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A BRIEF REMARK ON ORBITS OF SL(2, Z) IN THE EUCLIDEAN PLANE

F. Ledrappier [START_REF] Ledrappier | Distribution des orbites des réseaux sur le plan réel[END_REF] proved the following theorem as an application of Ratner theorem on unipotent ows (A. Nogueira [START_REF] Nogueira | Orbit distribution on R 2 under the natural action of SL(2, Z)[END_REF] proved it for SL(2, Z) with dierent methods):

Theorem 1 (Ledrappier, Nogueira). Let Γ be a lattice of SL(2, R) of covolume c(Γ), . the euclidean norm on the algebra of 2 × 2-matrices M(2, R), and v ∈ R 2 with non-discrete orbit under Γ.

Then we have the following limit, for all ϕ ∈ C c (R 2 \ {0}):

1 T γ∈Γ, γ ≤T ϕ(γv) T →∞ ----→ 1 |v|c(Γ) R 2 \{0}
ϕ(w) dw |w| .

We may draw a picture of this equidistribution theorem, for example with Γ = SL(2, Z). Here is shown the orbit of the point

1 π 2
under the ball of radius 1000. We draw only the points which are falling in some compact to avoid the rescaling of the picture (in the theorem, ϕ has to have compact support): Figure 1. Orbit under the ball of radius 1000 A striking phenomenon is the gaps around lines of simple rational slopes. This appears for any initial point. We will describe here these gaps in a fully elementary way for the lattice Γ = SL(2, Z) (which is enough to describe it for all arithmetic lattices). Let us mention that our analysis is carried on in the arithmetic case for sake of elementariness but a similar analysis can be done for non-arithmetic lattices.

Another experimentation with a cocompact lattice does not show these gaps. It will be clear from the analysis below that this comes from the unique ergodicity of the unipotent ow in SL(2, Z)\SL(2, R). for t ∈ R} is the upper triangular unipotent subgroup of SL(2, R). The projection from SL(2, R) to the plane is given by the rst column of the matrix. We will use the following section from

R 2 \ ({0} × R) to SL(2, R): σ a b → a 0 b a -1 .
Then we have: . The theorem of Ledrappier is proven using the fact that a large portion of a dense orbit of U in SL(2, Z)\SL(2, R) becomes equidistributed in this space. Without any more detail on this, we may just remark that if a b is rational, the orbit The period ρ(v 0 ) of v 0 is the period of the orbit σ(v 0 )U in the space SL(2, Z)\SL(2, R)

It is not hard to eectively compute this period: Proposition 2. Write v 0 = t p q with p and q two coprime integers.

Then the period of v 0 is given by ρ(v 0 ) = 1 t 2 . Proof. We assume here that p = 0 (if not you can change the section σ). The point t p q correspond via σ to the matrix tp 0 tq (tp) -1 . So we have to solve the equation: γ tp 0 tq (tp) -1 = tp 0 tq (tp) -1 u(s) for γ in SL(2, Z) and s real. That is:

t(ap + bq) b(tp) -1 t(cp + dq) d(tp) -1 = tp stp tq stq + (tp) -1 ,
for a, b, c, d integers verifying ad -bc = 1 and s real. We check that b and d -1 have to be divisible by p hence s has to belong to 1 t 2 Z. Now we easily check the following equality, thus proving the proposition :

1 + pq p 2 q 2 1 -pq tp 0 tq (tp) -1 = tp 0 tq (tp) -1 1 1 t 2 0 1 .
This computation is an elementary way to check that the period of a point with rational slope is invariant under the action of SL(2, Z): the image under an element of SL(2, Z) of a point p q with coprime p and q is still a point of this form. Of course, a more intrinsic way to see this is to look at the denition of the period which is clearly invariant under SL(2, Z). Anyway this simple fact is the key remark. Indeed the set of points of xed period is a discrete subset of the plane. Call P(ρ) := {v ∈ R 2 of rational slope with period ρ}. The previous proposition describe these sets as P(ρ) = 1 √ ρ Z ∧ Z where Z ∧ Z stands for the set of points with coprime integer coordinates.

Moreover we may dene the height of a point of rational slope (using the height function on the space P 1 (Q)) by this simple formula:

h(t p q ) = p 2 + q 2 = | p q
| (as usual p and q are coprime integers). We have the following tautological formula for any point v of rational slope in the plane :

ρ(v)|v| 2 = h(v) 2 .

Spectrum of periods

Consider v a point in the plane (not 0). Then for each ρ > 0, the distance of v to the set P(ρ) is a nonnegative real number. Moreover if v has irrational slope, this number is positive for each ρ. We then dene a function, called spectrum of periods, for v: Denition 3.1. Let v be a point in the plane of irrational slope. Then its spectrum of periods D v is the function :

D v : R * + → R * + ρ → d(v, P(ρ))
The description of the sets P(ρ) made above allows the following rewriting of D v :

D v (ρ) = 1 √ ρ d( √ ρv, Z ∧ Z).
This last expression shows that for ρ big enough this function encodes the diophantine property of the slope of v, and may be interesting to study precisely. But a rst remark is that

D v (ρ) is always smaller than 1 √ ρ ; moreover for ρ ≤ 1 (2|v|) 2 , D v (ρ) is bigger than 1 2 √ ρ : Lemma 3. For ρ ≤ 1 (2|v|) 2 , we have 1 2 √ ρ ≤ D v (ρ) ≤ 1 √ ρ . Moreover, as ρ → 0, D v (ρ) is equivalent to 1 √ ρ .
Proof. If ρ is less than 1 (2|v|) 2 , the modulus of √ ρv is less than 1 2 . So its distance to Z∧Z is more than 1 2 , proving the inequality. The equivalence is straightforward.

We are now able to state the desired property: the orbit of v under the set Γ T = {γ ∈ SL(2, Z) such that γ ≤ T } cannot come too close of the points of rational slopes. Proposition 4. Let w be a point of rational slope in the plane. Then the distance of Γ T v to w is bounded from below by Dv(ρ(w))

T = Dv( h(w) 2 |w| 2 ) T .
Let us prove the proposition before giving a more geometric description.

Proof. Consider an element γ of SL(2, Z) of euclidean norm less than T . Then it multiplies length by at most T Let us suppose that the point γv is very close to some w with rational slope: |γv -w| = T for some ; we immediately get that |v -γ -1 w| ≤ . But the point γ -1 w has same period as w by invariance and thus belongs to P(ρ(w)). So by denition of D v and the tautological formula on the period, we get that γv cannot be too close to w:

|γv -w| ≥ D v (ρ(w)) T ≥ D v ( h(w) 2 |w| 2 ) T .
Now if we are interested at how the orbit of v comes close some half-line of rational slopes R * + p q , we x the height h(w). If we furthermore add the condition |w| ≥ 2|v|h(w) we may use the easy bound on D v to get:

|γv -w| ≥ |w| 2h(w)T
, for all γ of norm less than T.

We see on this last formula that the simpler is the slope (as a rational number) the harder it is to come close. The linear behavior suggests a picture in coordinates (radius, slope) to see clearly the gaps. Here we draw the whole orbit (check that the radius of points goes up to 1900) for T = 1000 in a small neighborhood of the horizontal axis. The gap is fairly evident. The graphs of the functions Dv 1000 and -Dv 1000 are drawn in blue. The previous proposition states that no point of this orbit may fall between this two graphs. Once again we are in coordinates (radius,slope): Let us mention that the optimality of the described gap seen on the previous picture is easy to understand. Indeed the next lemma states that some points of the orbit Γ T v are almost as close as possible to points of rational slope. Lemma 5. There exist a γ ∈ SL(2, Z) with γ ≤ T and some point w of rational slope such that we have for all T ≥ 10:

|γv -w| - D v (ρ(w)) T ≤ 10 D v (ρ(w)) T 2 .
Proof. Consider the matrix γ = 

D v (ρ(w)) T ≤ |b| -4 |b| T ≤ |γv -w| -4 T T -4 D v (ρ(w)) T 2 ≤ |γv -w| -10 D v (ρ(w)) T 2
So the lemma is proven in this case. If we had |b| < |a|, we may then consider the matrix γ = which realizes the distance D v ( q 2 a 2 ). Hence we are only interested in the periods ρ of the form q 2 a 2 . According to the following lemma, we do always get points in the orbit under a ball of big enough size T which almost realizes the minimal predicted distance Dv(ρ) T

to the set P(ρ).

Lemma 6. Let v = a b be a point with irrational slope, and x ε > 0. Then there exists a real T 0 such that for all T > T 0 , and every integer q > 1, there is a point γ.v in Γ T .v and a point w in P(ρ ) such that:

| ρ q 2 a 2 -1| ≤ 2(1 + ε)D v ( q 2 a 2 ) aT
and the distance between γ.v and w is at most

(1 + ε) D v ( q 2 |a| 2 ) T .
Proof. Once again the proof is elementary. We just have to nd in Γ T a contracting element γ and apply it to a well-chosen vector. I let the reader verify that the following construction veries the above estimates. Take N the biggest integer such that N 2 + 2 ≤ T 2 , and consider the matrix γ = N -1 1 0 of Γ T . This matrix contracts the vector be the point of P( q 2 a 2 ) realizing the inmum distance

D v ( q 2
a 2 ). Eventually, consider α and λ the solutions of

αw 0 -v = λ 1 N
(which has solutions for all but possibly one integer N ).We have α = N a-b N a-b and

λ = a(b-b )
N a-b . Now consider w = γ(αw 0 ). We have:

w -γ.v = γ(αw 0 -v) = λ 0 1
Hence the distance between w and γ.v is λ which is as near as wanted of

Dv( q 2 |a| 2 ) T (recall that D v ( q 2 a 2 ) = b -b
). Moreover the period ρ of w is the one of αw 0 , i.e. ρ α 2 . Hence we get the desired control on ρ by checking that, for N big enough (but independent of q):

| 1 α 2 -1| = (N a -b ) 2 -(N a -b) 2 (N a -b ) 2 ≤ (1 + ε)2D v ( q 2 a 2 ) T a
This previous result allows us to get the best rationnal approximation of the slope by the following limit: Proposition 7. Let q be a positive integer and v = a b be a point with irrational slope s = b a . Then we have the following equality:

inf |s - p q | for p ∈ Z = lim T →∞ T a inf d(Γ T .v, P(ρ )) for a 2 ρ q 2 ≤ 2 qT
Proof. The previous lemma ensure that the limsup of the right side is correct. So we just have to prove that the liminf is bigger than the left-hand side: let ρ belong to the segment [ q 2 a 2 -2q T a 2 ; q 2 a 2 + 2q T a 2 ], w be a point in P(ρ ) and γ ∈ Γ T be such as d(γ.v, w) ≤ aA T . Then, as usual, we get D v (ρ ) ≤ d(v, γ -1 w) ≤ aA. And, as the formulas given for

D v show, D v (ρ ) -D v (ρ) = O(| ρ ρ -1|). We conclude by seeing that | ρ ρ -1| is a big O of 1 T . Hence, we have aA ≥ D v (ρ) + O( 1 T ), which proves that the liminf is greater than Dv(ρ) a = inf |s -p q | for p ∈ Z .
Remark. Of course this is not a valid way to compute the left-hand side of the equality ! It only shows that we may nd the dipophantine information in the orbit, hence gives us the hope that one may nd a direct proof of some results on diophantine approximation from this viewpoint and generalize it to other situations (see below). Eventually let's restrict our attention to some compact, for example an annulus A. Ledrappier's theorem describe the asymptotic distribution of the sets Γ T v ∩ A, i.e. the points of the orbit of v under Γ T which are inside A. Around every line L of rational slope and for every positive T , the proposition 4 gives us a domain of area (in fact the cone over a Cantor set) c L T -where c(L) only depends on L-in which no point of Γ T v ∩ A lies. So, globally speaking, we have found a set of area at least c T , for some constant c, such that no point of the orbit of Γ T v ∩ A falls in this set. As Ledrappier's theorem implies that the number of points in Γ T v ∩ A is equivalent to a constant times T , the information given by proposition 4 seems to be a valuable one.

Generalizations

This concluding section is a mostly speculative one and far less elementary than the previous description. The point is that the method and the result concerning the repartition of the orbits of SL(2, Z) in the plane has been generalized, for example by Gorodnik [START_REF] Gorodnik | Uniform distribution of orbits of lattices on spaces of frames[END_REF], Gorodnik-Weiss [3] Ledrappier-Pollicott [START_REF] Ledrappier | Distribution results for lattices in SL(2, Qp)[END_REF] and the author [START_REF] Guilloux | Polynomial dynamic and lattice orbits in S-arithmetic homogeneous spaces[END_REF] to a wide variety of situations, which may be described with some simplications as follows.

Let G be a closed simple subgroup of GL(n, R) or GL(n, Q p ) or a nite product of them. Let H be a closed subgroup of G that is either unipotent or simple (or semidirect product of them, but with additional assumptions [START_REF] Guilloux | Polynomial dynamic and lattice orbits in S-arithmetic homogeneous spaces[END_REF]), and Γ a lattice in G. As G is included in a matrix algebra, we may choose a norm to compute the size of an element of Γ thus dening the ball Γ T . Remark that in all these known cases, any lattice of H is nitely generated. Let x be a point of H\G with dense orbit under Γ. Then the repartition of the orbit Γ T .x in H\G may be described in the same way as in theorem 1. 1For example, orbits of SL(n, Z) in R n belong to the known situations. And the same analysis as before leads to exactly the same conclusions, including the diophantine part. Moreover, we may give a description of the gaps in a more general situation. Suppose that H\G is embedded in a vector space, on which G acts linearily and the G-actions are compatible. Then H\G may be equipped with a distance coming from a norm on the vector space. This situation is not so rare and may be found under some hypotheses using Chevalley's theorem [START_REF] Borel | Linear algebraic groups[END_REF]. Moreover suppose H has closed orbit in G/Γ.

We check below that the set of points in H\G corresponding to closed orbit of H in G/Γ of a given covolume ρ is a closed set. If this holds, the distance from a given point x of dense orbit to this set is dened and strictly positive, and the ball Γ T , as a nite set of invertible linear transformations, has a bounded contraction. Hence we follow the description of the gaps made before for SL(2, Z) without diculties.

So we conclude this paper on the following (may be well-known) lemma:

Lemma 8. Let G be a locally compact group, H a closed subgroup of G with all its lattices nitely generated and Γ a lattice in G such that H ∩ Γ is a lattice in H of covolume one (to normalize the Haar measure on H). Suppose that, if g n belongs to H for some g ∈ G and n integer, then g belongs to H.

Then, for all ρ > 0, the subset P(ρ) of H\G consisting of classes Hg such that gΓg -1 ∩ H is a lattice in H of covolume ρ is a closed set.

Remark. I tried to state it in a general enough setting, so there is in the statement the two ad-hoc hypotheses I need below. It is easy to check that in the above described cases they are fullled.

Proof. Let x n = Hg n be a sequence of points in P(ρ) converging to x = Hg in G/Γ. Suppose we made the choices such that g n converges to g in G.

Let A be a compact subset in H of volume strictly greater than ρ. Then, by denition, for every n, there is an element γ n in Γ such that A ∩ g n γ n g -1 n A is not empty. As A is compact and g n tends to g, the choices for the γ n 's stay inside a compact subset, hence are in nite number. So there is a xed γ ∈ Γ such that for innitely many n, the intersection A ∩ g n γg -1 n A is not empty. Conclusion: A ∩ gγg -1 A is not empty and gΓg -1 ∩ H is a lattice in H of covolume at most ρ.

We now prove that gΓg -1 ∩ H eectively has covolume ρ in H. We even prove the stronger fact: the sequence of subgroups Γ ∩ g -1 n Hg n is a stationnary sequence. Hence for n and m big enough, g -1 n g m normalizes H and let its Haar measure invariant. The subgroup of the normalizer of H letting its Haar measure invariant is closed, so g -1 n g belongs to it, thus proving that gΓg -1 ∩ H is of covolume ρ. As gΓg -1 ∩ H is nitely generated, we just have to show that for any γ ∈ Γ, if g -1 γg is in H, then g -1 n γg n is in H for n big enough. So let A be a compact subset in H of positive measure α such its images under g -1 Γg ∩ H are disjoints. And let A be of the form A = ∪ k i=0 g -1 γgA, where k is bigger than ρ α . Then for all n, there exist a γ n ∈ Γ ∩ g -1

n Hg n such that, g n γ n g -1 n A ∩ A is not empty. As before, there is only a nite number of possibilities for γ n , hence it takes some value γ innitely many times. Therefore gγ g -1 A ∩ A is not empty. By construction, γ is a power γ k of γ, and for innitely many n, g n γ k g -1 n belongs to H. Now the hypothesis on H shows that g n γg -1 n also belongs to H. At this point we showed that for any γ in Γ ∩ g -1 Hg, there is an innite number of n such that γ belongs to Γ ∩ g -1 n Hg n . Using this fact along any subsequence, it shows that for n big enough, γ belongs to Γ ∩ g -1 n Hg n . And for n big enough,

Γ ∩ g -1
n Hg n contains all the generators of Γ ∩ g -1 Hg. Hence for n big enough, the subgroups Γ ∩ g -1 n Hg n and Γ ∩ g -1 Hg are the same one. This concludes the proof of this lemma.
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 2 projects in a periodic horocycle in SL(2, Z)\SL(2, R). This means that the application R → SL(2, Z)\SL(2, R) given by t → SL(2, Z)σ a b u(t) is periodic. Another way to state it: there exists t ∈ R * and γ ∈ SL(2, Z) such that we have Periods and heights of points with rational slope Consider a point v 0 = a b in R 2 \ {0} with b a ∈ Q or a = 0. Then we may dene the following number: Denition 2.1.
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 2 Figure 2. The gap around the horizontal axis
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 1 Γ T . Let us note v = a b . Let us assume rst that |a| ≤ b. Then we have γv = a + (T -1)b b . Now consider the point w = a + (T -1)b 0 of slope 0. First we get that the distance |γv -w| is equal to |b|. Second we check that (T -4)|b| ≤ D v (ρ(w) ≤ T |b| using the formula for the function D v . That means that we have:

  1)a + b which lead to the same estimate via the same computation ! But of course this consideration is somehow deceptive, as it describes a general fact veried for any initial point and do not reects the diophantine properties of this point. So let us show that the diophantine information about the beginning point eectively lies in the evolution of the orbit. Consider a point v = a b with irrational slope s = b a . Recall that the best approximation of s by a rational number

I do not want to state it precisely, nor will I be very precise in the following, as the settings require some technical hypotheses useless to discuss here.