutely continuous with respect to the Haar measure on
Hss (see [19, Page 15]).

Looking at the action of an on U− and using lemma 5.1 it is clear that
for every function f continuous with compact support in G/Γ, the integrals
of f for the both measures π∗(P((an)∗λ ⊗ µ, tn)) and π∗(P((an)∗µ, tn)) are
equivalent as n go to ∞:

|
∫
G/Γ

fdπ∗(P((an)∗λ⊗ µ, tn))−
∫
U+×Hu f(x)dπ∗(P((an)∗µ, tn))|

≤
∫
U−
|
∫
H
f(x)dπ∗ ((P((anoa

−1
n )an)∗µ, tn)− (P((anoa

−1
n )an)∗µ, tn)) (x)|dλ(o)

n→∞−−−→ 0 (6.1)

The limit is obtained using anoa−1
n

n→∞−−−→ Id, lemma 5.1 and the domi-
nated convergence theorem.

We work now with λ ⊗ µ. Remark that, at non-archimedean places, we
do not have to modify µ, as maximal compact subgroups are also open.
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Now, using [19, Proposition 6.1], we may decompose this probability mea-
sure λ⊗ µ in the product Ω− × Ω+ : there are a probability measure ν− on
Ω− and for almost all x in Ω−, a probability measure ν+

x on Ω+ such that :

• ν− and all the ν+
ω are absolutely continuous with respect to the Haar

measure on P− and U+ respectively.

• for all ϕ continuous with compact support in Hss, we have∫
Hss

ϕd(λ⊗ µ) =

∫
Ω−

∫
Ω+

ϕ(xy)dν+
x (y)dν−(x) .

Consider now a function f continuous with compact support in G/Γ. We
have:∫
G/Γ

fdπ∗(P((an)∗λ⊗µ, tn)) =

∫
Ω−

∫
Ω+×Hu

f(yΓ/Γ)dP((anx)∗ν
+
x , tn)(y)dν−(x)

So the last difficulty that remains is to compare the two probability mea-
sures P((anx)∗ν

+
x , tn) and P((an)∗ν

+
x , tn) : if we prove that they are suffi-

ciently close, then we may use the proposition 6.1 to conclude that the limit
is the Haar probability measure mG/Γ. But under conjugacy by an, the el-
ements in P− remains bounded. So, if we choose the support of λ small
enough, the lemma 5.1 ensures that the two measures P((anx)∗ν

+
x , tn) =

P((anxa
−1
n )∗(an)∗ν

+
x , tn) and P((an)∗ν

+
x , tn) are arbitrarily closed.

Fix ε > 0 and choose the support O of λ such that we have : for all x ∈ O,
all n∣∣∣∣∫

Ω+×Hu

f(yΓ/Γ)dP((anx)∗ν
+
x , tn)(y)−

∫
Ω+×Hu

f(yΓ/Γ)dP((an)∗ν
+
x , tn)(y)

∣∣∣∣ ≤ ε

Then, we have :∣∣∣∣∫
G/Γ

fdπ∗(P((an)∗λ⊗ µ, tn))−
∫

Ω−

∫
Ω+×Hu

f(yΓ/Γ)dP((an)∗ν
+
x , tn)(y)dν−(x)

∣∣∣∣ ≤ ε

Now, the proposition 6.1 states that for all x, we have the limit:∫
Ω+×Hu

f(yΓ/Γ)dP((an)∗ν
+
x , tn)(y)

n→∞−−−→
∫
G/Γ

fdmG/Γ

We conclude applying the dominated convergence theorem:∣∣∣∣∫
G/Γ

fdπ∗(P((an)∗λ⊗ µ, tn))−
∫
G/Γ

fdmG/Γ

∣∣∣∣ ≤ ε
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So the previous inequality together with 6.1 leads to (for n big enough):

|
∫
G/Γ

fdπ∗(P((an)∗µ, tn))−
∫
G/Γ

fdmG/Γ| ≤ 2ε

As this is true for arbitrary ε, we have finally obtained the desired result :∫
G/Γ

fdπ∗(P((an)∗µ, tn))
n→∞−−−→

∫
G/Γ

fdmG/Γ .

The proposition is proven

Thanks to this proposition, we are able to define a subset of large relative
volume in H such that, basically, as soon as the support of P(h∗mC , t) hits
this subset, the projection of this measure in G/Γ is closed to the Haar
probability measure (once again, the statement is a bit more complicated
than what I just explained but this will be the exact result needed):

Corollary 1. Let (G,H,Γ) be a triple under study, together with a size
function D. Assume that every dominant normal subgroup of H has a dense
orbit in G/Γ. Fix ε > 0, f a continuous function with compact support in
G/Γ, and O some open subset in C.Then there is a finite number of non-
dominant normal subgroups N1, . . ., Nk of H, a compact subset B in H such
that:

For h in H, O′ ⊂ C containing O with µ the probability measure on O′

proportional to the Haar measure on C and t > 0 verifying for all o in O,
D(go) ≤ t

1+ε
, we have:

If the support of P(h∗µ, t) is not included in any BNi, then

|
∫
G/Γ

fdπ∗(P(h∗µ, t))−
∫
G/Γ

fdmG/Γ| ≤ ε

Proof. Take the Ni’s to be the maximal normal non dominant subgroups.
They are in finite number. Suppose they do not verify the corollary. Then
we construct a sequence hn, tn, On such that the supports of P((hn)∗µn, tn)
are not included in any compact neighbourhood of a non-dominant normal
subgroup and the difference of integrals is always greater than ε:

|
∫
G/Γ

fdπ∗(P((hn)∗µn, tn))−
∫
G/Γ

fdmG/Γ| > ε (6.2)

Up to an extraction, we may assume that µn converges to a measure
which is equal the probability measure µ∞ on an open O′∞ containing O and
proportional to the Haar measure of C.
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These supports are yet included in a compact neighbourhood of some
normal subgroup N which has to be dominant. By assumption, N has a
dense projection in G/Γ. So we may apply the above proposition to this se-
quence: the projection π∗(P((hn)∗µ∞, tn)) converges to the Haar probability
measure mG/Γ. But, using lemma 5.2, letting n go to infinity, the measure
π∗(P((hn)∗µ∞, tn)) is arbitrarily closed to π∗(P((hn)∗µn, tn)) This contradicts
6.2.

6.3 Equidistribution of balls

At last we are able to conclude the proof of equidistribution of balls. Fix a
function f continuous with compact support in G/Γ. Fix ε > 0. Let η > 0

be such that mH(H(1+η)t)

mH(Ht)
≤ 1 + ε for all t.

There is a neighborhood O of Id in C such that for all h ∈ Hss we have
D(ho) ≤

√
1 + ηD(h). And we may choose O such that C is a disjoint union

of translates of O (up to a negligible set): there exist c1, . . . , cs such that
ciO ∩ cjO has measure 0 and the union ∪s1ciO is of full measure in C. Note
µO the restriction of the probability Haar measure of C to O.

Let H̃t be the union over c ∈ CD, a ∈ A+, and 1 ≤ i ≤ s withD(caci) ≤ t,
of the support of m((caci)∗µO, (1 + η)t). Thanks to the Cartan decomposi-
tion, up to a negligible set, H̃t contains Ht, is contained in H(1+η)t and the
restriction of mH to H̃t may be written:

(mH)|H̃t =
s∑
1

∫
c∈CD, a∈A, D(caci)≤t

m((caci)∗µO, (1 + η)t)

Let Et be the union of the supports of measures m((ca)∗µca, (1 + η)t)

which are completely included in B
k⋃
1

Ni (the sets constructed in the above

corollary). As none of the Ni’s are dominant, for t big enough, the relative
mass of Et in H̃t is less than ε and the symmetric difference between Ht and
H̃t \ Et is almost negligible:

mH(Ht∆(H̃t \ Et))
mH(Ht)

≤ 2ε

Corollary 1 implies that for all a ∈ A, c ∈ CD and 1 ≤ i ≤ s, if the
support Supp(m((caci)∗µO, (1+η)t)) is not included in Et, then its projection
is pretty well distributed:∣∣∣∣∫
H

f dm((caci)∗µO, (1 + η)t)−m((caci)∗µO, (1 + η)t)(H)

∫
G/Γ

f dmG/Γ

∣∣∣∣ ≤ ε
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Integrating all these approximation over c, a and ci leads to:

| 1

mH(H̃t \ Et)

∫
H̃t\Et

fdπ∗(mH)−
∫
G/Γ

fdmG/Γ| ≤ ε .

So going back to the desired integral, we get (for t big enough):

| 1

mH(Ht)

∫
Ht

fdπ∗(mH)−
∫
G/Γ

fdmG/Γ| ≤ (1 + 4 max(|f |))ε .

As ε is arbitrarily small, we get the desired result:

1

mH(Ht)

∫
Ht

fdπ∗(mH)
t→∞−−−→

∫
G/Γ

fdmG/Γ .

This concludes the proof of theorem 2.3.

7 Applications
We conclude this text by some explanations on the applications described in
the introduction.

7.1 In dimension 2

Recall the framework: we consider the group G = SL(2,R) × SL(2,Qp) for
p a prime number, and the lattice Γ = SL(2,Z[1

p
]). We fix here (for sake of

simplicity) the standard euclidean norm |.|∞ on the matrix algebraM(2,R)
and the max-norm |.|p onM(2,Qp). For a point v in R2, we note also |v|∞
the norm of the matrix whose first column is v and the second one is 0.
We define similarly the norm of a point in Q2

p. We choose a Haar measure
m = m∞ ⊗mp on G.

The first result was:

Application (1.1). Let O be a bounded open subset of SL(2,Qp). Note ΓOT
the set of elements γ ∈ Γ such that |γ|∞ ≤ T and γ ∈ O as an element of
SL(2,Qp). Let v be a point of the plane R2\{0} with coordinates independant
over Q.

Then we have the following limit, for any function ϕ continuous with
compact support in R2 \ {0}:

1

T

∑
ΓOT

ϕ(γ(v))
T→∞−−−→ mp(O)

m(G/Γ)|v|∞

∫
R2

ϕ(w)
dw

|w|∞
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Proof. We work here in the product of R2 \ {0} and SL(2,Qp). We see it as
the homogeneous space H\G with H = Stab(v) the stabilizator of v for the
linear action of SL(2,R) on the plane.

Then it is not difficult to see that the hypothesis on the norm are fulfilled
and that H has no dominant subgroup except itself. Moreover the volume of
balls are explicitely computed: the ratios of mH(Htg) and mH(Ht) tends to

1
|v||w| where w = g(v) [10, Section 12.4]. Remark that there is no need here
to split the parameter space.

It remains to prove that H.SL(2,Z[1
p
]) is dense in G. But it contains

Stab(v).SL(2,Z) which is by hypothesis dense in SL(2,R). Now we may use
the strong aproximation in SL(2) [18]: the algebraic group SL(2) is semisim-
ple simply connected, hence the product SL(2,R).SL(2,Z[1

p
]) is dense in G.

This yields the desired property: H.SL(2,Z[1
p
]) is dense in G.

Now, theorem 2.1 implies the stated result.

The second application was the following one. Recall that on the p-
adic plane, we normalize the measure such that it gives mass 1 to Z2

p. The
result is that if your beginning point generates the whole plane among the
Q-subspaces, then its orbit is dense and you get a distribution result (the
function E appearing is the integer part):

Application (1.2). Let (v∞, vp) be an element of (R2 \0)×(Q2
p \0). Suppose

that any Q-subspace V of Q2 verifying v∞ ∈ V ⊗Q R and vp ∈ V ⊗Q Qp is
Q2. Denote ΓT the set of elements γ ∈ Γ with |γ|∞ ≤ T and |γ|p ≤ T .

Then, for all function ϕ continuous with compact support in (R2 \ 0) ×
(Q2

p \ 0), we have the following limit:
1

TpE(lnp(T ))

∑
ΓT
ϕ(γv∞, γvp)

T→∞−−−→

p2−1
p2m(G/Γ)|v∞|∞|vp|p

∫
R2×Q2

p
ϕ(v, w) dvdw

|w|∞|w|p

Proof. The proof here is similar to the previous one, the group H being
Stab(v∞) × Stab(vp). The hypothesis on the norm are fulfilled, as H is
unipotent. The volume ratio limits are easy to compute and left to the
reader. You just have to be careful with the normalizations of measures,
letting appear this constant p2−1

p2
.

So it just remains to prove that HSL(2,Z[1
p
]) is dense in G. The key

point is that its closure must be (up to finite index) the R × Qp-points of
a Q-subgroup of SL(2), by Tomanov theorem : it is a closed subset in G/Γ
invariant under unipotent subgroups.

Hence, if either v∞ or vp has coordinates independant over Q, the argu-
ment in previous application show the density. The only remaining case is
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when both v∞ and vp are stabilized by a Q-unipotent group. But the as-
sumption that v∞ and vp "generates" Q2 is then equivalent to the fact that
these two stabilizers are different. Now we may conclude, arguing that two
different unipotent subgroups of SL(2,Q) generate the whole group. Hence
the smallest Q-subgroup of SL(2,Q) such that its real points contains the
stabilizer of v∞ and its p-adic the stabilizer of vp is SL(2). And the closure
of H.SL(2,Z[1

p
]) is G.

The two previous examples showed how to profit of both the rigidity
of orbit closures in an S-arithmetic setting and algebraic featurees such as
strong approximation in the ambient group G. These arguments are also the
core of the next case.

7.2 In greater dimension

Recall that we look at the action of Γ = SL(n,Z) on the k-th exterior power
Λk(Rn). And we fix the standard euclidean norm |.| onM(n,R). We consider
also the standard euclidean norm on Λk(Rn) and m is a Haar measure on
SL(n,R). We want to prove:

Application (1.3). Let v be a non-zero element of Λk(Rn) such that its
corresponding k-plane of Rn contains no rational vector. Denote ΓT the set
of elements γ ∈ Γ with |γ| ≤ T .

Then we have a positive real constant c (independant of Γ and v) such
that for all function ϕ continuous with compact support on Λk(Rn) \ {0}:

1

T n2+k2−nk−n

∑
ΓT

ϕ(γv)
T→∞−−−→ c

m(G/Γ)|v|

∫
Λk(Rn)

ϕ(v′)
dv′

|v′|

Proof. Here we have to be more careful than in previous section. We consider
the subgroup H = Stab(v). It is a conjugate of the group H0 of the form:

H0 =

(
SL(k,R) Hu

0 SL(n− k,R)

)
:=

(
Hk Hu

0 Hn−k

)
So it is a semidirect product of a semisimple and a unipotent group.

Moreover the quotient H0\G identifies with Λk(Rn) \ {0} via the projection
associating at an element of SL(n,R) the exterior product of its k-first lines.

We have to prove the orthogonality property for the norm onH = gH0g
−1

(g ∈ SL(n,R)). The key point is that one may use Iwasawa decomposition
to write g = oan where o belongs to SO(n), a is diagonal and n is upper tri-
angular and nilpotent so an element of H0. By bi-invariance of the euclidean
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norm under SO(n), and the fact that a normalizes the semisimple part of H
and the unipotent one, we get, for h = gh0g

−1 with the obvious notation:

|h|2 = |ah0a
−1|2 = |ahss0 a−1|2 + |ahu0a−1|2 = |hss|2 + |hu|2

.
Now it is clear that H0 has no dominant subgroup except itself, so the

same holds forH. Let us prove thatHΓ is dense before evaluating the volume
ratio limits. The simplest way to see it is to pull back this dynamic on the
space of k-frames : choose a family of k vectors in Rn such that their exterior
product is v. Then the hypothesis on v is that the k-plane generated by this
family of vector contains no non-zero rational vectors. By a theorem of Dani
and Raghavan [3], it implies that the orbit of this family under Γ is dense in
the space of k-frames. This in turn implies by projection that the orbit of v
under Γ is dense in H0\G, i.e. that HΓ is dense in G.

We have compute the volume ratios to get the limiting density. Precisely,
let w = H0g

′ = g−1H(g′g−1) be a non-zero point in Λk(Rn). Then the
limiting density at w given by theorem 2.1 is the ratio:

mH(Ht(g
′g−1)

mH(Ht)

The set Ht(g
′g−1) is by definition {h ∈ H such that |hgg′| ≤ t} ; or

the set {h0 ∈ H0 such that |gh0g
′| ≤ t}. Hence we have to compute the

measure Mt(g, g
′) = mH0({h0 ∈ H0 such that |gh0g

′| ≤ t}). The choice of
normalization of mH0 has no importance, as we only want to compute ratios.
Using the bi-invariance of the norm and the Iwasawa decomposition of g and
g′−1, we immediatly see thatMt(g, g) = 1

|Vol(g)||Vol(g′)|Mt(1, 1), where Vol(g) is
the determinant of the k first line of g. And, by the definition of the exterior
product, the absolute value of this determinant is the euclidean norm of their
exterior product. So we may rewriteMt(g, g

′) = 1
|v||w|Mt(1, 1). This gives the

limiting density.
At this point, we need a last estimation: an equivalent of MT (1, 1) which

gives the renormalisation factor T n2+k2−nk−n. So we want to compute the
volume of the set {h0 ∈ H0 such that |h0| ≤ T} for the standard Haar mea-
sure on H0: the product of the standard Haar measure on the three groups
SL(k,R), SL(n−k,R) and Hu. Using the estimations of Maucourant [16], we
see that the volume of the sphere of radius T in these groups are respectively
of order T k2−k−1, T (n−k)2−(n−k)−1 and T k(n−k)−1. So the leading term of the
volume of the ball of radius T is of order:∫

T 2
1 +T 2

2 +T 2
3≤T 2

T k
2−k−1

1 T
(n−k)2−(n−k)−1
2 T

k(n−k)−1
3

37



Hence the leading term is of order:

T k
2−k+(n−k)2−(n−k)+n(n−k) = T n

2+k2−nk−n

This concludes the proof of application 1.3

I conclude this article with the S-arithmetic generalization of the previous
result. I leave the proof to the reader. All the arguments are in the three
previous proofs except an estimation of the volume of the ball of radius T
in SL(k,Qp) (p being a prime number). Using Cartan decomposition and
some basic combinatorics, we get that the leading term of this volume is
(pE(lnp(T ))k

2−k. We fix the max norm in the standard basis onM(n,Qp) and
Λk(Qn

p ). The group Γ is SL(n,Z[1
p
]), and we note for an element γ ∈ Γ, |γ|

the max of its real euclidean norm and p-adic max norm.

Application 7.1. Let v = (v∞, vp) be a non-zero element of Λk(Rn × Qn
p )

such that there is no non-zero rational vector belonging to both the real k-
planes associated to v∞ and the p-adic one associated to vp. Denote ΓT the
set of elements γ ∈ Γ with |γ| ≤ T .

Then we have a positive real constant c (independant of Γ and v) such
that for all function ϕ continuous with compact support on Λk(Rn) \ {0}:

1

(TpE(lnp(T )))n2+k2−nk−n

∑
ΓT
ϕ(γv)

T→∞−−−→

c
m(G/Γ)|v∞|∞

∫
Λk(Rn×Qnp )

ϕ(v′∞, v
′
p)

dv′∞v
′
p

|v′∞|∞|vp|p
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