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Aurélie Beynier
Sorbonne Universités, UPMC Univ Paris 06

CNRS, UMR 7606, LIP6
F-75005, Paris, France
aurelie.beynier@lip6.fr

Abstract—Multiagent patrolling in adversarial domains has
been widely studied in recent years. However, little attention
has been paid to cooperation issues between patrolling agents.
Moreover, most existing works focus on one-shot attacks and
assume full rationality of the adversaries. Nonetheless, when
patrolling frontiers, detecting illegal fishing or poaching; security
forces face several adversaries with limited observability and
rationality, that perform multiple illegal actions spread in time
and space. In this paper, we develop a cooperative approach
to improve defenders efficiency in such settings. We propose a
new formalization of multiagent patrolling problems allowing for
effective cooperation between the defenders. Our work accounts
for uncertainty on action outcomes and partial observability of
the system. Unlike existing security games, a generic model of
the opponents is considered thus handling limited observability
and bounded rationality of the adversaries. We then describe a
learning mechanism allowing the defenders to take advantage
of their observations about the adversaries and to compute
cooperative patrolling strategies consequently.

I. INTRODUCTION

During the past years an increasing focus has been put
on multiagent patrolling and threat detection. Security Games
have mainly been interested in detecting a single adversary
trying to perform a one-shot attack such as a terrorism
attack [1]. More recently, some works have investigated a
wider variety of patrolling domains like preventing crime in
urban areas [2], avoiding intrusions on frontiers [3], detecting
illegal fishing or poaching [4]. In such settings, the defenders
face multiple adversaries performing frequently and repeat-
edly illegal actions. For instance, illegal fishing may occur
simultaneously on different sites and is a daily problem for
cost guards. When patrolling frontiers, police forces have
to repeatedly face multiple intrusions on various crossing
points. In these contexts, deploying several patrollers able
to effectively coordinate and plan their strategies, provide
promising opportunities to reinforce security.

Indeed, as shown by Shieh et al. [5] in the context of
a one-shot attack, defender teamwork leads to significant
improvement over other approaches. Nonetheless, even if there
has been an increasing focus on approaches handling multiple
adversaries and frequent illegal actions [6], [4], existing works
do not allow for an effective teamwork among defenders. In
this paper, we introduce an approach allowing for effective
cooperation among several defenders to cope with multiple
illegal actions spread in time and space. We consider mobile

patrollers that are able to move across their environment.
Patrollers will thus have to cooperate in order to choose which
sites to visit next. Obviously, in real settings, patrollers will
have to cope with partial observability of their environment
and uncertainty on action outcomes. For instance, when fight-
ing illegal fishing, cost guards’ moves depend on weather con-
ditions. Move duration between fishing spots is thus uncertain.
Moreover, cost guards cannot observe all fishing spots at any
time of their patrol. In order to compute valuable strategies,
there is a need to handle uncertainty on action outcomes and
partial observability of the system.

We thus aim at developing cooperative patrolling strategies
that detect as much illegal actions as possible, under uncer-
tainty. Patrollers will have to anticipate possible actions of the
adversaries at each time-step. To deal with this issue, most
existing approaches assume that adversaries are fully rational
and fully observe the patrolling strategy. A best response can
then be anticipated and a defender strategy is computed using
Game Theory. In fact, it is often difficult for the adversaries to
obtain full knowledge of the patrolling strategy. Indeed, adver-
saries are often unable to fully observe the patrolling strategy
since they have limited observation capacities, observing the
patrolling strategy is risky (the adversary may be detected)
and costly (it takes time and consumes resources) [7], [4].
Moreover, adversaries (mostly humans) often have bounded
rationality. Existing approaches assuming full observability
and rationality of the adversary thus fail to develop efficient
strategies in many real-world settings. Besides that adversaries
may have bounded rationality and do not act optimally, their
strategies may evolve over time. For instance, illegal fishermen
can change their fishing spots based on their accumulated
knowledge about cost guard patrols. It is thus difficult for the
defenders to anticipate the response of the adversaries to their
patrolling actions.

In this paper, we attempt to improve the applicability and
efficiency of patrolling teams while facing multiple adversaries
that perform multiple illegal actions. To reach that aim, our
work makes the following contributions:
• We propose a new formalization of the defenders’ deci-

sion problem allowing for effective cooperation between
the defenders while facing multiple adversaries perform-
ing repeated illegal actions over time and space.

• Our approach handles uncertainty on action outcomes
and partial observability of the environment. Moreover,
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we do not make specific assumptions on the observation
capacities and on the rationality of the adversaries.

• We propose a distributed solving algorithm able to com-
pute online and update patrolling strategies.

• We develop a mechanism allowing defenders to build
online a model of the adversaries and to detect changes in
adversary strategies. Our approach is thus able to handle
non-stationary adversary strategies i.e. strategies of the
adversaries that evolve over time.

This paper first reviews related works and introduces our
problem settings. Second, it provides a new formalization of
the multiagent patrolling problem with adversaries based on
Decentralized Partially Observable Markov Decision Processes
(DEC-POMDPs). Third, methods are proposed for the pa-
trollers to compute their action policies and to adapt them to
possible changes in adversary strategies. Fourth, experiments
on the efficiency of our approach are presented.

II. RELATED WORK

Several approaches have recently been proposed to deal
with patrolling in adversarial settings. They involve two kinds
of agents: the patroller and the intruder (i.e. the adversary).
Existing works make different assumptions about the agents’
observability of the system, leading to different kinds of
solutions. Many approaches assume that the adversary is
able to perform extensive observation of the patrollers and
then conducts a one-shot attack [8], [9], [10], [7]. Such a
strong adversary has thus full knowledge of the patrolling
strategy and the problem can be represented as a leader-
follower decision problem. These approaches refer to “security
games”. However, in many domains, considering such a strong
adversary is not realistic nor optimal. Agmon et al. [3], [11]
have studied the impact of adversarial knowledge on the
patrolling strategies in the specific setting of perimeter patrols.
They demonstrated that if the adversary is not a strong one
and has no knowledge about the patrol scheme, an optimal
deterministic strategy exists. Computing mixed strategies is
thus not required.

Most multiagent patrolling approaches do not tackle the
issue of cooperation between multiple patrollers since they
assume only one patrolling agent or they consider that the
same strategy is executed by all patrollers [11]. Recently,
Shieh et al. [5] proposed to combine security games and
Decentralized MDPs to enable effective cooperation between
several patrollers under uncertainty. The approach computes
a defender’s team strategy facing a single adversary that
performed a prior extensive surveillance phase. In Shieh et
al.’s work, the adversary is assumed to be fully rational and
chooses to attack the target with the lowest coverage.

When patrolling frontiers or fighting against illegal fishing
or poaching, defenders face multiple intruders [4]. The objec-
tive of the defenders is then slightly different as it consists
in maximizing the number of detected illegal actions instead
of preventing a one-shot attack. Moreover, the observability
and knowledge of the system are often limited: attackers
do not have enough time nor resources to fully observe the
patrolling strategies. Defenders can thus not count for a best

response strategy from the intruders. The defenders have then
to consider bounded rationality and limited obsevability of the
intruders. CAPTURE framework [12] has been proposed to
prevent poaching while facing an uncertain number of poach-
ers and limited observability of the poachers. However, the
approach again considers a one-shot attack and does not allow
for effective teamwork between the patrollers. Qian et al. [13]
relaxed the assumption of a one-shot attack following a prior
extensive surveillance and considered several illegal actions
while a single protector and an adversary fully observe their
opponent’s actions. Recently, Nguyen et al. [12] tackled the
issue of multiple adversaries performing frequent and repeated
illegal actions. The problem is formalized as a repeated game
where defense resources have to be deployed on targets at
each turn. While this work accounts for learning adversarial
strategies, it does not consider effective cooperation between
defenders nor uncertainty on action outcomes.

III. PROBLEM SETTING

We address the problem of computing patrolling strategies
for m heterogeneous defenders (agents i with i ∈ [1,m]) that
have to coordinate to patrol a set of n (with m � n) target
sites tj (with j ∈ [1, n]) to detect illegal actions. Defenders
consist of mobile agents able to conduct surveillance on the
targets. The environment topology is represented as a graph
G = (N , E) formalizing possible routes between the targets.
N = {t1, · · · , tn} denotes the set of targets and E is the set
of possible routes between the targets.

We consider that uncertainty arises from imperfect action
execution and limited observation. A probability distribution
Ck,j on possible travel durations is thus assigned to each edge
e = (tk, tj) ∈ E of the graph. Since moving from one target
to another can take several time steps, it should be noticed
that a patrolling agent does not make a new decision at each
time step and agents are not fully synchronized.

Like previous works dealing with patrolling in adversarial
domains, it is assumed that performing an illegal action is not
instantaneous and takes ∆int time steps [3].

As mentioned previously, we are interested in realistic set-
tings where patrollers and intruders have partial observability
of each other. Thus, each patrolling agent is assumed to know
her own location and only observes adversaries performing il-
legal actions on the target she is currently patrolling. Note that
illegal actions can be performed several times on a same target
and several illegal actions can be performed on different targets
at the same time. Our framework is thus generic and does not
assume a fixed known number of adversaries. The number
of adversaries can then evolve over time and is unknown to
the patrollers. We do not make any assumption on the full
rationality of the adversaries nor their possible cooperation.
Instead, defenders will try to anticipate the adversary behavior
from the observations made during the patrol.

IV. DECISION PROBLEM FORMALIZATION

Patrolling systems are inherently distributed: at each deci-
sion step, each patrolling agent must decide in an autonomous
but cooperative way, which target to visit next in order to
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maximize the global performance of the defenders. Each
agent’s decision is based on her local knowledge about the
adversaries and about the environment. In the following, we
show that this distributed and cooperative decision problem
can be formalized as a Decentralized Partially Observable
Markov Decision Process (DEC-POMDP) [14]. In fact, DEC-
POMDPs allow for formalizing sequential multiagent decision
problems under uncertainty where a set of cooperative agents
has to make decisions in a distributed way with partial
observabilty of the system.

In real settings, because of limited observability and
bounded rationality, it is very difficult for the patrollers to
build a full model of the adversaries (and thus to include
it in their model of the environment). In fact, patrolling
agents cannot observe all the actions of the adversaries and
have to make decisions based on limited knowledge about
adversary behaviors. On the other hand, the adversaries have
bounded rationality and may not always commit to an optimal
policy. They also continuously adapt their strategy from their
local observations. One of the main difficulty to overcome
is that patrolling agents cannot compute a best response of
the adversaries to anticipate their behavior. In this paper, we
introduce the notion of context formalizing the knowledge of
the patrollers about the adversary policy. Patrolling strategies
will then be computed based on the current context. In order to
cope with the dynamics of the adversary strategy, our approach
also proposes mechanisms for the patrolling agents to be able
to detect policy changes as soon as possible, to update the
context and to adapt patrolling strategies consequently.

A. Background on DEC-POMDPs

A DEC-POMDP is defined as a tuple 〈Ag, S,A, T,O,Ω, R〉
where: Ag = {1, ...,m} is a set of m agents, S is the set of
world states, A = {A1×· · ·×Am} is the set of possible joint
actions a = {a1, ..., am} such as ai is the action of agent i, T
is the transition function giving the probability T (s′|s, a) that
the system moves to s′ while executing a from s, O = {O1×
· · ·×Om} is the set of joint observations o = {o1, ..., om}, Ω
is the observation function giving the probability Ω(o|s, a) of
observing o when executing a from s, R(s′|s, a) is the reward
obtained when executing action a from s and moving to s′.

Optimally solving a DEC-POMDP consists in finding a
joint policy π = {π1, ..., πm} that maximizes the common
performance measure of the agents where πi is the individual
cooperative policy of agent i. It has been proved that optimally
solving a DEC-POMDP is NEXP-Complete [14]. Many works
have thus focused on developing efficient solving methods.
Despite major advances in the scalability of the algorithms,
the size of the problems that can be optimally solved remains
limited [15]. In fact, approximate approaches often better scale
to large number of agents and planning horizon. Moreover,
it has to be noticed that most existing approaches perform
centralized off-line planning i.e. planning is performed in a
centralized way before the execution. Strategy computation
can then not be distributed among the agents. Finally, the
issues of learning or re-planning during the execution have
received little attention so far.

Related models could be considered to formalize our de-
cision problem but they do not fulfill all the requirements of
our settings. Interactive POMDPs (I-POMDPs) [16] include
a model of the other agents in the belief state of each agent.
However, I-POMDPs assume a fixed set of adversarial models
known beforehand. Stackelberg Security Games [17] assume a
known model of the adversary and do not account for effective
cooperation during action execution.

B. Patrollers’ DEC-POMDP formulation

We now describe how the cooperative patrolling problem
can be represented as a DEC-POMDP. Of course, patrolling
strategies rely on the current knowledge about the adversaries.
However, in our settings, the only observed information about
the adversary strategies consists in detected illegal actions.
To formalize the information the patrollers have about the
adversaries, we propose to use a probability distribution PI
defined for each target. PIi(t) is the probability that the
adversaries initiate an intrusion on target ti at step t. The
probability that none adversary initiates an intrusion on target
ti at t is then given by 1 − PIi(t). The probabilities PIi
may evolve over time as the patrollers get more and more
observations about the adversaries. Moreover, the adversaries
may change their strategy. PI is thus non-stationary over time.

Inspired by the notion of modes used in mono-agent
POMDP [18], our approach consists in defining a DEC-
POMDP for a given distribution PI which will be referred
as the current context of the decision making. As discussed
later in the paper, the DEC-POMDP definition will have to be
updated as the context evolves.

Actions: At each decision step, an agent must decide for
the next target to patrol. An individual action ai thus consists
in moving to target tj (tj ∈ N ). Since the execution of an
action may last over several time steps, agents may not be
synchronized. DEC-POMDPs consider one time unit action
duration so, we propose to decompose individual moves from
a target to another into a set of consecutive unitary actions. In
fact, if moving from a target tk to a target tj takes ckj ∈ Ck,j

time units, the move is decomposed into ckj successive unitary
moves. Although an agent has prior knowledge on the possible
durations ckj , she actually knows the effective duration of the
move only once it has been fully executed (the agent has
reached tj). During the execution of the unitary moves, the
agent does not change her decision and keeps executing the
action moving to target tj .

States: A state st at time t is defined as: the position of
each agent, the list of targets where an illegal action has been
currently observed, the idleness of each target, the elapsed
time of each current move. The position pi of each agent
i is a target or an edge of the graph, i.e. pi ∈ {N ∪ E}.
The tuple of positions of the agents is denoted by p with
p = 〈p1, ..., pm〉. For each target currently patrolled (ti such
as ti ∈ p), the state indicates whether an illegal action has
been currently observed on this target. The state thus contains
the list int of targets where intrusions have been observed
at t. The time elapsed since the last visit of each target is
called idleness. Each target is assigned an idleness value thus
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leading to the tuple idle with idle = 〈idle1, ..., idlen〉. δi
denotes the time elapsed since each patrolling agent has left
her last visited target, leading to the tuple δ = 〈δ1, ..., δm〉. The
highest possible travel time between two targets gives an upper
bound on possible values for δi. A state st is thus a tuple of
the form 〈p = 〈p1, ..., pm〉, int, idle = 〈idle1, ..., idlen〉, δ =
〈δ1, · · · , δm〉〉. To avoid overloading equations, we will denote
this state by st = 〈p, int, idle, δ〉.

Observations: Each agent observes her current position.
If the agent has reached a target, she observes whether an
illegal action is currently performed on that target. When an
agent is moving from a target to another, she is assumed not to
observe adversaries (we limit illegal actions to be performed
on the nodes of the graph).

Transition function: Transition probabilities are defined
from probabilities on move durations and from probabilities
on detection of illegal actions. At each decision step, some
agents reach new targets to visit whereas other agents are still
on the road between two targets. From a state st, if an agent
i reaches a new target tj , the system moves to a state s′t′
where the idleness of tj is 0, δi = 0 and pi = tj . Otherwise
(i does not reach her next target), δi is incremented by 1, pi
corresponds to the current edge of the agent and the agent
does not reset any idleness value (although other agents could
change these values). The probability that an agent reaches
her target is defined from probability distributions Ck,j .

Probabilities on the detection of illegal actions are estimated
using the current context PI . When the agent i reaches her
destination tj , she may observe an illegal action on tj . The
probability wj of observing an illegal action on tj at t is the
probability that an adversary initiated such an action within
the last ∆int time steps and it has not been detected yet:

wj(t) = P(

min(∆int,idlej)⋃
w=0

Ij(t− x))

where Ij(t − x) denotes the event “an illegal action is
initiated at t − x on tj”. Using the inclusion - exclusion
principle applied to probabilities, wj(t) can be re-written as
a sum of probabilities on conjunctions of events Ij . The
probability of such an event is then given by PIj .

Observation function: Since agents are assumed to always
detect illegal actions on the targets they patrol, there is no
uncertainty on observations.

Reward function: The reward function is defined in order
to reward detected illegal actions. The reward obtained when
executing action a from a state st = 〈p, int, idle, δ〉 and
moving to s′t = 〈p′, int′, idle′, δ′〉 is defined as:

R(s′t|a, st) =
∑

ti∈int′
RD(ti) +

∑
ti∈p′ and /∈int′

·RP (ti, idlei) (1)

where RD(ti) ∈ R∗+ denotes the reward for detecting
an illegal action on the target ti and RP (ti, idlei) ∈ R∗+
is the reward for patrolling target ti without detecting any
illegal action. In order to guarantee patrolling all targets,
RP (ti, idlei) is proportional to the idleness of the target before
being patrolled. Agents are thus encouraged to patrol the

targets that were visited a long time ago. Different rewards
over the sites can be defined so as to represent the relative
significance of the targets.

Since agents have limited observability of the targets and
of the adversaries, it has to be noticed that it is not possible
to represent non-detected illegal actions in the DEC-POMDP
and to take them into account in the reward function.

C. Computation of the current context

Our DEC-POMDP formalization assumes a fixed model
PI of the adversaries strategy. This model (also referred as
“context”) is built by the patrolling agents during the execution
of their actions. Of course, as patrolling agents make more and
more observations, they obtain a more accurate model of the
adversaries.

If patrolling agents are only aware of detected illegal
actions, they cannot have prefect knowledge of the probability
distribution PI . However, the number of detected illegal
actions over the last H time steps can be used to compute
an estimate of PI for each target. Let NIi(t − H, t) be the
number of detected adversaries on target ti (defined for all ti
in N ) between t−H and t. We define the following estimate:

PIi(t) =
NIi(t−H, t)∑

tk∈N NIk(t−H, t)
(2)

This definition may appear as a rough estimate but it guar-
antees the relation: NIi(t−H, t) > NIk(t−H, t)⇒ PIi(t) >
PIk(t). Moreover, this estimate meets our assumption on
limited observability and fits nicely to the patrolling agents’
objective consisting in detecting as much illegal actions as
possible. However, our DEC-POMDP formalization allows for
other definitions of PI exploiting possible higher degrees of
observability or external knowledge about the adversaries.

Since updating the DEC-POMDP model and the patrolling
strategies at each time step from the new current context is
too costly (in terms of time and computational resources),
we introduce a context horizon T that sets the period of
validity of the current context. The DEC-POMDP model is
then updated every T steps using the new context computed
from the observations made by the patrolling agents over the
last H steps. New patrolling strategies will then be executed.
Note that T is the planning horizon whereas H is the length
of the observation history used to define a context PI .

It has to be pointed out that our approach allows patrolling
agents to adapt online their strategies. From the point of
view of the attackers, even if they had full observability
of the patrollers, the patrolling strategy will then not seem
deterministic all along the execution.

V. POLICY COMPUTATION AND UPDATES

For a current context PI , solving the corresponding DEC-
POMDP returns a joint policy π = {π1, ..., πm} maximizing
the global expected reward derived from Equation 1. An indi-
vidual policy πi allows agent i to decide, from her observations
of the system, how to act in a cooperative way. Note that agents
usually end with different strategies: the nodes of the graphs
are dispatched among the agents taking into account action
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uncertainty, target rewards and threat levels. Several algorithms
have been developed to solve DEC-POMDPs [15], [19], [20].
They can be used to solve our DEC-POMDP formalization
described in the previous section. An optimal policy can then
be computed for a given context PI . Each time a new context
is deduced from new observations, the patrolling strategy has
to be computed again given the new context. However, in our
settings, existing approaches suffer from several limitations.
First, they perform centralized computation of the patrolling
strategy. In fact, even if patrolling strategies can be executed
in a distributed way, most existing approaches consider a
central entity computing the individual strategies and then
broadcasting them to the agents. Each time a new context is
considered, such a central entity would thus have to collect all
the observations of the patrollers, to compute a new strategy
and to broadcast it. This would create a bottleneck in the
system and would result in high communication cost. The
second drawback of these algorithms is that they have not
been developed to exploit learned information and to update
strategies during the execution. They cannot re-use previously
computed strategies to speed up the computation of a new joint
strategy for a new context. Finally, despite recent advances,
existing approaches fail to scale to large sizes of problems.

In this section, we investigate evolutionary algorithms to
compute approximate patrolling strategies in a distributed way.
Such algorithms have already been used to compute approx-
imate solutions for DEC-POMDPs [21], [22] and showed
significance improvement in the size of the horizon that can
be considered. In addition, our algorithm allows for exploiting
previously computed strategy when considering a new context.
We then propose to reduce communication overhead and to
improve patrolling performance.

A. Evolutionary Algorithm for policy computation
We propose to adapt the (1+1) evolutionary algorithm

[23] to optimize the patrolling strategy over horizon T . The
evolutionary algorithm (see Algorithm 1) selects an initial
solution (called champion) and then iterates to improve
the champion until a computation deadline is reached. At
each iteration, a mutation operator is applied to the current
champion thus obtaining a challenger. This new solution
is evaluated and becomes the new champion if its value is
higher than the one of the current champion.

Algorithm 1 (1+1) evolutionary algorithm

champion = RamdomIndividual()
championValue = Evaluate(champion)
while deadline non reached do

challenger = Mutation(champion)
challengerValue = Evaluate(challenger)
if challengerValue > championValue then

champion = challenger
championValue = challengerValue

end if
end while

The population of individuals (i.e. set of policies) consists
in the set of joint policies that comply with temporal and

spatial constraints of the problem. Spatial constraints are
fulfilled if each agent always executes an admissible action
at each decision step i.e. decides to move to a target directly
connected to her current target. Temporal constraints arise
from uncertainty on action durations: an agent cannot decide
for a new target to visit until she has reached her current target.
The initial solution is built from a probability distribution
over the nodes reflecting the likelihood of an illegal action
on each site deduced from observations. In fact, the higher
the probability of an illegal action on a target tk, the higher
the probability of selecting tk. Probabilities are also weighted
by the visit frequency of the target in the previous context.
The mutation of the current champion strengthens the weakest
targets: the targets with the lowest probabilities of threats are
replaced by the targets with the highest probabilities of threats.
This algorithm has the advantage of being anytime and better
scales to large numbers of agents and long planning horizon
T because of its low complexity. However, it does not provide
any guarantee on the quality of the solution regarding the
optimum. This issue will be investigated in our experiments.

B. Communication models

Executing our evolutionary algorithm in a distributed way
requires the agents to communicate their observations about
detected illegal actions. In fact, this information is necessary to
deduce the new context. However, communication can be risky
(adversaries may listen) and resource-consuming. In order to
limit the number of messages, we propose to measure the
relevance of the communicated information. An information
is communicated to the other agents if it is considered as
relevant. We thus measure the distance between the current
probability distribution PI and the new probability distribution
PI ′ obtained by exploiting the information not communicated
so far. To compute the distance between two probability
distributions, we use the Kullback-Leibler divergence [24]
which measures the difference between two probability distri-
butions P and Q. The divergence from P to Q is defined as:∑

i P (i)log P (i)
Q(i) . In order to preserve the symmetry property,

we use the pseudo-distance:

D(P,Q) =
∑
i

P (i)log
P (i)

Q(i)
+

∑
i

Q(i)log
Q(i)

P (i)

If the Kullback-Leibler distance is greater than a small β
parameter value, the information is considered as being rele-
vant and it is communicated to all teammates. Other measures
have been investigated, like the Bhattacharyya distance or
the Hellinger distance but, we did not notice any significant
difference in the solutions we obtained.

C. Detection of context changes

Although adversaries are assumed to partially observe the
patrollers, they may adapt their strategy from their observa-
tions of the system. As explained in Section IV-C, observations
about the adversaries over the last H steps are used to define
a new context every T time steps. In this section, we propose
to improve patrolling performance by detecting adversary
policy changes during the T time steps of a context. We thus
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define a mathematical method that studies the variations of the
number of detected adversaries det over the H last time steps
considered in Equation 2. Empirical studies of the variations
of det showed that this quantity significantly decreases when
the adversaries change their strategy. The objective of the
following method is thus to better detect such decreases by
applying the four successive processing operations:

1) Compute a moving average of dett(H) values over the
last H time steps for each time step t.

2) Decompose dett values using a finite adaptation of
Stieltjes decomposition1. This decomposition allows us
to identify decreasing components det− of det.

3) Apply a backward finite difference operator:

∇det− [t] = det−t (H)− det−t−1(H)

to quantify variations.
4) Threshold the values obtained in the previous step to

detect adversarial policy changes.
When an adversarial policy change is detected, the current

context PI is updated even if the deadline T has not been
reached. Note that this method can be applied irrespectively
of the solving algorithm. The threshold of the procedure has
to be tuned considering the DEC-POMDP formalization of
the problem. Small thresholds lead to more sensitive detection
but could lead to “false” detection of strategy changes. High
thresholds might miss some strategy changes. Anyway, the
context will be updated and new policies will be computed
once the horizon T is reached.

VI. EXPERIMENTS

We experimented our approach on different sizes of ran-
domly generated graphs. Graph connections and probabilities
on action durations were randomly generated. Each node
is connected in average to 2/3 of the other nodes. Action
durations were randomly drawn in the interval [1,5]. Initial
adversarial strategies were also randomly defined assuming
that intrusion probabilities belong to the interval [0.1, 0.5] for a
subset of the targets and are 0 elsewhere. For each experiment,
the system was executed over at least 400 time steps and
the adversaries changed their policies at least once during the
execution. Performing an illegal action was assumed to take
10 time steps. Experiments were performed on a computer
equipped with an Intel(R) Core(TM)2 Duo processor, 2000
MHz, 8Gb.

A. Performances and scalability

We first studied the detection ratio (num-
ber of detected illegal actions / number of illegal actions)
over the patrolling mission. We compared the results obtained
by our evolutionary algorithm with the optimal solution
computed using the MADP toolbox [25]. Figure 1 gives the
detection ratio for small scenarios (2 agents and 5, 6 or 7
targets) executed over 530 time steps. It can be seen that our
evolutionary algorithm leads to high detection ratios. In fact,
the detection ratio is decreased by only 3% over the optimal

1For space reasons, we do not detail this decomposition.

solution for 5 targets and by 6% for 7 targets. Note that even
the optimal approach does not lead to full detection of illegal
actions since agents cannot cover all targets within 10 time
steps (duration of an illegal action).

Fig. 1: Detection ratios of the executed strategies

We then studied the scalability of our approach and tested
the performances of the solutions. We were not able to
optimally solve problems larger than 2 agents and 7 targets.
Nonetheless, our evolutionary algorithm successfully solved
problems up to 50 targets and 7 agents (with a deadline of 10
seconds). Larger problems can even be solved by enlarging
the deadline of the evolutionary algorithm.

Fig. 2: Influence of the number of targets

We experimented our approach on several sizes of graphs
(Figure 2) considering a fixed number of 4 agents. The larger
the number of targets, the lower the detection ratio. In fact,
as the number of targets increases, it becomes more and more
difficult for the 4 agents to cover all the targets and to obtain
high detection ratios. In order to guarantee good performances
of patrolling agents, a minimum number of agents is required.
This number is closely related to the number of targets to
patrol and to move durations. In our 4-agent experimental
setting, it can be observed that good performances are obtained
for graphs smaller or equal to 16 targets. Indeed, our approach
is thus able to provide detection ratio of 80% and more. We
investigated deeper the influence of the number of agents on
the detection ratio. Although all targets cannot be covered at
each time step and moving from one target to another takes
time (without the ability to make detection), our approach
provides good detection ratios for m� n. As shown in Figure
3 for a 16-target graph, if m = n, the detection ratio obviously
equals to 1. Nonetheless, it can be observed that this value is
almost reached with 12 agents. Moreover, considering 6 agents
leads to a detection ratio greater than 0.9.

Since the deadline of the evolutionary algorithm and the
planning horizon both influence solution quality, we varied
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Fig. 3: Influence of the number of agents

Fig. 4: Influence of the deadline and of the planning horizon

the value of these parameters and studied the average detection
ratio. As it can be seen on Figure 4 for 5 agents and 16 targets,
increasing the deadline of the evolutionary algorithm over 1
second does not significantly improve solutions. Indeed, good
solutions are computed within a short delay. Furthermore,
increasing the planning horizon T over 10 time steps does
not improve the detection ratio neither. In fact, a good setting
of the planning horizon results from a trade-off between the
number of steps looked ahead in strategy computation and the
frequency of updates. Longer planning horizon reduces the
frequency of strategy updates (planning is performed every T
steps). On the other hand, shorter planning horizons increases
the frequency of context and policy updates. More variations
are then observed in the detection ratio since agents become
more and more myopic and are unable to anticipate future
action outcomes and opportunities.

B. Communication model

We have then experimented the influence of using Kullback-
Leibler divergence on the number of messages and on the
detection ratio. Figure 6 and Table 5 illustrate the impact of
limiting communication in a problem composed of 16 targets
considering different number of agents. Note that a logarithmic
scale is used in Figure 6. We varied the β threshold used to
decide whether the message must be sent (β ∈ {5, 10, 15})
and we compared with the approach consisting in always
broadcasting observations about the adversaries (“Com”). As
shown in Table 5, limiting the number of messages does
not significantly decrease the performances of the agents
since important information is still exchanged. In fact, new
observations are only taken into account once they substan-
tially change the current context. Nonetheless, we noticed a
significant decrease in the number of sent messages (Figure 6).
In the 5-agents case, the number of messages has been reduced

from 574 to 16. β value can be used as a parameter to tune
the frequency of communication. In the 5-agents case, while
varying β between 5 and 15, the number of messages decreases
from 32 to 16. Settings without any communication have also
been experimented leading to detection ratios between 0.2 and
0.5.

3 agents 4 agents 5 agents
Com 0.7375 0.8084 0.8645
KL05 0.7241 0.7966 0.8585
KL10 0.6850 0.7476 0.8036
KL15 0.6661 0.7383 0.7660

Fig. 5: Average detection ratio

Fig. 6: Number of messages

C. Adversary policy changes

We also studied how the detection ratio evolves over time
during the execution (Figure 7). The detection ratio remains
stable over the execution except when the adversaries change
their strategy. In Figure 7, the sharp decrease in detection ratio
around 270 is due to changes in the adversaries policy. This
drop is successfully detected using the method described in
Section V-C and the agents quickly adapt their strategy. The
detection ratio thus returns to its previous level.

Fig. 7: Detection ratio over time

As shown in Figure 8 for 4 agents and 16 targets, we
varied the number of times the adversaries change their
strategy and we studied the impact on the detection ratio.
The less the adversaries change their strategies, the higher
the detection ratio. In fact, when the adversaries often change
their strategy it becomes more and more difficult to deduce
the current context. In highly dynamic problems, the detection
ratio falls behind 0.6. Performances could then be improved
by introducing more patrolling agents.
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Fig. 8: Influence of the number of strategy changes

VII. CONCLUSION

We presented a new framework for effective cooperation
between patrolling agents in uncertain and partially observ-
able domains. We relaxed the hypothesis of a single strong
and rational opponent, usually done in existing approaches.
We also proposed a more realistic model that accounts for
uncertainty on action outcomes. Our approach thus extends
existing multiagent patrolling works along several dimensions:
multiple cooperative patrollers with limited observability, mul-
tiple adversaries performing multiples illegal actions, partially
observable adversary strategies which may not be rational and
evolving over time, uncertainty on action duration. To our
knowledge, our framework is the first attempt to address all
these issues together. We formalized the multiagent decision
problem as a DEC-POMDP defined for a fixed context for-
malizing the adversary behavior. We showed how this context
can be built from the observations made by the patrollers and
we proposed a method to cope with the non-stationarity of
adversary behaviors i.e. contexts. Patrollers are thus able to
detect changes of adversary strategies and adapt their behavior
consequently. We then proposed an evolutionary algorithm
which offers an alternative to existing solving algorithms. Our
algorithm computes patrolling strategies in a distributed way
and is able to re-use strategies of previous contexts to compute
a new patrolling strategy adapted to the current context.
Future work will explore more complex representations of the
adversaries including the temporal dimension in the context.
Intuitively, time influences the actions of the adversaries and
the likelihood of changes in the adversaries strategies (an
illegal action is less likely to occur on a target if such an
action has just been detected on that target).
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