N

N

Feedback boundary stabilization of 2d fluid-structure
interaction systems
Mehdi Badra, Takéo Takahashi

» To cite this version:

Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction
systems. Discrete and Continuous Dynamical Systems - Series A, 2017, 37 (5), pp.2315-2373.
10.3934/dcds.2017102 . hal-01370000

HAL Id: hal-01370000
https://hal.science/hal-01370000

Submitted on 21 Sep 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01370000
https://hal.archives-ouvertes.fr

Feedback boundary stabilization of 2d fluid-structure interaction
systems

Mehdi Badra* Takéo Takahashi 't

Abstract

We study the feedback stabilization of a system composed by an incompressible viscous fluid and a
deformable structure located at the boundary of the fluid domain. We stabilize the position and the velocity
of the structure and the velocity of the fluid around a stationary state by means of a Dirichlet control,
localized on the exterior boundary of the fluid domain and with values in a finite dimensional space. Our
result concerns weak solutions for initial data close to the stationary state. Our method is based on general
arguments for stabilization of nonlinear parabolic systems combined with a change of variables to handle the
fact that the fluid domain of the stationary state and of the stabilized solution are different. We prove that
for initial data close to the stationary state, we can stabilize the position and the velocity of the deformable
structure and the velocity of the fluid.

Mathematics Subject Classification (2010): 93C20, 93D15, 74F10, 76D55, 76D05, 35Q30.

Key words: feedback stabilization, fluid-structure interaction, Navier-Stokes equations, beam equation.

1 Introduction

We consider the problem of stabilization for a fluid-structure system composed by a viscous incompressible
fluid and a deformable structure located at the boundary of the fluid domain. The fluid motion is modeled
by the Navier-Stokes system and the structure deformation follows the equation of a “viscous” beam. Such
a model is already considered by several authors ([33], [10], etc.). Our aim consists in showing the boundary
stabilization of such a system in the 2d case and for weak solutions. The method used here could be adapted
for other fluid-structure systems in the case of a fluid modeled by the Navier-Stokes system. In the 3d
case or for strong solutions, the stabilization of such fluid-structure systems could be obtained by using the
methodology developed in [6] or in [§].

Let us first describe more precisely the system considered in this paper. The domain of reference for the
fluid is denoted by Frer. We assume that it is a smooth domain of R? such that its boundary 0Fef contains
a flat part I'ver. We can assume that I'ver = (0,1) x {0} and we set T'g & eref\m.

On the part I'yer, we assume that there is a beam that can deform through the action of exterior forces
and in particular the force due to the fluid. The fluid boundary is thus moving, I';ef being transformed into

Lawr(n(t,-)) = {(s,n(t,5)) 5 s € (0,1)}, (1.1)

whereas 'y remains unchanged. The new domain of fluid F(n(t,-)) is the interior of I'g U T's¢r(n(t)). We
assume that

n(t,0) = n(t, 1) = d.n(t,0) = dsn(t, 1) = 0, (1.2)
and that To NTse: (n(t)) = 0 so that To U (n(¢)) is a close, simple C"* curve and this definition makes sense
(see Figure [1)).
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Figure 1: The fluid-plate system

The fluid-structure system that we consider reads as follows

O+ (v- Vv —divT(v,p) = 5, t>0, z € F(n(t)),
dive=0 t>0, z€ F(nt),
v(t, s,n(t, s)) = (Om)(t,s)e2 ¢ >0, s €(0,1),

v=>b"4+E) t>0, z €Ty, (1.3)
attn + aassssn - /Bassn - 68155377 = 7Hn(v7p) + gs, t > 0, CES (0, 1),
n=0n=0 t>0, se€{0,1},
with the initial conditions
n0)=ni and 9n(0)=ny in(0,1), wv(0)=0" inF(n}). (1.4)
Here and in all that follows, (e1,e2) is the canonical basis of R2, in particular ey = { (1) } ,
e 1 *
T(v,p) & 2vD(v) — pla, D(v) = 5 (Vo+ (Vo)) (1.5)
By (v.p) 2 {(1+ [0.1) /2 [T(w.p)n] (1 5.1(t,5) - €2} (16)
the vector fields n is the unit exterior normal to F(n(t)) and in particular, on s (7(t)),
1 —0sn(t, y1)
n(t,y1,Y2) = ——————mo—=ox [ . (1.7)
1+ [9an(t, y1)[? 1

The constants «, 8 and ¢ are assumed to satisfy
a>0, >0, §>0.

Moreover, f% : R? = R?, 5% : 'y — R? and ¢° : (0,1) — R are time-independent functions corresponding

to a stationary state (vs pS ns) of the above system:

(v® - V)® dlvT(S ) = f, z € F(n°),
dive® =0 :re]-'( 9,
(tsn()) 0, s€(0,1),
S = p° ZCEF(), (18)
aassssns—ﬁassn = —H,s(v® p®) +¢°, s €(0,1),

S=0.mn%=0, se€{0,1},

where the boundary value b° is supposed to satisfy fFo b% - ndy = 0.
Finally, u is a control function that we will search in a feedback form so that the corresponding solution
(v,m,0¢n) tends to the stationary solution (US, n?, 0) as t — co. The precise statement of this convergence



is given below. Here = € £L(L*(T)) is an operator used to localize the action of the control  in a relatively
compact subset of I'g and such that fFo E(u) - ndy = 0. Precisely, it can be defined by

(w) € pu — (/FO pu - nd’y) on (1.9)

where p € C?(T) is a non zero function compactly supported in T'g such that fFo pdy = 1.
Before stating in details the main result, let us first rewrite systems (|1.3) and (1.8) in a more general
way that allows to take into account the incompressibility of the fluid. A formal calculation yields

[1]

1 1
0= / divv dz = / v-ndy= / (8n)(t, s)ea - n(1 + |Bsn(t, s)|*)/? ds = i/ n(t,s) ds.
F(n(®)) Tstr (n(t) 0 dt Jo

Consequently, it is natural to work with displacements 7 with constant mean value along the time. For
simplicity, we assume that the mean value of 7 is zero:

/1 n(t,s) ds =0, (1.10)
0
that is L

n(t,) € L2(0,1) % {f € L2(0,1) ; /0 F(s) ds = o}_

With this assumption, we also have 9yn(t,-) € L3(0,1) and from the boundary conditions (1.2)), we obtain
Bssn(t, ), Orssn(t,-) € L3(0,1). Therefore, the equation for 1 in (I.3)) yields the following condition for all
t>0,

1 1
| Bt s)ds = [ (6°(5) = aduunentts)ds. (111)
0 0
From the definition (L.5)-(1.6) of Hy,(v,p) and from (|1.7), the above condition can be written as

/Olp(t, s.1(t, 5))ds = /01 (~6%(9) + aduusen(t.5) + 20 { (1 -+ [0.0P) 2 [D(w)n] (. . 1(t, 5)) - e2 } ) .

Note that an analogous condition can be imposed on p° to have n° € L2(0,1). These conditions imply that,
in contrast to the Navier—Stokes system, the pressure is not determined up to a constant in this fluid-structure
interaction system. To avoid to deal with this constraint we will use the orthogonal projection

M : L*(0,1) — L§(0,1). (1.12)
Let us introduce the operator T, : L?(0,1) — L*(8F(n)) defined by
(Th8)(z) =&(s)es if xz=(s,m(s)) €Elstx(n) and (T3€)(x)=0 if =z € To. (1.13)
Let us note that the adjoint T} : L*(0F(n)) — L*(0,1) of T,, is given by

(Tyv)(s) = (1+[9em(s)[*)*0(s,m(s)) - e2- (1.14)
We also set
Hs ¥ L2(0,1), (1.15)
D(A) ¥ HY0,1)NHZ0,1) N LE0,1), A1€ T aM8sssl — BOssE, (1.16)
and _ _
D(A2) ¥ H?(0,1) N Hg(0,1) N LE(0,1), At & —5MI,.E. (1.17)

The properties of these operators are described in Section 3} In particular their square roots A}/ 2 and A;/ 2
are well defined. We also denote by (-,-)#s the usual scalar product of L2(0, 1).
With the above notation, systems (|1.3)) and (1.8]) rewrite:

O+ (v- Vv —divT(v,p) = 5, t>0, z € F(n(t)),
dive=0 t>0, z€ F(n()),
v =Ty )0 + 1r, (b° + E(u)) ¢t >0, = € dF(n(t)),
Oun+ Ain + Az0im = —MT}, T(v,p)n+ Mg®, t>0, s € (0,1),

(1.18)



and
WS V¥ —divT(v®,p%) = f5, z e Fn®),
dive® =0 z € F(n°),
v¥ =1r,0°  x € F(n%),
An® = —MT;ST(US,pS)n+ Mg®, se(0,1),

In above settings 1r, denotes the characteristic function of I'.

Our aim is to use the control u in in order to “reach” the above stationary state. More precisely, we
impose a feedback law depending on the difference between (v(t,-),n(t,), dn(t,-)) and (v°,n%,0) in order
to obtain that the difference between these states goes to 0 exponentially.

Such results of stabilization are classical for the classical Navier-Stokes system (without any structure),
see for instance, [23], [38], [9], [37], [2], [E], etc. Note that for this problem there is a difference between the
dimension 2 and the dimension 3: due to the nonlinearity in the Navier-Stokes system, and to the method
developed (stabilization of the linearized system, fixed point), in dimension 2 one can take initial data in L*
(or H*, s < 1/2), whereas in dimension 3, one needs to take the initial data in H* (or at least H*, s > 1/2).
As a consequence, in dimension 3, we have to impose compatibility condition at ¢ = 0 between the initial
condition and the feedback control u (see [, [3| 2] for details). Several techniques have been considered to
overcome this difficulty: [34], [2], [5], etc. For instance in [5], the solution consists in assuming that the
control u satisfies an evolution equation with another feedback control. We are thus reduced to stabilize a
system coupling the fluid velocity and the control w. In dimension 2, the method allows to consider classical
feedback operators for weak solutions. This is done for the Navier-Stokes system in [38]. Note that in
dimension 2, the stabilization of strong solutions leads to the same problem of compatibility conditions.

For the fluid-structure interaction systems, there are few results of stabilization. A first result was
obtained in [36] for the system considered in this article. The target velocity v® is zero, the control is acting
in the whole structure and the author works with strong solutions (initial data in H" for the fluid velocity).
The case of a deformable structure immersed in a fluid is considered in [I9], [I8]. For the case of a rigid
body, a 1d simplified model is treated in [7] whereas the 2d and 3d case are considered in [6]. In this last
paper, we work with a notion of weak solutions in order to deal with the 2d case without the problem of the
compatibility conditions. However, in [6] we need that the initial and the final position of the structure are
equal.

The main novelty of this work is to prove stabilizability result for weak solutions of a fluid-structure
system. Moreover, we consider a nontrivial target velocity v® to be stabilized. We work in the 2d case
only and the method for the stabilization follows the same idea as the papers quoted above. One important
difficulty that we need to deal with is that there is no proof in the literature for the existence of weak
solutions of a fluid-structure system with a Banach fixed point. In order to do this here, a first step consists
in performing a change of variables to work on a cylindrical domain (see Section . Such an approach is
already considered for strong solutions and there exists changes of variables that allow to keep the divergence
free conditions and the form of the boundary conditions. We don’t employ such a change of variables on
the unknowns but on the test functions. This leads to transform our system in a cylindrical domain with
non homogeneous divergence conditions and non homogeneous boundary conditions. We can overcome the
corresponding difficulty by using a framework developed in [39] for the Navier-Stokes system. All this work
could be adapted to other fluid-structure systems such as the case of rigid bodies moving into a viscous
incompressible fluid as in [6]. Indeed, the presence here of the deformable structure that follows a beam
equation leads to lots of technical difficulties (see the three sections in the appendix).

Let us also mention that several works have been devoted to the study of the fluid—plate system. The
model was proposed in [33]. The existence of weak solutions was proved in [16] and the existence of strong
solutions was obtained in [I0] and in [29]. For these two results, as in our case, the damping term, that is
—00;ssm, is essential. In [24], the author manages to prove the existence of weak solutions (in 2d or in 3d)
for this problem in the case without damping (6 = 0).

Let us write the weak formulations for both systems and . Assume

(1.19)

€ Co([0,00); C'(F(n(®)))), ¢ € Ca([0, 00); C*([0,1]) N L5 (0, 1))
(see Section for the precise definition of such a functional space) satisfy
dive =0 in F(n(t)), (1.20)

o =T, on dF(n(t)), (1.21)



The weak formulation for is

— / 0% (0,-) dz — / / v (Orp + (v-V)) dx dt + 21// / D(v) : D(p) dx dt
F(n) Ry JF(n(t)) Ry JF(n(t)
- (0c0.), ~ [ (amoc), e+ [ (anai)
Hs Ry Hs Ry Hs

*(Aé/Qn?,Aépﬁ)H ,/ (Ai/Zn,Aé/Q&:C)H dt:/ /( ())fs-(pdx dt+/ (gs,g)H dt.
s R, s Ry JF(nt R s

(1.23)
Assume ¢° € C'(F(n%)) and ¢ € C%([0,1]) N L3(0,1) satisfy
dive® =0 in F(n%), (1.24)
¢® =T,s¢° on dF(n%), (1.25)
¢*(0) = ¢*(1) = 0:¢%(0) = 065 (1) = 0. (1.26)

The weak formulation for (1.19) is

[T ety [ DD dys [ (a7 )
F(n3) F(nS) H

Ry s
= 2% dy+ (¢°%,¢) . (1.27)
/J-'(ns) ( )HS

One of the difficulties, that is classical in fluid-structure interaction problems, is coming from the fact that
the solutions and the test functions of (1.18)) and of (T.19) are not written in the same spatial domains. To
overcome this issue, we transform the system (1.18)) by using a change of variables X such that X (z, F(n%) =
F(n(t,)) and X (t,Tser(n®)) = Tser(n(t,-)), and also such that X (¢,-) = Id on T for all t. More precisely,
here we use a change of variables depending on time through a dependance on 7)(t) only: we choose the
particular form X (t,-) = X, for all t > 0 where, for any deformation n € HZ(0,1), X, : R? - R? satisfies
X,(F(n®)) = F(n) and

Xu(s,n°(s)) = (s,n(s)) s €(0,1), Xy()=1Id on T (1.28)

The construction of X, is given in Section Note that we will obtain that X, is a C'-diffeomorphism
of R? into itself for all + > 0 by assuming that 7 is a continuous bounded function in time with values in
C'([0,1]) and is close to n”.

The change of variables also allows us to describe the feedback law satisfied by u in (1.3). We take u

under the form
No

u(t,z) = Fj(u(t,.),n(t,.),dmn(t, ))v;(x) >0, z €L, (1.29)

=1
with

Fj(v,m,n2) :/

(VX0 ()" 0(Xos (1)) = 0% 1)) - 05 (v) dy
F(n9)

1/2 _ S 1/2 41 2
(A=) AG), +(mg),  (30)
and
Ny €N, v e H'(To), [¢5,¢},¢] € LA(F(n®)) x (H5(0,1) NHs) x Hs, j€{l,....No}. (131)

Now, let us give the definition of a weak solution for our problem.

Definition 1.1. The pair (v,n) is a weak solution of (1.18)) if it satisfies the following properties



1. it satisfies the regularity
1 € C([0,+00); H3(0,1) N L§(0,1)) N Lt (0, +o00; H*(0,1)),
din € C([0,+00); L5(0,1)) N Lioe (0, +00; Hy (0, 1)), (1.32)
v € O([0, +00); LA(F (1(t)))) N Lioe (0, +00; H' (F(n(1))));
2. there exists a family {X(t,-)}i>0 of C:diﬁeomorphisms that transforms F onto F(n(t,-)) and such
that both X and X' belong to Cyp(C(F)).
8. we have v = b° + Z(u) on (0, +00) x Lo, with u obtained through (1.29)-(L.31);

4. relation holds for all (¢,¢) € C5([0,00); C*(F(n(t))) x (C*([0,1]) N L§(0,1))) satisfying (L.20)-
(T22).

We refer to Section [2:1] for the precise definition of the functional spaces used above.

Theorem 1.2. Assume
n® € C*([0,1)) and F(n®) is of class C*, (1.33)

and
5 e W (R?), % e W(F(n)). (1.34)

Then for all ¢ > 0, there exist Ny €N, p >0, C > 0, v; € H*(T), j =1,..., N, such that if

[0° 0 X0 — 0% |2z (s + 108 = 1° [l 2(0.1) + 118l 22 0,1) < 1

then there exists a weak solution (v,n) of (L1§), (L.29)-(1:31) (in the sense of Definition[1.1]) and:

s s
llvo Xyw — v llL2@rmsy) + 1In@) =07 [la2(0,1) + 19en(t) || 20,1
e S S
<Ce ! (||UO o X0 —v llL2(7nsy) + nY —n | 20,1y + H773HL2(0,1)) .

Remark 1.3. Note that assumption F(ns) of class C** allows us to freely use H*-regularity results for the
Laplace equation and for the Stokes equations. It is also a natural assumption because, even if the reference
domain Frer and 1° are regular, the boundary conditions n° = dsn° = 0 on {0,1} do not guarantee a class
of regularity for F(n®) better than C™*.

Remark 1.4. The family [cpy{%Cﬂ, 7 =1,..., Ny can be obtained for instance from I:SOJ‘,C;,C]?] = Lwv;
where L is finite rank linear operator on LQ(]——(T)S)) X (Hg(O, 1N Hs) X Hs independent of j which can be
computed from the solution of a finite dimensional Riccati equation, see [5, (8] or [37] for details.

Remark 1.5. The uniqueness of the controlled weak solution (in the sense of Deﬁm’tion is not proved
in Theorem[1.9 Since the proof relies on a Banach fized point argument it is indeed true that the solution
is unique within a class of stable solutions sufficiently close to the stationary state. But uniqueness is not
obtained in the classical energy space defined by . The uniqueness of weak solution is not an easy issue,
even under the hypothesis of small initial data. It must be the subject of further investigations.

Remark 1.6. Using the method developed here, we can obtain the same result for other fluid-structure
systems. For instance, we could obtain the stabilization of weak solutions for the case where the structure
is a rigid body (see [6]). One could also consider the case of a deformable structure in the case where the
equation of deformation is approximated by a finite dimensional method: see [20], [28], [14)]. For these cases,
the fized point and the estimates are simpler than here. The case of a deformable structure modeled by the
Lame equation or by the wave equation with an adequate damping can also obtained directly from our work.
For other damping laws or without damping, even the well-posedness is not always done and the corresponding
stabilization problems have to be studied differently. Let us quote some references on the well-posedness of

such systems: [13), [12), [13), [30), [40], etc.

The outline of the paper is as follows. In Section [2| we construct the change of variables and we rewrite
the system in a fixed domain. We then obtain the system satisfied by the difference between the controlled
solution and the stationary state. By linearizing this system, we obtain in Sectionthe coupled system (3.1)—
that couples an Oseen’s type system with a beam type system with dissipation. With this dissipation,
we prove that the semigroup associated with system 7 is analytic. That allows us to use the general



theory developed in [5] [§] to deduce in Section [4] the feedback stabilization of our linear system, first in the
homogeneous case and then in the non homogeneous case (and in particular with terms corresponding to the
non null divergence condition and non null boundary condition). In Section we use a fixed point procedure
to obtain the stabilization of the nonlinear system and thus to prove the main result. In the appendix, we
postpone technical proofs to the three sections: Section @ is devoted to the change of variables, Section
to the linearization, and Section [C] to some estimates for the fixed point.

2 Notation and change of variables

2.1 Notation

The classical Lebesgue and Sobolev spaces are written L%, H® and we denote by Cj the continuous and
bounded maps. We use the bold notation for the spaces of vector fields: L® = (L%)?, H* = (H")?
etc. For a Hilbert space X and 0 < T < 400, LP(0,T;X) and H*(0,T;X), p € [1,00], s > 0, are
usual vector-valued Lebesgue and Sobolev spaces and in the case T = 400, we use the shorter expressions
LP(X) ¥ LP(0, +00; X) and H*(X) & H*(0,400; X). We denote by L2.(0,T;X) (resp. Hi.(0,T; X)) the
set of functions belonging to L*(0,T; X) (resp. H*(0,T; X)) for all T > 0. For two Hilbert spaces X, ) we
write W(X,Y) € L2(X) N HY(Y).

If Z is a vector-valued function space of the time variable ¢ > 0, for o > 0 we use the subscript ¢ in Z,
to denote the space

Z, E{ZeczZ;t—e'Lt)c 2). (2.1)
For instance,
Wo (X, V) E{Z e LX(X)NH (V) ; t 7" Z(t) € W(X,D)}.

We use the notation (X)’, or simply X’, for the dual space of X, we use the notation £(X,)) for the
bounded linear maps from X into ) and the notation X < ) for the continuous embedding of X into ).
Moreover, [X, )]s denotes the complex interpolation space of index 6 € (0,1). If X — Y the following
continuous embeddings hold for all § € (0,1) and s € (1/2,1]:

L*(X)NH*(Y) = Co([X,V)1/(25)) and  L*(X)NH*(Y) — H*([X,V]s). (2.2)

The first above embedding is an easy consequence of the fact that [X, V]; /(s is the trace space of L?(X) N
H?*(Y), see e.g. [25]. The second one comes from the equality [L2(X), H*(V)]e = H?*([X,V]s) (see Theorem
5.1 and (6.8) in [27]) combined with the embedding L?(X) N H*(Y) < [L*(X), H*()]e-

In order to simplify the notation, we write in what follows

def

FEF®0®), Taw = Tourln®), (2.3)
and we introduce spaces of free divergence functions in F as well as the corresponding trace spaces on 0.F:
VO(F) = {fel’(F);divf=0 in F and f-n=0 on 9F},
Viy(F)E{feH(F);divf=0 in F and f=0 on 8F}, (s>1/2),

VE(OF) & {w e H (OF) ; (w-n,1) (s > —1/2).

1 1 = 0}
H™ 2 (8F),H?Z (0F)

We also use functional spaces of type L?(0,00; H(F(5(t)))). Such a space is defined through a family
{X(t,-)}+>0 of C'-diffeomorphisms that transforms F onto F(n(t,-)) and such that both X and X ! belong
to Cy(C*(F)). We say that v € L*(0, 00; H (F(n(t)))) if vo X € L*(H'(F)). It can be seen that the above
definition of L?(0, co; H'(F(5(t)))) is independent of the choice of X. For instance, if € Cy(C*([0,1])) one
can choose the family of change of variables {X, ) }:>0 introduced in Section below. Other spaces
of functions defined on a non cylindrical domain of R* are defined similarly: Cy([0, 00); L2(F(n(t)))),
C*([0,00); G (F(n(t))), etc.

In what follows, C' > 0 denotes a generic constant that may change from line to line and which is
independent on the other terms of the relation where it is used.




2.2 Construction of the change of variables

We transform the system (1.18]) written in the non cylindrical domain
ULt} x Fn(e)
>0
onto the domain
(0,00) x F.

We recall that, here and in what follows, we use the simplified notation 7 & F(®) and Ter & Tetr(n®).
Since n¥ € C3([0,1]), see (L.33)), we can extend 1° to a function in C*(R).
We consider the set

Vo = {(y1,yz) ER®; y1€(0,1), y2 € (°(y1) — ams(yl))}- (2.4)
We suppose that o > OAis small enough in order thg\t V. C F. Note that 9V, N OF = I's;r. We consider
0 € CZ(R) such that § = 1 in (—a/2,/2) and 0 = 0 in R\(—a, ), and for (y1,y2) € R? we define
0(y1,y2) = 0(y2 — n°(y1)). Then 6 € C*(R?) and for a given function n € H3(0,1) we define the change of
variables: s
0(y)(n(y1) — 0 (y1))e2 if y1 € (0,1)
X, RS R: oy YT . b
' Y { y if y1 ¢ (0,1).
We can check that X, =Id in F\V, and that ((1.28]) holds true, and in particular
Xn(0F) = 0F(n). (2.5)

Note that n € HZ(0,1) and n° € HZ(0,1) imply that the extension of n—n° by zero outside (0, 1) belongs
to H?(R) and is supported in [0,1]. As a consequence, X, € H?*(R?). From the continuous embedding
HE(0,1) < C([0,1]) we also deduce that X, € C*(R?). Moreover, we can check that for (y1,y2) € R?,

det(VXy(y1,y2)) = 1+ 8 (y2 — 1° (1)) (1) — n° (31)), (2.6)

and that the mapping X, is a C*-diffeomorphism of R? onto itself if we assume that

16" |2 =) I = 0° [l 2= 0,1) < 1. (2.7)

In that case, from (2.5), we deduce that X, is a C*-diffeomorphism of F onto F(n). We denote by Y;, the
inverse of X,,.
In what follows, we will construct a solution ¢ + n(t) in Cy(Hg(0,1)) such that

lln — USHLOO(Loc(o,l)) < ¢o (2.8)

for ¢o € (0, 1/||§’\|Loo<R)). This will guarantee that for all ¢t > 0, X, is a C'-diffeomorphism of F onto
F(n(t)) and that X, ) € Cp(C'(F)) and Y,() € Cpo(C'(F)). In what follows, we will use the simplified
notation
def def
V(ty) ERT X F, X(ty) = Xyn(y) and  Y(ty) = Yy (y).

From their definitions we observe that
Vt>0, X(t,-)=Id in F\Va,

and _
Vt>0, VX(t,-)=1I> in F\Va.
In the sequel, we use the above relation on I'g.
Finally, for a 2 x 2 matrix M we denote by Cof (M) the cofactor matrix and we recall the classical relations

det(M) = M Cof(M)* = Cof (M)* M. (2.9)
We remark that (2.7)), (2.6)) imply det(VX) > 0 and using (2.9) we deduce that for v, ¢ in L*(L2(F(n(t)))),
[t pltards = [ TGty (210)

F(n(t)) F

where v(t,y) = VX (t,y)*v(t, X(t,y)) and ¢(t,y) = Cof (VX (¢,y))*p(t, X(t,y)). It is such an observation
that motivates the change of variables that are introduced in the next section (see (2.11)) and (2.15]) below).



2.3 Rewriting the system ([1.3)) in a fixed domain

In this section we assume ([2.8). Our change of variables is defined by

def

v(t,y) = VX (t,y) v(t, X(t,9)). (2.11)

Remark 2.1. We could have used the change of variables v(t,y) « v(t, X(t,y)) or, as in [41] or [T,

o(t,y) € Cof (VX (t,y))*v(t, X(t,y)). The advantage of the latter choice is that it preserves the divergence
free condition. Here we use this formula to transform the test function ¢, see (2.15]) below.

We have the following results (the technical proof is postponed in Section [A.1)).
Lemma 2.2. With the notation (2.11), we have

det(VX)(divv) o X = div(K7), (2.12)

with
K ¥ det(VX)[VY](X)[VY]" (X). (2.13)
Moreover the equation
v=(dmez on Tux(n(t)),

is equivalent to

U= (VX)" [Cof(VX)] " (Oim)e2 on Ty (2.14)
For the test function in , we use the following change of variables.
B(t,y) = Cof (VX ()" ot X (1,9). (2.15)
Lemma 2.3. With the notation , if ¢ satisfies - - ) then
divg=0 inF, (2.16)
p=T,s¢ ondF. (2.17)

We can then transform the weak formulation (1.23): combining Lemma Lemma and Lemma
in the appendix (Section , we obtain that v satisfies the weak formulation

—/'1;0-;5(0,.) dy—/ /'ﬁ~8t$dy+/./\/l(5,V5):V§5dy+/M(i?,V'ﬁ)~{5dy
F Ry JF F F
—/B('ﬁ,'ﬁ):V&dy—/B(T;,i)-@dy
F F
—_(n? . _ 1/2 1/2
(mac0), - ) (om.0c),, e+ / (A AV, di

_(Al/z 0 Al/QC( )) _/ (Al/z AI/Q(% dt — / / (VX)* X)-pdy dt+/ (gs,g) dt,
Hs  Jry H Ry Ry Hs
(2.18)

where
def

£=n—1°
where 7° £ VX (0,4)*0°(X(0,y)), where ./\/l. M. + M. MB = ./\/l. + ./\/l@ are linear mappings

depending on £ given in Lemma and Lemma . and where '.’ B. are blhnear mappings depending
on £ given m Lemma- Note that (2.10) is used to transform mto

Since (v°,n%) is independent in tlme, we have

/vs-a(o, ) dy—l—/ /US~6th dy dt + (Al/2 S AY2¢(0 )) +/ (Al/2 S A%, <) dt =0,
F R, JF Hs R4 Hs

for (2,¢) € C3([0, 00); C*(F) x (C*([0,1]) N L§(0, 1)))-



Using the above relation, (1.27) and (2.18]), we deduce that
W=0—v (2.19)

satisfies
_/@O.QZ(O,.) dy—/ /ﬁ~8t<§dy+//\/l(@—i—vS,VQE—FVvS):Vchy
F Ry JF F
—|—/ M(ﬁ—i—vS,VfE—}—Vvs)-(ﬁdy—Zu/ D®®) : D(@) dy
F F
_/B(@—l—vs,zﬂ—l—vs):V@dy—/B(@—i—vs,ﬁ—i—vs)-&dy—i—/(US(X)US):VQde
F F F
0 /24 41/2
- 9:¢(0, - - 8:€,0 di A A di
(@0c00), - [ (0gac), ax [ (aPeai),

- (e arco), - [ (Weaa), a= [ [ [0xr6Tex) -] gaya @a0)

Hs
where
~0 def ~0 S 0 def 0 S 0 def 0
wo =0 —v, G =m-n, & =N (2.21)
Now, we can decompose the above operators in a linear part and surlinear part. First, we define the sets
of type Q;(au,...,ar) where i,k € N. They are the sets of polynomials in the variables au, ..., ar and with

coefficients that are Lipschitz continuous functions of y € R? and of ¢ and that vanish in F\Vy (see (2.4)),
and such that the degree of its nonzero monomial of lowest degree is greater or equal to i. For instance, we
can write

S (9,,60)°(6)°
1+ (0,,0)€ 1= (0y0)€ + 177 GL0E
Using (2.7), we deduce from the above relation that
1 1
m_l € Q). m_l+(ay29)€€ Q2(8).

Similarly,
€09 + g7 (9€)(0:6) € Qa(€.0..01€)

We also need to consider the partial degree of such terms: for instance if we denote by r = 7(&, 9s&, 9:£) the
above polynomial,
degor =3, deggr=1, deg;,r=4, deg zr=1

The last expression means the total degree with respect to the first and the third variables.
For the linear part, we also introduce a notation: we write

Yo, ..., ax)

the linear mappings that depend on y in a Lipschitz continuous way and that vanish in F\V, (see (2.4)).
From Lemma [2.2] and Lemma [B-I]} we obtain

divd = — div(v®2 (¢, 0.¢)0%) — div(r@ (¢, 0., @)), (2.22)

where
T (i
r@ e Q2(a1, a2, a3,04), degz ) <1

To avoid a linear operator in the divergence condition, we consider another change of variable:
def ~ s
w= w4y (& 0:E)v”. (2.23)
Then relation ([2.22)) transforms into

divw = div(r (&, 056, w)),
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and relation (2.14)) transforms into (see Lemma |B.1))
w= (@) +rB(€,0.6,w) on Tu,

where
r® ¢ Q2(o1, a2, a3, 04), degg 4 &< (2.24)

In what follows, we introduce the new state variable
zZ= [w, 57 8155]

and we write
Fain(2) = div(r® (¢, 0.6, w)). (2.25)

Then the divergence condition for w can be rewritten as:

divw = Fyiv(Z) in F. (2.26)
In order to rewrite the boundary condition for w we write

Fy(Z) = rB (¢, 0.6, w), (2.27)

and we define
T = T,sM € L(L*(0,1), V°(0F)), (2.28)

where M and T),s are defined by (T.12) and (L.13). Note that the fact that the range of T belongs to V°(9F)
follows from the following calculation:

-ndy = s -ndy = ' se2-fsssel e2)ds = ' s)ds = 0.
/N(Tf) dy /(T ME) - ndy /OME() (=0 (s)ex + e2)d /OME()d 0

Moreover, since the localization operator = is defined by (1.9 from a smooth cut off function p supported
in Ty we can abusively consider Z as an element of £(L?(F)) and (1.9) becomes:

E(u) € pu — (/ ou - nd’y) omn. (2.29)
oF
Then the boundary condition for w can be rewritten as
w="T(0&) + F»(Z) + Z(u) on (0,+00) x F. (2.30)
Next, (2.20) is transformed into

[t soay- [ [waga- [ [ P0go.00% 5
F Ry JF Ry JF

+/ M(w+(1 — DS Tw + V(1 — D)%) : VF dy
F
+/ M(w+(lf’y)vS,Vw+V((1f'y)vs))-g'ﬁdyf%// D) : D) dy
F F
_/fB(W+(1—7)vS7w+(1—’y)vS)-s5dy

~ [ BB+ 1 - 10wt (1-9B)) Vg dy+ [ (05 @0 VEdy
F F

- (8.000.9), - /IR+ (ac.0c) dt+/R+ (a2 A1),

- (AP ay), - [ (aeaac) a= [ [ [0 o) -] gy e
+ S +

S
where w® & @° + 'y(f?, 9562)v°. In the above expression, we have written *y instead of 'y(f, 9s€) to
shorten the formula.

11



From Lemmas [B:2} B4 we can write the above relation as
—/wO-G(O,-)dy—/ /w-@tﬁdy—&—ﬁj/ /D(w):D(@)dydt
F Ry JF Ry JF
[ [P 0.600609) + 1B, 0606016 w. V)] T dy
Ry JF
n / / (16, 0.6,0,.8,0:6,00,6) + 1B (€, 0.8, 0,8, 016, 00w, V) | - 5 dy dt
Ry JF
—/ /(w®v5+vs®w):V¢dydt
Ry JF
_ (0 . _ 1/2 1/2
(.00, ))Hs /R+ (atg,atc)Hs dt+/]R+ CHEN g)HS dt
_(A1/240 41/2 . 1/2 1/2 .
(4y2e0, a3 g(o))HS /]R+ (4%, A} 8t<)7‘¢5 dt =0, (2.32)

where

r® (¢,0,€, 0.8, 006, w, Vw) = r®(¢,0,¢, 0,06, 0.6, w) + 1@ (£, 0.6, V) + rB (¢, 0,6, w), (2.33)

r® ¢ Qa(a,...,a6), degz, r® <1, degsg B <1, (2.34)
@ ¢ Qa(a1,...,a6), degy ¢ @ <1, (2.35)
rD € Qs(an,...,au), degy,r@ <2, (2.36)

and

7" (57 8557 83557 atf» (9ts€7 w, Vw) = T (5: 8357 (9335, w) + T@) (5: 835, (9335, Vw)
+ 700 (£, 0.¢,0.06, 006, w) + rED (€, 0.8, 0,8, 0106, w) + 1T (€, 0,6, 0us,w),  (2.37)

r® ¢ Qa(an,...,as5), degs @ < 2, deg,; r® < 1, (2.38)
B ¢ Qa(ai,...,ar), degs 2 <1, deg, - 2 <1, (2.39)
I ¢ Qs(ai,...,a6), deg, I < 1, deg, I < 1, degsg O < 1, (2.40)
PO ¢ Qo(aa,...,a6), degs, r@ <1 deg5,67" <L (2.41)
2 e Qa(au,...,a5), degg 2 <1, degys 12 <9 (2.42)
In what follows we write
F(Z) < —r @ (£,0,6,05¢, 0,8, 0156, w0, V), G(Z) Y —rB (€, 0,¢,04:8, 0,6, w, Vu), (2.43)

and we write fy and 'y@ as operators acting on & = £ and & = 0:£, namely
AV, &) = 1B (61,060,006, 8)  and AP (6,6) =1 0(6,0.6,006,6,0.8). (244)
Then (2.32) becomes

—/}_w0~§5(0,~) dy—/RJr/Fw~8tfﬁdy+2l//R+/FD(w):D({E) dy dt
+/R+/FA(1)(§,6¢§):V$dy dt+/R+/FA(2)(§,8t§)-§5dy dt—/RJr/F(w@)vS—ka@w):V@dydt
- (B.0c0.9) - / (2rc,0i¢) e+ / (4l A1%¢) ar— (4% 4Y%()
s + s + s s

7/R (A;/Zg,A;/Qatc)H dt:/R /FF(Z)-(ﬁJrG(Z):V(ﬁdx dt. (2.45)
+ S +
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Hence, using standard arguments, (2.45) can be rewritten as the following dynamical system: for any
(¢,¢) € CHF) x C*([0,1]) N L3(0, 1) satisfying
divp=0 in F
p=T¢ on OF (2.46)
(=0s(=0 on {0,1},

we have

d
—/w-gody+2y/ D(w) : D(y) dyf/(w®vs+vs®w):V<pdy
dt |z F F

+/ A (€,0:8) : Vo dy+/ AP(€,0:8) - ¢ dy dt
F F

d
+ a(atg,g) Wt (A;/zatg A;/QC)HS n (AVQ&AVQC)HS _ /FF(Z) o+ G(Z): Vi dy,
6(0)=¢ and &(0)=¢&, w0)=w’ inF, (2.47)

satisfied for all (¢,¢) € H(Q) x H?(0,1) verifying (2.46). The main goal of Sections 3, 4 and 5 will be the
construction of a solution of the dynamical system (2.47)), (2.26), (2.30).

Finally, the strong formulation of the system (2.47)), (2.26)), (2.30)) is

dew — div T(w, q) — div A (€, 0:€) + AP (€, 0:¢)
+(@° - VIw+ (w - V)v° = F(Z) — divG(Z) in (0,400) x F, (2.48)
divw = Fuiv(Z) in (0,400) x F, (2.49)
w="T(0&) + F»(Z) + Z(u) on (0,+00) x dF, (2.50)
Oue€ + A20i6 + Ar = ~T" (T(w, ) + AV (€ 9E)n ) + T°G(Z), L€ (0,400), (2:51)
&(0)=¢ and &(0) =&, w(0)=w’ inF. (2.52)

2.4 Properties of the linear operators =, 7', A, A

In order to study system (2.48)-(2.52)) we need to give some regularity properties of 2, T, AM A®),
First, observe that 2 € L(L?*(0F)) defined by (2.29) is self-adjoint and since OF is of class C'!,

=€ L(V(OF)), seo,1]. (2.53)

From a classical interpolation argument and ((1.16) we have that for any s € [0, 2], D(AT/Q) — H?*(0,1) N
L3(0,1) with moreover

H?%(0,1) N H3(0,1) N L3(0,1) for s € (5/4,2],
D(A?) =< HZ(0,1)NL3(0,1) for s € (1/4,3/4) U (3/4,5/4), (2.54)
H?*(0,1)N L3(0,1) for s € [0,1/4).

Next, we recall that T € £(L?(0,1), VY(0F)) is defined by (2.28) (and (T.12)), (T.13)). Moreover, it satisfies
(TE)r, =0 for all £ € Hs and

VEEMNs, [T¢llvowr) = ITElIL2rum = CllElIs- (2.55)
As a consequence, using , the regularity on n° and an interpolation argument, we can check that
Vs €[0,1/2], T € L(D(A}),V**(8F)). (2.56)
Finally, from and the regularity on n° we deduce that 7% = M T s satisfies
Vs €[0,1], T* e L(H*(F),H*(0,1) N L3(0,1)). (2.57)

In particular,
Vs €[0,1/8), T* e LH"(OF),D(A})). (2.58)
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We also underline that since T'(L2(0,1)) C V°(F) we have T*(n) = 0.
Finally, since A, A®® are defined from fy and ’y in ([2.44)) and since ’y and 'y are linear mappings
that depend on y in a Lipschitz continuous way we deduce:

AW € L(D(AY?) x Hs, (L(F)P?), AP € L(D(A)?) x D(AY"), L (F)), (2.59)
AN € L(D(AY*) x DAV, (H (F))>*?). (2.60)

In what follows we introduce the decompositions
A, 6) = AP (E) + AP (&), AP (&, &) = APV (&) + AP (&), (2.61)

The following lemma is dedicated to some regularity results for their adjoint operators.

Lemma 2.4. The following regularity properties hold:
(A0 e et (> Dy, (M) e L (F), M), (2.62)
(A0) e (' (72, DAy, (A®) e cm?(F), DA, (2.63)

Proof. First, siﬂce;y and 'y are linear mappings that depend on y in a Lipschitz continuous way and
that vanish in F\V, (see ([2:4)), there exist I'; € (W' (F))?*? i = 1,2, 3, supported in V, such that

ATDE = T1€ + T20.€ + T2dssk.
Its adjoint (A"D)* can be defined as an element of £((L?(F))?*?, D(A}’?)") through the relation

(DY 1y paprsy = [ €20 dyt [ oo w) dy+ [ Duseva s w) ay
(W e (L*(F)>?, £ € D(AY?)). (2.64)

Assume now that ¥ € (H'(F))**?) and & € D(A 1/2) Then by integrating by parts

79 (s)
/ 0ss6(T3: ) dy = 8535 U) dy —/ 0ss&(s (/S Ls(s,y2) : U(s,y2) dy2> ds
F n°(s)—a

/ 0.5 ( / (s + () s Wovga 4 7°(5) din ) s

s ars\ [0V 5, OV
/ag(( + (9 )872>.\1/+r3.(ay1+(65n )8y2)> dy.

In the above calculations we have used the fact that I's is supported in V, and that 9s¢ = 0 on {0,1}. The
above relation and (2.64) yield that (A®)*¥ € D(A;/*)" and moreover that

(ATD)" € L((H' (F))*), D(A)).

This gives the first relation of (2.62).
The three other relations can be obtained in a similar way. O

3 Operators for the linear system

3.1 General functional settings
This section is devoted to the study of the linear system
diw — div T(w, q) — div A (¢,8,6) + AP (¢, 0:6)
+(0° Vw4 (w-V)o® = F—divG in (0,400) x F,
divw = Fgiv  in (0,400) X F,
w="TE + Fy, + Z(u) on (0,+00) X IF,
ik + AsD€ + M€ = =T" (T(w,)n + AV (€, Bu&)n) + TG, ¢ € (0,+0),

~ o~ o~
=B W N
NN AN N

14



where here F, G, Fgiv and F} are given.

Let us remark that the results given in this section can be obtained for general operators Ay, Ay, T, A
and A®®. More precisely, we only need to assume that A; : D(A1) C Hs — Hs and Az : D(A2) C Hs — Hs
are positive, densely defined, self-adjoint and with compact resolvents and that D(A}/Q) — D(A2),

D(A}*) = D(4y%). (3.5)

Assumption is crucial in our analysis since it allows to invoke [I7] and to obtain the analyticity of the

semigroup generated by the underlying linear operator of system ({3.1))- @ (see Proposition below).

We suppose that T € L(Hs, V°(OF)) satisfies 7 (2.57), (2.56), (2.58), that (T€¢)r, = 0 for any £ € Hs.

Finally, the operators A, A® are assumed to satisfy (2.59), [2.60), [2.61)), (2.62) and ([2-63). Note that the

operators A1, Az, T, A and A® defined by (T16), (1.17), (2.28) and (2.44) satisfy the above conditions.
We still assume that Z € L£(L*(0F)) is the self-adjoint operator defined by (2.29). We need its precise

definition to obtain the adjoint of the control operator (see below). We recall that Z satisfies (2.53).
We first consider system 7 in the case FF =0, G =0, Fq;v =0 and F = 0:

Oyw — div T(w, p) — div AP (€1, &) + AP (&1, &) + (0° - VIw+ (w-V)o® =0 in (0,+00) x F,  (3.6)
divw =0 in (0,400) X F, (3.7)
w="TE& + =Z(u) on (0,+00) X IF, (3.8)
061 =&, te (07 -|-OO), (3'9)
ht + Aska + Ar&r = =T" (T(w,p)n + AV (&1, €)n ), ¢ € (0,+00). (3.10)
The above system is completed with the initial conditions

£(0)=¢ and &0)=¢€), w0)=w’ inF. (3.11)

We show that the system (3.6)—(3.11)) can be rewritten in the form
PZ' = APZ+ Buin D(A"), PZ(0) = PZ° (3.12)
(I-P)Z = (I-P)Dsru, (3.13)

where A is the infinitesimal generator of an analytic semigroup. This abstract form is quite standard in the
study of the stabilizability for the Navier—Stokes system, see [35].

We consider the space L?(F) x D(A}/Q) X Hs equipped with the scalar product:

<[w(1)7§£1)’551)] 7 [w(2)7€£2)7§§2)]> _ / w® . w® dy + (Ai/Qél)’Ai/QGQ)) + ( §1)7 éQ)) 7
F Hs Hs

and we introduce the following spaces:

def

H {[w,gl,gz] € L2(F) x D(AY?) x Hs ; w-n = (T€) - n on OF, div w =0 in f},
y & {[w,&,&] € HY(F) x D(AY*) x D(A}*) ; w = T¢& on OF, divw =0 in ]—'}.

Let us define P the orthogonal projection of L?(F) x D(A}/Q) x Hs onto H.

We have the following characterization of the orthogonal of H in L?(F) x D(A}/Q) x Hs.
Proposition 3.1. The orthogonal of H in L?(F) x D(A}p) X Hs 1is given by

H- = {[Vp,O, —T*(pn)] ; p € H'(F), / pdyzO}. (3.14)
f
Proof. Assume [w™® £ ¢M] € L2(F) x D(AY?) x Hs satisfies for all [w®, ¢ ()] e H:

[ w® g (47260, a%0) 4 (60,67, =0 (3.15)
F Hs H

S
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Then we have in particular that f}. w® . w® dy = 0 for all w® € V§(F) and the De Rham Lemma
guarantees that w) = Vp for some p € H(F) such that ffp dy = 0, see [42 Chap. I, Prop. 1.1 and Rem
1.4]. Thus, by plugging w") = Vp in (B.15) and integrating by parts, we obtain that

/ - (TP) dy+ (69,687) =0 and (470, 41%P) =0
OF Hs H

S

is satisfied for all [§§2>, éz)] € D(A}m) x Hs, which gives the result. O
Proposition 3.2. The orthogonal projection operator P : L?(F) x D(A}/Q) x Hs — H satisfies for s € [0,1]:

P e L(H®(F) x D(AY?T/%) x D(AY*), H* (F) x D(A}/*T/*) x D(AY*Y). (3.16)
Proof. First, by using we verify that for any [w, &1, &) € L2(F) x D(A}/Q) X Hs,

w w— Vp
Pl&| = &
&2 &2+ T (pn)

where the pressure function p € H'(F) obeys |. #P dy =0 and is solution to the Neumann problem:

glfL ST(T* () -n=w-n — (T&) -n on OF,

that is for all ¢ € H'(F) such that [, q dy =0,

{ Ap =divw in F,

/f Vp-Vq dy + (T*(Im)aT*(qn))

From (3.17)), we deduce that
IVPlLzcr) + 1T (pn) s < Clwllez ) + [12llns ),

from which, we obtain (3.16|) for s = 0.
For s = 1, we take [w, &1, &) € HY (F) x D(A‘;’/‘l) X D(Ai/él). Then, we deduce from (2.56) and from the
C"! regularity of OF that (T€2)-n € HY?(dF). Similarly, from (2.56) and ([2.57) we get

T(T*(pn)) -n—w-n € H'/*(8F)

- /F w- Vady — (&.7"(n) . (3.17)

Hs Hs

and from the regularity of OF and standard elliptic properties of the Neumann problem we deduce that
Plw, &1, 6] € H'(F) x D(A4*) x D(A").
Then the conclusion follows by an interpolation argument. O

As a consequence, since P is self-adjoint on #, a duality argument yields the following result.
Corollary 3.3. The orthogonal projection operator P : L*(F) x D(AVQ) x Hs — H can be extended as an
operator satisfying for s € (0,1]:

P e L(H*(F) x D(AY?73/%) x D(AY*Y H*(F) x D(AV27/%) x D(AY*)). (3.18)

3.2 The operator A

First, we define the linear operator Ag : D(Ao) C H — H as follows: we set
def

D(Ao) Zvn [Hz(}') % D(A;) % D(Ai”)], (3.19)

and for [w,&1,&] € D(Ao), we set

vAw
o |w
A 6| & &2 (3.20)
62 —A1§1 — A2€2 — T’)k (QZ/D(U))TL)
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and _
Ao = PAy. (3.21)
Proposition 3.4. The operator Ao defined by (3.19)—(3.21)) is densely defined with compact resolvent and

it is the infinitesimal generator of a strongly continuous semigroup of contractions on H.

Proof. Standard calculation gives, for all Z € D(Ay), (AoZ,Z) < 0 which implies that A is dissipative.
Then, we show that (A — Ap) is onto for some A > 0: assume F = [f,g,h] € H, we have to prove the
existence and the uniqueness of Z = [w, &1, &2] € D(Ap) such that

Aw—-—vAw+Vg=f inF,
divw =0 in F,
w="TE ondF, (3.22)
A — &2 =g,
Ao + Asés + A1& = —T" (T(w, q)n) + h.

Let us consider a variational formulation associated to (3.22)): find
[w,€2] € V2 {[w, &] € H'(F) x D(A}?) ; divew =0, w = T¢z on 9F }, (3.23)

such that for any [, (2] €V,

A (/ w - @dy + (52,(2) ) +211/ Dw : Dy dy + (A§/2€2’A;/2<2)
F Hs F H

s

Aareara), = [ 1o (ue), - L), e

S

The Riesz theorem gives the existence and uniqueness of [w, 2] € V satisfying (3.24). Taking (2 = 0 in
and using the De Rham theorem, we obtain the existence of ¢ such that (w,q) is the weak solution
of the Stokes system (the three first equations of (3.22)). From (2.56), we deduce T¢, € V¥/2(9F) and
thus, since f € L?(F), standard elliptic results on the Stokes system give w € H*(F) and ¢ € H'(F). In
particular, T(w, ¢)n € H/?(8F) and thus T* (T(w, ¢)n) € Hs.

We write £, = A7 (€2 + g) and we use that (w, q) satisfies the Stokes system to transform into

(Waaa), =Nee), -(hea), - (T Cwon.a), +(he), .

S

for all ¢ € D(A}/?). Note that we have used the continuous embedding D(A}’?) < D(A3). The above
system implies that A1&1 € Hs and thus that & € D(A;). Finally, the fact that Ao is densely defined with
compact resolvent is straightforward. O

Proposition 3.5. The semigroup generated by Ao is exponentially stable on H.

Proof. To show the exponential stability of the semigroup, we use the classical result of Gearhart (see, for
instance, [31, Theorem 1.3.2, p.4]): since (e!*)s>0 is a Ch-semigroup of contractions on the Hilbert space H
(see Proposition [3.4)), then it is exponentially stable if and only if

iR C p(Ao), (3.25)

and
suﬁ || (i — A0)71|‘L(H> < 00. (3.26)
TE

Using that A generates a semigroup of contractions, we have (see, for instance, [32] Corollary 3.6, p.11])
YAEC, RA>0 RAJ(A—Ao0) |ze < L. (3.27)
In order to prove the exponential stability of (e!4)¢s0, we show the existence of C' > 0 such that:

VAEC, RA€ (0,1) [[(A— Ao) ) < C. (3.28)
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The above estimate yields the result: indeed, for 7 € R and § € (0,1), one can write the formula
(it — Ag) = (it + 0 — Ao)(I — 8(iT + 0 — Ag) ™).
Taking ¢ < 1/C where C is the constant in (3.28)), it yields (3.25)) and (3.26).

Now let us prove (3.28)): assume A € C with R\ € (0,1) and assume (A — Ao)[w, &1,&2] = [f,g,h] € H.

This relation can be written as (3.22]). Multiplying by [w, &1, &2], we first obtain

A (w2 ) + I€al3es + 141 €0l ) + 20 /F [Dwl” dy + ]| AY 6 s

< CIf, g, hllal[[w, &1, &2

(3.29)

Moreover, since 'y is a nonempty open subset such that w = 0 on I'p, we have the Poincaré inequality
lwllgr 7y < Cl|[Vw|lp2 (7). Combining this relation with the trace inequality, the Korn inequality and (2.55)),

we deduce that:
I€2113s < ClITé| 12005 < Cllwllin s < C / |Dw|? dy.
f

Then using the above inequality with we obtain
lwliz 7y + 1Tl /200 + €205 < CIIF g, hlllnlllw, &, 2]l
Combining the above inequality with Aé; = &2 + ¢g and yields
AP lIlBes + AP ITENR /205 < CIIF 9, kI3 + CIIL g, Rl w, €1, €25
Next, from the two last equalities in we obtain
Ar&r = =T T(w,p)n + h 4+ Asg — Ma& + Ag — N*€1.

Then by multiplying the above equation by &; and using D(Ai/Q) < D(A2) we deduce

1/2 1/2 1/2
1412611305 < © (I, p)nlly-1/2(05) ITE /2 0m) + Illacs I s + 1412 gllaes AT 61 s

+HIAT 2 Ellms M 16 llaes + Ngllaes IMI€1lles + |A|2||§1H?H$) :

The above inequality, (2.56) and (3.31]) yield
1/2¢ 12 2 1 2
1A &lls <C ||T(w7p)n||v—1/2(af)w +[ILf5 9, Bl + ILf, 9 Al [, €1, o]l ) -

Moreover, from the following Green formula

Yo e VI(F) / T(w, p)n - @dl’ = / div T(w, p) - pdy +/ 2vDw : Dody
oF F F

we deduce
2 2 . 2
IT(w, p)nlly-1/207) < C (lwlltr 7y + 11 div T(w, p)[If2(5))

and with (3.30) and the first equation in (3.22)) we obtain
IT(w, p)nlly 17205 < C (ILF, 9, hlllaell[w, €, €]l + I [f, 9 Pll3 + AP lwllizzm) -
Then combining this last estimate with (3.33]) yields
1412 €135 < C (IwllEeey + 1L g, WIE + IF 9 Bl lw, &, €2]l13¢) -
Moreover, this last estimates with (3.30) yields
iz e + I1€2l3es + 1147 *E s < C (IF 95 W15+ 11F 95 Al fw, &1, &2 1)
and it proves (3.28).
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Remark 3.6. Assumption (3.5)) is not used in the proof of Pmposition It remains true even if Az = 0.
We have the following characterization of the adjoint of Ag.

Proposition 3.7. The adjoint of the operator Ao is given by

D(A}) = D(A) (3.35)
and
vAp
®
G A1C1 — A2(e — T™ (2vD(¢p)n)

Proof. Equality (3.36) follows from an integration by parts and (3.35)) is obtained from regularity results for
the Stokes system as in Proposition [3:4] O

Proposition 3.8. For a € [0,1], the following equalities hold

D((—40)*) = [D(Ao), Hl1-a = [D(45), H]1-a = D((—45)"), (3.37)
where [-,-]. denotes the complex interpolation method. Moreover, we have
D((—A0)*) = [H‘“(f) x D(AYFHo/2) D(A;*”)] NH if ac(0,1/4), (3.38)

D((—A0)%)
- {[w,gl,gz] € [HQa(f) x D(AY>e/?) D(A‘f/Q)] NH; w=TE on af} if ae(1/4,1). (3.39)

Proof. Relations are consequences of D(A{) = D(Ap) and of the maximal accretivity of —Ao, see [11],
Prop. 6.1, p170].
To prove the last two relations, we introduce the Dirichlet map defined by Do(£2) = z where z is the
solution of
—Az+Vnr =0 in F,
divz =0 in F,
z = TE& on OF.

Using (2.56) and standard result on the Stokes system, we deduce that for any « € [0, 1],

DoeL (D(A‘f/Q),HZQ(f)) .
It is clear that
D(Ao) = {[w,gl,gz} € H(F) x D(A1) x D(AY?) ; w— Doty € V%(Q)}

and that
H = {[w,&1,&] € L*(F) x D(A}) x Hs ; w— Do € VO(F) .

More precisely, [w, £1, &) — [w — Do&e, &1, £2] is an isomorphism from D(Ap) onto V3(Q) x D(A;) x D(A}/Q)
as well as from H onto V9 (Q) x D(A}/Q) x Hs. We deduce by interpolation that for all « € [0, 1]:

Do), Hi-a = {[w,€1,62] € H 3 (62,6) € D(AY*H%) x D(AY?), w = Dot € [V3(F), Va(Fli-a | -
Then the conclusion follows from 7 from
[V3(F), Va(F)li-a = [H*(F) N H(F), L (F)l1-a N V3(F)

(see [22]) and from the characterization of this last interpolation space (see [25]). O
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Corollary 3.9. The following continuous embedding holds:
D((~Ao)®) « H**(F) x D(AY*"**) x D(A?)  if a€[0,1/4). (3.40)
Proof. First, from we deduce that for a € [0,1/4),
P € L(H*(F) x D(A;7/%) x D(A}/?), D((~ A0)™)).
Then for X € H and Y € L?(F) x D(Ai/Q) x Hs we have

(X, Y) = X, PY) < [Xllo-a0)ey [FY (- a0)2) < ClXlD((-a0)2) Y |20 () w pral/2+0/2) wpac/2y-

Then it follows,
||X”H2a(f)'xD(A}/Q*”/%xD(A‘;/Q)f < ClX|p (- a0y

and we conclude with a density argument. O

We recall a classical result for analytic semigroups (see [32, Thm 5.2, p.61])

Lemma 3.10. Assume A is the infinitesimal generator of a strongly continuous semigroup on H with an
ezponential growth lower or equal to zero i.e. sup,s, e < +oo. IfiR C p(A) and if there exists Co > 0

such that,

, - C .
17 = A7 Y| 20y < ﬁ (r €RY), (3.41)

then (et4) is an analytic semigroup on H.
We recall the proof of this lemma for sake of completeness.
Proof. First we have 0 € p(A). Assume X € C. We write
(A—A) = (1SA— A) Td+RA(ISA — A) 7).

Assume S\ # 0. Then from ([3.41])

. - 0
1GSA = A) " e < SN
Therefore, if
o~
|RA| < aM (3.42)
Co

for some a € (0,1), then (Id +RA(iSA — A)~') is invertible and

1
Loy S 1—a’

—1

| (@ +RAGSA - 4)7)

Thus any A satisfying (3.42)) belongs to p(A) and satisfies
<
Al

Since (etA) is a strongly continuous semigroup on H with an exponential growth lower or equal to zero,
for X such that RA > 0, we have X € p(A4) and

A=A zap <

_ C
_ 1 < =
(A =A) "z < T

see [1I, Thm 2.5 p 101]. If moreover,
RA >

N2
a77

Co

then we deduce
<

(A= A)Hzm < o
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Thus there exists 0 € (0,7/2) such that
p(A) O z“:ef{xecc; larg \| < g+5}u{0}

and c
A= A) ey < o (A ex\{o}).

Applying [32, Thm 5.2, p.61], we deduce that (') is an analytic semigroup. O

Proposition 3.11. The operator Ao defined by (3.19), (3.20]), (3.21) s the infinitesimal generator of an
analytic semigroup on H.

Proof. We apply Lemma We already know from Proposition that iR C p(Ap). For 7 € R*, we
consider the equation (i7 — Ag)Z = F € H. Setting Z = [w, {1,&2] and F = [f, g, h] we can write

iTw—vAw+Vg=f inF,
divw =0 in F,
w="TE onOF, (3.43)
it&1 — &2 =g,
itéa + A2l + A1&r = =T (T(w, g)n) + h.

Multiplying the first equation by w and performing an integration by parts we obtain:

ir ([ WPy + 1@l ) 420 [ 1Dl ay+ 145 6l + (06,6) = [ pwas (he), . Ga
F F Hs F H

S

Next, using & = i7€1 — g we deduce

( / oldy + 162130 — ||Ai/2§1||%s) Y / Dwl? dy + | A6
F F

_ /ff.wder (h,gg)ﬂs n (A}/le,A}/Qg)H . (3.45)

S

Then multiplying by 7 and taking the imaginary part of the above equation first gives:

7P lw, &1, &2113 = 207 P 1 A1 26 13 + S, 9. b] 7w, &1, €],
and with the Cauchy-Schwarz inequality, we obtain:
7P lfw, &, &015 < AP IAY € + (11F 9, R 1 (3.46)

We now consider the equation of the structure (the last two equations of (3.43)): since the dissipation (the
term A2&2) is sufficient, the corresponding system is parabolic. More precisely, since A is a positive, densely
defined, self-adjoint operator on Hs with (3.5, Theorem 1.1 in [I7] guarantees that

7114 %€ llaes + l1€allres) < CUT™ (T(w, @)n)|ns + 141 ?gllres + 1hlls)- (3.47)
Then by combining (3.46)), ([3.47) and the boundedness of T* : L?(0F) — Hs we deduce that:

I7llfw, &, &]lln < C (IT(w, p)nllLzor) + £ 9, hlll) - (3.48)

In order to remove the term ||T(w, p)n|lL2p7) in the above estimate, we first use the trace theorem and
regularity results for the Stokes system, for € € (0,1/4):

IT(w, p)nllL2o7) < C(l| div T(w, p)llgazeF)y + [1TE2llve-—2¢07))

and then with the first equality in (3.43)) and the boundedness of T : D(A}/Q_E/Q) — V272(9F) we get

IT(w, p)n|lL2ar) < C (”fHL2(]-') + |7l|wll ze (7)) + H§2HD(A}/2—6/2)) . (3.49)
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Combining the above relation with & = i7§; — g we deduce
1T, plaom < C (ke + gl sz, + Irlliwll gy + €l sz ). (3:50)
Now let us prove that for € € (0,1/4),

lwll g2 (7)) + ”51”13(,4}/2*6/2) < Ofl[w, &1, &]ll(p((—a0)e)) - (3.51)

Assume (g, (1) € H**(F) x D(A1/2+6/2) with € € (0,1/4). Using Propositionand Proposition we
have P[p, (1,0] € D((—Ap)¢). Then we can write

1/2 1/2
‘/ngody—i— (Al glaAl gl) ‘ ‘ [’LU 51752 [SO’CM DLQ(]‘-)XD(Al/Q)X’HS

- |<[’LU é‘hgﬂ [SD C170]>H|
< w, &1, 2]l (= a0))) IPL#, €1, O]l D((—A0)e))

N

Cllfw, &, &lllo-anery (I¢lmzer) + IGulpgp/zerz))
Consequently, we deduce and combining it with yields
IT(w, p)nllr2 oz < CUIS g, hlllw + 711 (= Ao) ™ [w, &1, 2] ll34).-
The above relation and ({3.48) imply
(7II[w, &1, &a]ll2 < CAUTII(=A0) ™ [w, &1, 2]l + [I[f g, All3).-
Recalling (it — Ag)Z = F, this can be written
llim(ir — Ao) ™" Fllse < C(llir(=A0) (it — Ao) " Flla + |Fl3). (3.52)

Thus, remarking that (—Ao) ™ (it — Aog) 'F = (it — Ao) "' (—Ao) " °F, by using (3.52) with (—A) °F instead
of F, we deduce that

i (i — Ao) " "Flln < C(llir(—=A0) (i — Ao) " "Fllae + | Fll30).
Then by iterating the argument we finally prove that for all n € N* there exists C,, > 0 such that

llir (i — Ao) " Fllse < Cu([lim(—A0) ™" (iT — Ao) "' Fll2 + [|F|0),
and for n > 1/e, the above relation with i7(it — Ag)™'F = Ao(it — Ag)"'F + F and finally yields
|liT(i7 — Ao) "' F||2 < C||F||2 which gives the result. O

3.3 The operator A
Now we define the operator A of our system:

D(A) =V [HQ(]-') x D(Ay) x D(AW)] , (3.53)
and for [w,{l,fg] € D(A), we set

vAw +div AWM (&,&) — AP (6, &) — (0F - V)w — (w- V)vd

w
Alg| & &2 (3.54)
& —A1€1 — As&s — T*(2vD(w)n + AW (&1, &)n)

and ~
AL PA, (3.55)

where P : L2(F) x D(Al/Q) x Hs — H is the orthogonal projection operator.
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Proposition 3.12. The operator A defined by (3.53), (3.54), and (3.55) is densely defined with compact
resolvent, and it is the infinitesimal generator of an analytic semigroup on H. Moreover, the adjoint of the
operator A is given by D(A*) = D(A) and

vAp+ (0% V) = (Vo)
72 S (R R ST AP I
= A1G — Asl — T (2vD(p)n) — (A(1’2))* (V) — (A(2‘2>>* ()

Proof. We write
A=Ay + A4,
where Ao is defined by (3.19)), (3.20), (3.21) and is the infinitesimal generator of an analytic semigroup
on H (Proposition [3.11). Relations (2.59), and combined with Proposition yield that
D(A,) C D((—=A0)Y?). Using a perturbation argument (see, for instance, [32, Corollary 2.4, p. 81]), we
deduce the first part of the Proposition.
To characterize the adjoint of A, assume [w, 51,52] , [tp, (i, Cz] € D(A) and we observe that:

(Afw, €€l [0, G Gl = (.61, &), A3 e, Gal) = (T7 (A0 (€, ). G2)

" /f (aivA® (€,6) AP (€1,6) — 0 V)w = (w- V)o¥) o dy. (3.57)

Thus
(Alw, &, 6], @, G, C)) = ([w, &, &), A [so,cl,cz])—/ AW (€1,6) : Vo dy—/ AP(&1,6) - ¢ dy
F F

—|—/ ((vs V) — (Vvs)*ga) ~w dy.  (3.58)
_F
Here we have used that v° = 0 on I's;r and ¢ = 0 on I'g. Using (2.61)) we deduce the result. O

Let us fix Ao > 0 large enough so that Ao — A is positive and (Ao — A)® is well defined for o € (0,1). We
deduce from Proposition and similarly as for Proposition the following result.
Proposition 3.13. For a € [0, 1], the following equalities hold
D((ho = A)%) = [D(A), H]1—a = [D(A"), H]1-a = D((Ao — A")%), (3.59)
In particular, D((Ao — A)%) = D((Ao — A™)%) = D((—Ao0)%) is characterized by (3.38) and (3.39).

Proof. Equalities (3.59)) are consequences of D(A) = D(A*) and of the maximal accretivity of A— A for A > 0
large enough, see [I1, Prop. 6.1, p170]. Note that to obtain ((A — A)Z,Z) > 0 we have to control the terms

coming from AD), A® and this can be done by using (2.59)), (2.60) and (2.63). In particular we use the fact
( ) 2.63

that A2 € L(Hs, (H'(F))') which follows from (2.59) and with an interpolation argument. O

3.4 The operator B

Next, we introduce the Dirichlet operator D : VO(OF) — L2(F) x D(A}’?) x Hs defined as follows: for
u € V(F) we denote by Dru = [wy, &1,4 &2,4] the unique solution of

Aow — vAw — div AW (&1, &) + AP (&1, &)
+(@% Vw4 (w-V)o® +Vqg = 0 inF,
divw = 0 in F,
(3.60)
w = T&+E(u) ondF,
Mé—& = 0,
Xo&2 + Ar€r + Aslo + T*(T(w, ¢)n + AV (€1,&)n) = 0.
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Proposition 3.14. The mapping Dr defined above satisfies the following boundedness property:

Dy € L(V*(OF), H* 3 (F) x D(AY5/3) x DAY YB)) se [—% %} . (3.61)

Proof. To obtain (3.61) it suffices to prove it for s = 1/2 and s = —1/2 and then use an interpolation
argument. We first consider the case s = 1/2 and use a lifting argument: according to [, Cor. 3.8] there

exists z € H'(F) such that divz = 0 in F, 2 = Zu on OF and satisfying ||z|lg: ) < C||u\|v%(af). Then
setting w = w + z, we see that (3.60|) writes
w oz +vAz— (0 V)z— (2 V)o°
(Mo —A) |&]| =P 0 cV. (3.62)
& —T*(2vD(2)n)
By definition of A, there exists a unique [@, 1,&] € V € HY(F) x D(Ai’/‘l) X D(A1/4) solution of (3.62)).
To prove the case s = —1/2, we recall that in that case Dru is defined by duality as follows: for any
[£.az.bs] € L3(F) x D(A)) x Hs,
(Dru, [f,az,by]) = —(u, E(T(e, W)”))v—lﬂ(a]:),vl/?(a]:)u (3.63)

where [p, €, (] € D(A*) and 7 € H'(F) such that [, wdy = 0 satisfy

X —vAp+ (Vo) o — (v® - V)p+Vr = f inF,
dive = 0 inF
o = TG ondF,  (364)
NG+ G+ AT (AMD) (V) + 471 (A2D) (9) = ay,
Moz = A1G + AaGa + T (T(p, i) + (AT2) (V) + (A2D) (9) = by,

Using (3.56|), we see that system (3.64]) can be written as
(Xo — A%)[, C1, C2] =P[f, ay,bf].

Then for any [f,as,bs] € L*(F) x D(A}’?) x s, there exists a unique [, C1,C2] € D(A*), as well as a
corresponding pressure 7 € H*(F) such that f 7 mdy = 0, solution of the above equation. Moreover, we have
from standard trace inequalities and Stokes regularity,

1T Tl g ey < I 1Bl a2

which yields the result for s = —%.

Next, we define the input operator

B:V%dF) = [D(A")], Bu= (Mo — A)PDxru. (3.65)
Proposition 3.15. The operator B defined by satisfies:

(Mo — AT Be L(V(OF),H), ec (0, i) . (3.66)
Moreover, the adjoint of B is defined by

B” [¢,¢1,62] = —E(T(p, m)n), (3.67)

where © € H*(F) satisfies Jrmdy=0 and
—vAp + (Vo) p — (v° - V)
0 |=-(-P G+ AT (AM) (V) + A7 (ACD) (@) . (3.68)
=T () —A1G+ AsGe + T (2D(p)n) + (A1) (V) + (A22) ()
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Proof. The regularity property (3.66) is a direct consequence of Proposition Proposition and of
(3.61)). The characterization (3.67) follows directly from (3.63]). O

We are now in position to deduce formulation (3.12)-(3.13)) from (3.6))-(3.10)) and (3.11)). First, since we
have Z — Dru € ‘H we have (I —P)(Z — Dru) = 0 which implies that Z satisfies (3.13). Moreover, assume

that Z = [w, &1, &2] is a regular solution of (3.6])-(3.10) and assume that ® = [p, (1, (2] € D(A*). We multiply
(13.6) with o, (3.9) by ¢1 and (3.10) by (2. Then, after some integrating by parts and using (3.13)), we obtain

%(PZ(t),@) — (PZ(t), A*®) = (u(t), B*®). (3.69)

Since the above equality is satisfied for any ® € D(A*) we obtain the first equality of (3.12]).

4 Feedback Stabilizability of the linear system

4.1 Stabilizability of the homogeneous linear system
The goal of this subsection is to prove, for a fixed rate of decrease o > 0, the existence of a feedback control

No

u(t) = ; (/F w(t) - pjdy + (A}/le(t),Ai/QQ,j)Hs + (52(75)7C2,j)ﬂ$> v; (4.1)

such that solutions of — tends to zero as t — +oo with an exponential rate of decrease o > 0.
For that, we are going to show the existence of families (¢;, (1,5,C2,;) and v;, j = 1,..., N, such that the
underlying closed-loop linear operator of — with generates and analytic and exponentially
stable semigroup of type lower than —o (see [I1}, I1I-1, (2.8) and Cor. 2.1]). It then permits to deduce results
for nonhomogeneous system — that are used in the next subsection to construct solutions of the
nonlinear system - with a fixed-point argument.

Proposition 4.1. For o > 0, there exist Ny, € N* and families [¢;,(1,5,C2,5] € D(A*) and v; € V(9F),
j=1,...,N,, and a corresponding feedback operator Fy : H — V2(0F) defined by

No

Folw,&1,&] =) (/Fw “pidy + (A}/le,A}/le,j)Hs + (52,(2,;‘)HS) v; (4.2)

Jj=1

such that the linear operator A, o4 4 BF, with domain D(As) & {Z ¢ H | AZ + BF,Z € H} is
the infinitesimal generator of an analytic and exponentially stable semigroup on H of type lower than —o.
Moreover, for a € [0,1] we have D((—A,)®) < [H2*(F) x D(AY?T/?) x D(AY*)| N H and D((—AL)*) =
D((Ao — A*)*), and for o € [0,1/4) we have D((—A%)*)') < H>**(F)' x D(A/>7/2) x D(AS/?Y.

Proof. The proof of the above proposition relies on the Hautus-Fattorini stabilizability criterion, see [5]
Theorem 1] or [§]. Since A has compact resolvent and generates an analytic semigroup on H, and since
B is relatively bounded with respect to A, then the homogeneous linear system is stabilizable by finite
dimensional feedback control for any rate of decrease if and only if the following criterion is satisfied for all

AeC:
AP - A" ®=0 and B'®=0 =— & =0. (4.3)

Assume ® = [y, (1, (2] € D(A™) satisfies the two first relations (4.3]). From (3.56]) and (3.67)), it implies that
Xp —vAp + (Vo) o — (v° - V)p+Vr =0 in F,
divp =0 in F,
v =T¢ ondF, (4.4)
Mo+ G+ AT (ACD) (W) + a7t (ABD) (0) =0,
Mz = A1Gr + AaGa + T* (Tlp,mm) + (A02) (V) + (A22) (¢) =0,
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T, T)n = ( /8 Mpmn: nd’y) on on OF. (4.5)

In what follows we denote c(p, 7) < Jo7 PT (@, m)n-ndy. Combining and the classical uniqueness result

of [21] for Stokes type systems (see also [8, Appendix A]) we deduce that ¢ =0 and 7 — c(p,7) =0 in F. It

implies in particular that T(¢, 7 — ¢(@,7))n = 0 on OF and T'(2 = 0 on OF. Using (2.55), we deduce that

¢2 = 0. Moreover, since we have T*(n) = 0, from T(p, 7 — c(¢,7))n = 0 we deduce T*(T(p,7)n) = 0 on

OF. Then using the last equation of we obtain A;(; = 0 and then {; = 0. We have obtained ® = 0.
Then the general framework of [5] 8] can be applied and for a given o > 0, there exist families

[¢),C1,55C2,5] € D(AY)

and v; € A (0F), 7 =1,...,N,, and a feedback law of the form such that the conclusions of the
proposition hold. Moreover, each v; can be chosen in V2(9F). This comes from the fact that the set
of admissible families (v;) is a nonempty open set of (V°(8F))Ne (see 5, Theorem 5] or [8, Theorem 6]).
Indeed, if a family (%) is admissible then all families in a neighborhood of (%;) in (V°(8F))™e are admissible.
Then the conclusion follows from the density of VZ(8.F) in V°(dF).

Finally, the statements concerning D((—As)%) and D((—A})%) are obtained as in [6] and the statement
concerning D((—A%)*) then follows from (3.40). O

Remark 4.2. From the definition [&2) we can extend F, to an operator from L*(F) x D(A}/Q) X Hs to
V2(dF) by using the same formula [4.2). Moreover, since [p;,C1.5,Co,] € H, it yields that F, = F,P and
that F, =0 on H*. We can also extend F, as an operator from D(AL) to VZ(OF) by setting

No

Folw,é1,6] =Y ([w, &1, &, [95,Cis i) peas y pas) Vi

Jj=1

4.2 Stabilizability of the non homogeneous linear system
The goal of this section is to obtain regularity results for the following nonhomogeneous linear system:

dsw — div T(w, p) — div A (&1, &) + AP (&1, &)

+@° Vw4 (w-V)w® = F —divG in (0,+00) X F, (4.6)
divw = Fgiv  in (0,400) x F, (4.7)
w=Té& + Z(Fs([w,&1,&])) + Fy,  on (0,+00) x &F, (4.8)
0ié1 = &2, t € (0,+00), (4.9)
OyEa + Ao + Ar&1 = —T* (’]I‘(w, p)n+ AN (&, §2)n) +T*Gn, te(0,+00), (4.10)
with the initial conditions
£(0)=¢) and £&(0) =€, w(0)=w’ inF. (4.11)

In above settings we have extended the feedback operator F, to L2(F) x D(A}?) x Hs (see Remark
and F, G, Faiv, F} are nonhomogenous right-hand terms which play the role of the nonlinearities F'(Z),
G(Z), Faiv(Z), Fy(Z) in (2.48)-(2.51).

Suppose for the moment that (Faiv, F») = (0,0). By taking into account in formulation —
complemented with the nonhomogeneous right-hand terms F', GG, we deduce that the above system
with Fyiv = 0 and F, = 0 can be rewritten as

PZ = A,PZ+P(F—divG) in D(A™), PZ(0) = PZ° (4.12)
(I-PZ (I - P)DxF,PZ. (4.13)

Here we have used that F, vanishes on H*. The notation F' — div G means here the operator

def

(F—divG, [%Ch@DD(A*)/,D(A*) = (F.@)u1(ry mi(r) +/ G:Vedy ([p,¢,¢] €DAY)).  (4.14)
F

In what follows, we recall that we use the notation (2.1). We have the following result.
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Proposition 4.3. Assume [w°,&),€9] € L*(F) x D(A)/?) x Hs, F € L2(H'(F)), G € L2(L*(F)) and
(Faiv, Fv) = (0,0). Then system (4.6)-(4.11) admits a unique solution

[w, &1,62] € Wo(D((=40)"/?), D((—AZ)2)) + Ho(H' (F) x D(AT") x D(4))

and we have

||P[w7£1752}HWU(D((—AG)1/2),D((—A;)1/2)/) +1(1 - P)[w’51’52]”Hg(Hl(f)xD(Af/“)xD(A}/“))
< C (IF, Gz vy oy + IPL®, €9, €31 ae)

Proof. We write system (4.6)-(4.11) as (4.12))-(4.13]). By using (4.14)) we have

P(F — divG) € LZ(D((—AL)Y?)). (4.15)

Since A, generates an analytic semigroup on H, from maximal regularity results applied to equation ,
we deduce from and PZ° € H that PZ € W, (D((—A,)*?), D((—A%)'/?)"). Finally, from the definition
of the operator F,, from Proposition and from Proposition equality yields (I —P)Z €
H (H'(F) x D(AY) x D(A)). O

Let us now consider the case of non zero nonhomegeneous terms Fu;v and Fp. For that we need to
introduce a lifting operator for the divergence condition which is compatible with the feedback condition,
namely we set Laiv[g, h] = [w, &1, 0] with (w, &) satisfying

—divT(w,p) — divA® (£1,0) + AP (£1,0) + 07 - V)w+ (w- V)v© =0 in F, (
divw=~h in F, (

w==(F,([w,&1,0])) +¢g on OF, (4.18
(

Asr = =T (T(w,p)n+ AV (€1, 0)n)

To state regularity properties for Lgiv we need the functional framework introduced in [39]. For s €
[—1/2,2] we define

H}7 » = {(97 h) e H*(OF) x H°(F) ; (91, 1) s (or), 55 (0F) = /Fh dy} if 020,

Hy? - < {(g.h) e B (OF) x H(F) 5 (g1, Vysory,u—sor) = (b Vp—ory -} if o <0.

In what follows, we need another assumption than the ones introduced in Section [3:1} for some € €
(0,1/8):
v € DAL, AT Astllres < 1AV PE s (4.20)
Inequality (4.20) is only needed to prove (4.21)) for s € [—2¢,0) in Proposition below. Note that the
operators A1, Az defined by (1.16]), (1.17) satisfy the above condition. It is an easy consequence of (2.54]).

Proposition 4.4. Let e € (0,1/8) be given in (4.20). The mapping Laiv defined above satisfies:

Laiv € L(H) 27 HY (F) x D(A* T/ x {0}) s € [~2¢,2]. (4.21)

Proof. This existence and properties of Lq;, are obtained by a duality argument. First we consider [f, C{ , CQf ] €
L3(F) x D(4;"%) x Hs. From Proposition there exists a unique solution [p, (1, 2] € D(A™) of

_A:; [507 Clz CQ] = [f7 ({7 Cg]

Moreover we have the estimate

H[Qp» Ch CQ} HHZ(}")XD(Al)XD(Al/Q) < O”P[f: <{7 gg} HH (422)

1
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From (3.56) and (4.2)), it means that we have the existence and uniqueness of the solution of

No
—vAp+ (Vo) 'o— (v° - V)p+Vx = Zw/ vj - B [p,C1,Cldy+ f in F,
= oF
divep = 0 in F,
¢ = T¢ ondF,
* * No
G+ AT (A(l’l)) (Vo) + AT (A(Q’l)) (o) = ZCLJ’/ v - B*[ip,C1, Galdy + ¢
= oF
— A+ AsGe + (AD) (V) + (AC) ()
No
=-T"(T(g,x)n) + Z@,y‘/ v - Blp, G, Galdy + ¢
= oF

(4.23)
Using that [¢;, (1,5, (2,5] € D(A") and Proposition we deduce that the pressure y satisfies
vAp = (Vo*) o+ (v° - V) + f
Vx —1 (ran\* -1 (a2D)" f
0 =(I-P) —G2 = A (A ’ ) (Vo) — Ay (A ’ ) () + ¢ . (4.24)
—T" (xn) A1Gr = Az = T*2u(Dp)n) - (A2 (V) — (A2) () + ¢

We can assume x € L3(F) and in that case, using the Poincaré-Wirtinger inequality, Lemmaand (14.22),
we obtain

HXHHl(.F) g O”[fv le,C2f]||L2(.F)XD(Ai/2>XHS.

Note that x can be decomposed as x = m + p’ with =, pf € H'(F) N LE(F) defined by

vAp — (Vo) o+ (v° - V)p

VTr * *
0 |=u-p —Go = AT (AC) (W) — AT (ABD) (@) ., (425)
T (xn) A1 = Axe = T o) = (A2) (Vi) = (A%2) ()
and

fo f
0 =(1I-P)|c|. (4.26)

~T*(p"n) d

Now, let us assume that

.¢f ] € [B(F) x D(AY*/%) x D(A7?)]. (4.27)

From ([2.56) and (4.22)), combined with the above assumption and standard elliptic regularity for the Stokes
system, we deduce

lollazr2e 7y + Xl a2 (7) < CU1flla2e (7)) + 1B7 [, C1s Glllvo(zy + 1TCllgs /2426 (o7)
< C(||f||H25(]:) + H[f7 Cf’CQf}HLZ(}')XD(A}/Z)X’HS)'

Using the forth equation of (4.23) and (2.62), we deduce that (s € D(A1/2+5/2). Then combining (2.63)),
(4.20) and (2.58]) and the above regularity for (¢, x, (2), we deduce that (1 € D(Ai“ﬂ) with the estimate

ff
X[ 122 () + ”[‘P’Cl’42}||H2+2s(f>xD(A}“/z)XD(A}/”E/?) < Cllfs Cl’C2]”HZE(f)xD(A}/”E/z)XD(Ai/?)'
(4.28)
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We can now prove the well-posedness of (4.16)-(4.19) by a duality argument. First we rewrite this system

as
—divT(w,p) — div AP (&1, &) + AP (&, 86) + (v - VIw+ (w-V)o® =0 in F, (4.29)
divw=~h in F, (4.30)
w="TE + Z(Fs([w,&1,£2])) + g on OF, (4.31)
—&2 =0, (4.32)
Ay + A& = -T7 (T(wm)n + A(l)(flﬁz)n) ~ (4.33)

Assume now that [w, &1, £2] is a regular solution of the above system and [p, (1, (2] € D(A™) is the solution
(4.23). We multiply the first equation of (4.23)) by w and (4.29) by ¢. After some calculation, we obtain

([w &1, &) [f.¢], D) = - / Xhdy— / (T, x)n-g dy— / (E(T(p,x)n) + B[, 1, G2])-Falw, &1, &2] d.
F OF oF
(4.34)
From (3.67)), (3.68) and (4.25)), we have

B e, G, ] = —E(T(p, m)n).

Combining the two above relations with the fact that f}. hdy = fa}.g - ndy leads to

w6, 600, 1, ¢ D) = — / (x — k(g x))hdy — / (T(o, x)n + k(. X)) - g dy
F

oF

- / pn - E(FPlw, 6y, &) dy, (4.35)
oF

for any [f, le, d] satisfying (4.27) and where

def 1
k(p,x) = AT+ 17 </FX dy*/BFT(%X)"’"d’Y)~

In order to prove the existence and uniqueness of [w, &1, &] € (H?*(F)) x D(A}/%s/g) X D(Aim)’ satisfying
[@35), we proceed as follows: first there exists a unique [@, &1, &) € D(AZ/?) such that for any [f, ¢, ¢]] e
D),
SoE fof
<[w7 617 62]7 [f7 Cl 3 CZ ]>D(A8/2)’,D(AS/2)

= —((T(p, x)n + k(e, x)n, x — k(@, X)), (9, 1)) yg1/242 1426 p-1/2-20-1-20,  (4.36)
oF . F oF.F

where (¢, x, C1,C2) is the solution of ([{.23) associated with [f, ¢/, ¢J]. The existence and uniqueness for this
problem is a consequence of (4.28]).
Second, there exists a unique [w, &1, &) € (H2*(F)) x D(A;* /%) x D(AS'?)’ such that for any

[f,¢1,¢)) € H*(F) x D(A)/*1/?) x D(A]?),

f f>
w
<[ S8l G 1) oy pat/aer2) e pas/yy aase (a2 a2

== <(’H‘(§07 X)n + k(807 X)mX - k(907 X)) ’ (g7 h)>H1/2+2511+25 H_l/2-2e,-1-2¢
oF,F Hor 7
- [ o EE0.6.8) & (@437
oF
where (¢, x,C1,C2) is the solution of ([#.23) associated with [f,¢],¢]] and py is defined by ([#.26). The

existence and uniqueness for this problem is a consequence of ([#.28). Taking [f,¢],¢]] € D(AS/Q) in (4.37)
yields that p/ = 0 (see ([@.26)) and thus that

P[w7 517 52] = [{U\v 5\17 5\2]
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Consequently, [w, {1, &2] is the solution of (4.35) and we can define

Laiv : Hy /3725717 5 (H*(F)) x D(AY* /%) x Hs
as Laiv(g,h) E [w, &1,&] for any (g,h) € Hg]l_-{;-726’7172€, where [w, &1, &2] is the solution of (4.35). Using
(14.28)), from (4.37))-(4.36) we deduce that,

[ Laiv (g, ) 1/2-</2) < Cll(g, )l gy-1/2-26. 12 (4.38)
OF,F

||(H25(]-'))’><D(A1
Finally, assume ¢; € D(A}; /%) and set
1,6, f) = —F2B7[0,¢1, 0] + (0,0, A1 ],
Then, the corresponding solution of is ¢ =0, (2 =0 and x = 0. In that case (see ),

W% 0
B*[0,¢(1,0] = Z(7n), where 0 =({I-P)| 0 [,
—T*(ﬂ'n) A1<1

and since [;, (1,5, C2,5] € D(A%), pf = —7 (see ([#.26))). Consequently, ([#37) reduces to
(62, A1¢1) = 0.

Since the above relation holds for any (; € D(A}"LE/Q)7 a density argument implies &> = 0.

Now let us prove in the case s = 2. For that, we assume (g, h) € Hg/;;- and we use the elliptic
regularity for the Stokes system with nonhomogeneous divergence and boundary conditions. More precisely,
by performing the above calculations in the case ¢ = 0 we first obtain (w,&1) € L(F) x D(Ai/Q), and
from (2.59) we have in particular A (&;,0) € (L*(F))?*2. Then Stokes regularity result applied to system

[@16)-([4.19) yields w € H*(F). We also have div(T(w,p) + AV (&,0)) € L?(F) which guarantees that
(T(w, p) +AD (£1,0))n € V- Y2(F). Then (2.56) for s = 1/8 yields T* [(T(w,p) +AD (g, o))n] € D(AYBY
and from equation (4.19) we deduce & € D(Az/g). Finally, using again Stokes regularity results with the

fact that (w,&) € H'(F) x D(AY?) yields [@.21)) for s = 2.
The case s € (—2¢,2) then follows by interpolation. O

Using the lifting operator Lgiv, system (4.6)—(4.10), (4.11]) can be written as

Z = 7+ Law(Fy, Fa), (4.39)
PZ = A,PZ+P(F —divG) — PLaiv(Fy, Faiy)' in D(A™), (4.40)
PZ(0) = P(Z° — Lai(F5(0), Fain (0)), (4.41)
(I-P)Z = (I-P)DsF,PZ. (4.42)

In order to analyze (4.40]), we need the following proposition.

Proposition 4.5. Assume F € H;/QH(D((—A:;)&)') for some 6 € (0,1/2). Then, the solution of

W =A,W+F, W(0) =0 (4.43)

belongs to H;/QH(D((—AU)‘S)') N LZ(D((—A,)"Y?)) and satisfies
IWilar2+0 (o agysyy + IWlizo-anr2) S CIFlg1zes o ag)syy: (4.44)

Proof. First, since A, — ol is of negative type and is the infinitesimal generator of an analytic semigroup,
for any F € HX(D((—A%)®)) the solution of (£.43) satisfies

IWllL2 (p((=am)1-5) T W1 p(—az)sy) < ClF a1 p((-az)s))- (4.45)

Second, assume F € L2(D((—A%)%)). There exists a sequence (F,,) in Cl(#) that converges to F in
LZ(D((—A%)°)). We remark that the solution W, of ([#43)) corresponding to F,, satisfies

(W, —F,) = A;(W,, —F,)) + A, F,., (W, —F,)(0)=0,
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and using again the maximal regularity results, we find
W = FnllL2 (p((-a,)5)) < CllAcFnll L2 (p((—az)1+5y) < ClFnllL2 (o= a,)5))-

Thus, passing to the limit as n — +oo we obtain Wl 2 p(—a,yey) < ClFllL2(p((—a,)s)y)- Then we
conclude with (4.45)) and with an interpolation argument.

(I
Next, for € € (0,1/8) given in let us define the following functional spaces:
&= LIH(FY) x LA (F)) x [HY > (B, /37577 n L2 (my29)| (4.46)
G = (Y= (0 (F) x D(AY* /%) x D(AT*))] 0 [L2( (F) x DAY x DAY )] (a47)
Notice that yields the following continuous embedding:
G [H;/Q(ﬁ(f) x D(AY?) x 'HS)} N [cb,a(LQ(f) x D(AY?) % HS)] . (4.48)

We are now in position to state the main result of this section.

Corollary 4.6. Assume [w°,£),£9] € L2(F) x D(A}?) x Hs and [F,G, Fy, Faiy] € €. Then system (.6)-
(4.11) admits a unique solution [w,&1,&2] € G and we have

lw. &1, €allls < € (IIF, G, Fos Fanllle + 10, €2, 0y 1y mat 2y s ) - (4.49)
Proof. We write system —(|4.11|) as (4.39)-(4.42) with Z = [w, &1, &2]. Since
[Py, Fasv) € Ho/* ¥ (M3 27207 7%) 0 Lo (Y55
we deduce from Proposition that
Laiv(Fp, Faiv) € G.
Using Corollary and we deduce from the above relation
PLaiv (Fy, Faiv) € Hy* ™ (H**(F)' x D(A}*"*/%) x D(A;?)) N Cy0 (H).
Using Proposition Proposition and we deduce from the above relation,
PLaiv (Fy, Faiv) € HY*T5(D((—=A5))) N Ch0 (H). (4.50)
From the hypotheses on the initial conditions, and from the above relation, we obtain
P(Z° — Laiv(F5(0), Faiv (0)) € H, (4.51)

where Z° < [uw’, €7, €3).

Gathering (4.50), (4.51)) and applying Proposition and Proposition with the fact that
Wo(D((—45)"%), D((=A5)"?)) = Hy/**5(D((=A5)°)') N Lo (D((—A4,)"?))

we deduce that R
PZ € Hy**(D((—A3)%)) N Ly(D((-A5)"?)) < G.

We underline that the last above embedding is well justified by Proposition[£.1] In particular the embedding
D((—A%)%) < H>*(F)' x D(AY?7/?) x D(AS/?)' is true since £ < 1/4.

We deduce from the above relation, from the definition of the operator F,, from Proposition
and from Proposition that

(I - P)DsF,PZ € HY*™(H'(F) x D(A}?) x Hs).
Combining the above relations, we deduce that
[w,&1,62] = Z = PZ + (I ~ P)Z + Laiv (Fy, Far) € G
with the estimate . O
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5 Fixed point

5.1 Proof of Theorem [1.2]

In order to prove Theorem [I.2} we consider the Banach spaces £ and G defined by (4.46)) and (4.47) and the
following mapping defined on a closed ball of £ of radius R > 0,

W :Be(0,R) —» &, [F,G,Fy,Fa| = [F(Z),G(Z), Fy(Z), Faiv(Z)]

where Z = [w7 &1, 52] € G is the solution of 1) given by Corollaryand where F(Z), G(Z), Fy(Z),
Fuiv(Z) are defined by ([2.43), (2.25) and (2.27).

We remark that if [F,G, Fb,FdiV] is a fixed point of the mapping V¥, then the corresponding solution
[u@ &1, 52] of lj is a solution of -. Consequently, we are reduced to show that ¥ admits
a fixed point. We prove that for R small enough, ¥ is well-defined from Bg(0, R) onto itself and that the
restriction of ¥ on this closed ball is a contraction mapping.

First, we notice that (4.49) implies provided that [F7 G, Fy, Fdiv} € Be(0, R) with R small enough
and that [w’,£7,€9] has a norm small enough in L?(F) x D(A}/z) X Hs. In particular, the changes of
variables X and Y are well-defined as well as F(Z), G(Z), Fy(Z), Faiv(Z).

Second, we use several technical results whose proofs are given in the next subsections. To simplify the
notation, in what follows, we assume

R+ [|[w”, &7, €3]

||L2(f)xD(A}/2)xHS <l (5.1)

Proposition 5.1. There exists Cx > 0 such that for all R > 0 and [w°, €2, €3] satisfying (5.1), and all
[F7 G7 Fdiv7 Fb] S BE(Oa R)7

2
0 +0 0
19 ([F. G Fo Fanlle < Cr (R4 10”6020 a2 ) -
From the above proposition, we remark that if
0 (0 0
H[’U} 751752}HLQ(}")XD(A}/Q)X’HS g R7 (52)

and R is small enough so that
4CxR < 1, (5.3)

then W is well-defined from Bg(0, R) into itself.
The second important technical result we need is the following:

Proposition 5.2. There exists Cy¢ > 0 such that for all R > 0 and [w°,&9,€9] satisfying (5.1)), and all
[F0,60, FD FR] and [F@,6®, F?, FL)] in Be(0, R),

o[ - (6. 52|
v ’ ’ ’ v &

< Cp (R4 110" 8 8N 1y epatray e ) | [FO. 60 D B — [F2.62, B2, B2

‘5 ’
With the same conditions (5.2 and (5.3)), we deduce that the restriction of ¥ on Bg(0, R) is a contraction
mapping. The classical Banach fixed point theorem allows us to deduce the existence of a solution.

5.2 Proof of Proposition [5.1
Since [F, G, Fy, Faiv] satisfies,

I [F, G, Fy, Faiv] |le < R, (5.4)
then from we deduce that the corresponding solution of — obeys
lfw,&1,6]llg < C (R+ H[wov5(1)afg]||L2(f)xH2(0,1)xL2(0,1)) . (5.5)
By definition of G (see ([£:47)) and from (4.48), we deduce for € € (0,1/8),
& € Hy/**(H5™*(0,1)), (5.6)
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& € HY* ™ (H~*(0,1)), (5.7)
w e HY*(L2(F)) N Cyo(L*(F)) N L2 (H(F)), (5.8)
& € HY?(H3(0,1)) N Coo (HZ(0,1)) N L2(H?(0,1)), (5.9)
€ € HY?(L?(0,1)) N Cyo (L2(0,1)) N L2(Hg (0, 1)), (5.10)
and since & = 0:&1
& € HY*(L*(0,1)) N Cp.,(L*(0,1)) N Ha(Hy(0,1)). (5.11)
Using interpolation arguments and Sobolev embeddings we deduce the following embeddings,
HY* S (H'722(0,1)) — Cy.»(L>(0,1)),
Hy/2(L2(0,1)) N Ly (H(0,1)) = H,/*(H'*(0,1)) = L3(L*(0,1)),
Hy/*(L*(0,1)) N L2 (H'(0,1)) < Hy®(HY*(0,1)) < L3 (L*(0,1)),
Hy/*(L3(F)) N Ly (Hy (F)) < Hy/*(HY?(F)) = Ly (L*(F)),
from which we deduce
£1,0561 € Cy 0o (L°(0,1)), (5.12)
Dssé1, €2 € Lo(L*(0,1)), (5.13)
Dss€1, &0 € LE(LY(0,1)), (5.14)
w € Ly (L*(F)), (5.15)

with the corresponding estimate:

€21l rr2+e a—2e g 19y T 162l grrase -2 g1y + I€illey 2= 0.0 + 10s€alley , 2= 0.1))
+ ||8ss€1“Lg(L4(0,1)) + ||£2||L§(L4(0,1)) + ||aSS£1||L§(L4(0,1)) + ||€2HL§(L4(0,1))
F lwllpawacry < C (R4 [I[w’, €, &2 x 20,y x220,1)) - (5.16)

Note that & and &2 can be considered as functions defined on F but only depending on y; and equal to
zero outside (0,1), and, in particular by using the fact that 9,§&1 = & = 0 on {0, 1} the above spacial
norms in (0,1) can be replaced by spacial norms in ]-' Moreover, by combining (4.§] , , and
T € L(H%(0,1),H '/272¢(9F)), (obtained from with duality argument) we deduce

w e I_Iclr/2+s(H71/2725(8]:-))7
and with ., - and (5.5) we obtain

0 0
||w”H;/2+s(H 1/2-20 (o)) S C(R+|[w a51752]||L2<f)xH2(o,1>xL2(o,1))- (5.17)

Lemma 5.3. The maps F and G defined by (2.43)), (2.33) and (2.37) satisfy

2
1G(Z)]I L2 w27y + 1F(Z) |2 (@t (7yy < C (R A+ I[w’, €7, &)lle 7y x m2 0.1y x L2(0,1)) -

Proof. We first estimate r® (&1, 0s&1, 0551, &2, w). Using (2.34)), we see in particular that we have to estimate
terms of the form

a(z, §1)&" (0561)" 0ss1wi (i =1,2),
or
a(x, §1)&" (0561) " Swi (1=1,2),
where n1,n2 € N and where a is a Lipschitz continuous function. For that we use ((5.12)), (5.13) and (5.15).
Thus, with (5.1]) and we finally deduce

2
1r® (&1, 041, 05061, €2, w0 W)l 2 w2y < C (R4 Nw’, €0, &)ll2 ) x 20,1y x £2(0,1)) - (5.18)
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Similarly, using (2.35)), (2.36) and (5.8)), (5.12), (5.15)), with (5.1]) and (5.16) we obtain

Ir® (&1, 0, &, Vuw)lloz e r) + Ir® (1, 0,61, w w) L2 (L2 F))

2
C(R+ [0’ & &l xmz0xz20n) - (5:19)
Combining, (2.33), (2.43) with ( and (5.19) we deduce the result for G(Z).
Then, we estimate F(Z) First, usmg (5-14) and (5.15)), we deduce that
|0:s1]*|w] € Li(LW(}'))-
Thus, using [2.38), (5.12) and L2(L*Y3(F)) — L2(H'(F)), with ( and ( we obtain
2
HT (&1, 0561, 0551, )|z 7y < <C(R+ ||[w0,5?758]||L2(F)xH2(o,1)xL2(o,1)) . (5.20)
Moreover, with the same proof,
2
1rED (g1, 0481, Dusr, €2, w W)l 2 g Fyy < C (R4 1[0’ €0, &2 ) x 20,1y x22(0,1)) - (5.21)

Next, using Lemma we have for any function 7 € W' (R?),
7(€1,0:61) (9ss&a) (Vo) € Lo (H' (F)')*"%),
using Lemma we have for any functions 71,72 € WH*°(R3),
7161, 0uE1)62w + 1261, 0:61) (0uE2)w € LG (H'(F)),
and using Lemma we have for any function 7 € W'*(R?), and for any 1, j,
7(£1,0:61)(0s:81) (wiw;) € L2(H' (F)").
Then gathering the corresponding of above results with (2.39), (2.41)), (2.42), and (5.16)), we deduce

Ir® (&1, 0.6, 0ss€1, Vw) | L2 (a1 (7)1
+ 1P (61,0.61, 62,0560, w w)|| L2 @7y + Ir® (&1, 0,61, 04061, w w)|| L2 a1 (7))
<C (R4 ||[w° >51752]HLZ(I)xH2(0,1)xL2(o,1))2-
These estimates with and give the result for F(Z). O
Lemma 5.4. The maps Fy(-) and Faiy(-) defined by (2.25), .27) and [2.24)) satisfy

1(ES(Z), Fase D g g0y + 1 (Fo(B), Fane (D) 1/t gz /220126
<O (R+I[w’, €, llmyx 20,1y x220,1))
Proof. Using , (5.12) and (5.13)), (5.15) we deduce that
(0s€0)Vw € Lo (L*(F)*?)  and  (9ss&)w € L3(L*(F)),

so that, with (2.24)), (5.8), (5.12), (5.15) and (5.1)), (5.16]) we deduce r(El,asfl,w) € L2(H'(F)) and

2
HT ) (&1, 0561, w )2 @ (7)) <C(R+ Ilw’, €7, & llLe (7 x m2 0.1y x L2(0,1)) -

In particular,
1/2,0
(Fy(Z), Fan(Z)) € Lo (HYZ5),

with
2
| (Fo(Z), Faiv(Z ))HLQ(Huzo) <C(R+ ([’ &, &Ly m20,1)xL2(0,1)) - (5.22)
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Next, assume (g, h) € H;/FQJ}%’HQE. For a.e. in (0, 00), we have

((Fy(Z), Faiv(Z)), (g, h)>H71/2725,7172e gl/2+2e.142e = ’I‘ -g dy -‘r/ (diVT)h dy
oF,F Hor 7 F

oOF

= @ . (g + hn) dvy — / B . v dy. (5.23)
oF F

On the other hand, since we have (5.17)), we can apply Lemmato obtain,
2
||7"(5178351:w)”H},/”E(Hfl/%za(@}‘)) < C (R [0’ &, &2 ) xm20,1)x22(0,1)) - (5.24)

Note that assumption € € (0,1/8) is needed in Lemma to obtain 0s&1 € H;/2+E(H1/2+25((), 1)) from
(5.6). Moreover, from &, 951 € HY > (HY/?+2¢ (F)) we also deduce from Lemma

2
||7'(51785517w)||H;/2+5(H25(]_-),) <C (RJF H[woa5?7fg]||L2(f)xH2(o,1)xL2(o,1))

Combining the above inequality with ((5.24]) and (5.23) yields
2
[(Fo (), Fase () 2se gy 2201020y < C (R4 €8, oy mzcomysaion)

The above estimate and (5.22)) give the result. O

5.3 Proof of Proposition
First, [F(i), GW, Fb(“, Fd(f‘),], 1 =1,2 and the corresponding solutions of 1) satisfy (5.4))-(5.17).

Moreover, if we write
[w7£1a£2] = [w(l)agg)vgél)] - [w(2)7§§2)a£é2)]7

[F,G, By, Fa] = [F®, 60 FD FQ)| - [F®, 62 F® F2),
then we have from Corollary
Ifw, &1, &]llg < CIl [F, G, Fy, Faiv] |le, (5.25)

and as in the previous section we thus deduce

||€1||H;/2+E(H3725(0’1)) + ||£2||H;/2+5<H,25(0’1)) + €1llcy,, (2o 0,1)) + 10s&1lley (2o (0,1))
+ [10ss€1lla (n(0,1)) + 162l 24 (L4 (0,1)) + 19ss€1llL8 (4 0,1)) + 1€2llLs (24(0.1))
+ HwHLg(L4(]—')) + ”w”H(l,/2+E(H—1/2—2E(8]-‘)) < CH [FvaFvadiV] Hf

In the same way as for Lemmam and Lemma we can prove the following Lemma.
Lemma 5.5. The maps F and G defined by [2.43)), (2.33) and [@.37) satisfy

1G(2ZY) = GZPD) |2 w27 + 1F(ZY) = FZP)| 2 (a2 7y
<C(R+ H[w075?7fg}\|L2(f)xH2(o,1)xL2(o,1)) | [F. G, Fy, Faiv] Hg .

The maps Fy(-) and Faiv(-) defined by (2.25)), (2.27) and (2.24) satisfy

I(E(ZD), Fan(ZD)) — (Fy(22), Fan(2)

1/2,0

||LL27(H(’)]::]:)

+ 1(F(2V), Fai (2)) — (Fb(Z(Q)),Fdiv(Z(2>))\|H;/2+s

—1/2—2¢,—1-2
(H, /5727172

<C (R+ ||[w07E?aEg]||L2(f)ng(o,l)ng(o,nng(o,l)) |[F, G, Fy, Fai] || -
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A Calculation for the change of variables

In this section, we gather several lemmas and several proofs for the change of variables (Section [2).

A.1 Proof of Lemma [2.2] and of Lemma 2.3
Proof of Lemma[2-3 First we write (2.11)) as

(%:i
Thus
ov; ? Y; Wi ( Z aY; 0Yy (%j
orr - Ox;0xy Ui dz; Ok Oye
and in particular
Z 8’01' o 8 Y'J,\,‘ Z 8Y 8}/2 6’[}J
ox; Ox; Ox; Oye

‘We thus deduce that

det(VX)(divv) o X = det(VX)(AY)(X) - T + det(VX)[VY](X

We set
K £ det(VX)[VY](X)[VY]*(X).

We recall that for a matrix-valued function M,

OM
(div M); def Z -4
— Oy;

and that for a vector-valued function b,
div(Mb) = div(M™) - b+ M" : Vb.

After some calculation, we have
div(K) = det(VX)AY (X).
Thus,
det(VX)(divv) o X = div(K7).

Finally,
U= (VX)"(0in)ea

on gy,
and on Vg2 (c.f. ([2:4)),
X(yr,92) = (y1,92 + () = n° ()
Thus on Tsty,
Cof (VX)"(y1,92) = [—(8577(@;1) i 01 (1))

and ([2.14) follows from
[Cof(VX)]™"

€2 = €.

(Y).

(Y).

ik

VY] (X) : V.

(A.6)

(A7)

O

Proof of Lemma[2-3 Relation is proved in [14] Lemma 3.1] and (2.17) follows from the equality

[Cof(VX)]" e2 = e2.
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A.2 Calculation of ./\/lg) and Bgi)
Lemma A.1. Assume and . Then

2 D(v) : D(p) dx:/ MG Vo) vE der/ MB G, V%) - 5 da, (A.8)
F(n) F F
where
~ —~ d:Fj ~ 8X 82 6Y5
[Mg (v,vv)]m 20 [(DB) (VY )(X)(VY)(X)], 5 +2v Z S B ) g (0T, (A.9)
and
2
@~ 0Xe Yo 0Xi | OYe o\ OPX; ) o
[M5 @, Va] k ; J; . 8ac 83:] (Z OYm 8uax] Oy, Ox; X 0Yr0ye
Do) 8Y5 X, 0%V, 0X; = 0Yy X,
=L . (A1
+2V”§w 3% e o,y (Z By D0z, ) Dy, T o, (X)aykayg) o

Proof. We first write

21// D(v) : D(p) dz = 21// D(w)o X : D(p)o X det(VX) dy
F(n) F

= 21// D(w)oX :(Vyp)o X det(VX) dy. (A.11)
F

From
p(t, ) = Cof (VY (t,)) (1, Y (t,2)). (A12)
Thus
u (9901' o Z 8COf(VY)1ﬂ' ~ (Y) + ZCOf(VY) 8Yz atpk (Y)
r; 4 oz;  ** o 9z, Dyy
and

(V) o X det(VX) = (det(VX) 3 ‘W(x@) + det(VX) Cof (VY )(X)* (VE)(VY)(X)

k

& 8$j

_<det(VX)ZWW)’”(X)§5k> +(VX)(VR)(VY)(X). (A.13)

From (A.2)), we have

(Vo)(X) = <Z aivayi (X)@-) + (VY)*(X)(VD)(VY)(X). (A.14)
J ! i ik
We deduce
= <Z oaer X ) + (YY) (X)(DB)(VY)(X). (A.15)
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Gathering (A.11)), (A.13) and (A.15), we obtain

2v D(v) : D(p) dz

F(n)
- i vy, O Col (VY s 1~
_2”/f< i (X)”J> : (det(VX)Zarcj(X)gok o
1k i

k

’Y; _\ N
+2y/f ( — Owiday, (X)”J)ik H(VX)(VR)VY)(X) dy
§ 2 ColVY i

+ 21// (VY)Y (X)(DD)(VY)(X) : (det(VX) o
F Lj

(X)@c> dy

+ov /f (VY)" (X)(DB)(VY)(X) : (VX)(V)(VY)(X) dy.

Standard calculation gives

(A.16)

2 /F (VY)* (X)(DD)(VY)(X) : (VX)(VF)(VY)(X) dy = 2 /f (DD)(VY)(X)(VY)(X)" : (V) dy,

9%Y; A N
2”/;( : Oxiaa:k(X)Uj)k'(VX)(VSO)(VY)(X) dy

3 0X: 0%Y; Y,

=2 2 J X ’\'76 X . ~ ‘

V/f (L] * 0y Bxif)a:k( )U; 3xk( )) (V@) dy
g, y

On the other hand,

9 Cof (VY )ks 0 ddet(VY) 0X; oY, 0°X;
————— = — (det(VY)[VX]ir (V) = ————= Y) + det(VY — Y).
ey = gy (eUTYITXLa(¥) =SSR Y +det(VY) 3 ()
We can compute the first part of the above right hand side by using
ddet(VY) ddet 8Xz Yy,
= det(VY) .
ox; — 8Mm’e Gxgﬁa:] mz vV 8ym axgﬁa:j
Combining (A.19) and m, we deduce
9 Cof (VY) ,ﬂ Xy Y 0Ye X,
det(VX)————
V)5 Z Dy ey 8yk Z a2, ) Bgroye”

Using the above relation, we obtain

2%Y; - . DCf (VY ki , oo ~
21//}_ ( v (X)UJ> : (det(VX)Z T(X)tpk dy
J ik k i,j
0Xy 0y . 0X: OV X\~ -
e (Z Oym e, ™ oy, ", )aykay) e
The third term in (A.16) is

80X, 8%Y,, 8Ye
2V/.F(VY) DRV ((Z OYm E)xe@x 8yk Zaxa aykaye) )

= 0Ya s 2 (x 0Xe Y . 0X, OV
- QV/fij;e Bz, NN DVes (Z Oy D0z, N By T 0, (X)aykay) Pk dy.

&Eﬁx]
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Finally, gathering (A.16), (A.17), (A.18)), (A.22) and (A.23]), we deduce the result.

Lemma A.2. Assume (2.11) and (2.15). Then
/ v.at<pdx:/5.at¢dy+//\/t() V<pdy+//\4@ )@ dy,
F(n) F F

where
ME @) € -5 (VY)(X) (8:X),

and

(MB@)] {at {m[vx]*} Cof(VX)TJ]

J J

83:

k,L,i,5,a

Ly e <Z OXi 0™ (o OXi | OYe . O°Xi

Proof. We first write

/ v Opp dx:/(UOX)~(8tg0)0X(detVX) dy.

F(n) F
Therefore,
/ v - Orp dx:/ - (VY)(X)(Oep) 0 X(det VX) dy
F(n) F
Then, using (2.15]), we have
O = [0: Cof (VY)' ] B(Y) + Cof (VY )" (8:Y - V) §(Y) + Cof (VY ) 0, p(Y).

and thus

(VY)(X)(0rp) 0 X (det VX) = Cof (VX)* [0; Cof (VY)*] (X)@

+ Cof (VX)* Cof (VY)*(X) (Y (X) - V) & + Cof (VX)* Cof(VY)* (X):p.

The above relation yields
(VY)(X)(8rp) 0 X (det VX ) = Cof (VX)" [0 Cof (VY ) (X)p + (8:Y (X) - V) @ + 0.
Then, we use
(0Y)(X) = =(VY)(X) (9:X)
and 9 Cot(VY)
* * (©) j,1
[0: Cof(VY)7], 5 (X) = 0 [Cof(VY) (X)), ; — ;athTJ(X).
From (A.21)),
O Cof(VY); 0X, 0%*Y, 0X; | Y, 9’ X;
zk:Bth oz, (X ~ det VX Z Oc X (Z OYm 0x,0xy; (X) Ay, + ozy, (X)Byjayg '

We also have

8: [Cof (VY (X)] = 0 { [vx]} .

det(VX)
Finally, we conclude

/ v - Opp dx:/ﬁ-atﬁdy+/ 0@ (VY)(X) (0:X) : Vg dy
F(n) F F

+/fat [ﬁ[vx]*] Cof(VX)T- G dy

aY X, 0%V, 0X; oY, X\ -
B /]r Z 896 <Z OYm, 890@89% )Oyj + axk(X)ayjayg> Piva dy.

k,L,i.5,a
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(A.24)

)m.

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)



Lemma A.3. Assume (2.11) and (2.15). Then

/ (v Vg / B @,5)-5+B2@,7): (V3) dy, (A.35)
T(n)
where
~ ] d SR RLLY 90X, 82Ym aYg X, A
[B'S (U’U)}k Z_jzc;ﬁ Ve 68 X) gaym B:B/zc’)x ayk Zc’)x] OyrOye (A.36)
and

BB @,3) ¥ @3] (VY)(X)(VY)(X)", (A.37)
Proof. We first write
/ v-((v-V)p) da::/ v : (Vo) dx:/(voX)®(voX):(Vgp)oX(det(VX))d
F(n) F(m) F

‘We have
(voX)® (o X) = (VY)(X)* [§ 7] (VY)(X)

and from (A.13]) and (A.21)
0X¢ 0°Yr, 8Yg GQXZ- -
X X)
(Vip) o X det(V (Z (Z OYm, Qmam Z axg aykayg Pr
J

N

+(VX)(Ve)(VY)(X). (A.38)
Thus

(voX)®(woX): (Vy)oX(det(VX))

B OYa | v ~ aYﬂ 0Xy 0°Yn 0X; Yy ’X; |\ ~
o Z ox; (X)0a¥p 5 = ox; )¥ (m 8ym 0x0x; (X) + ; ox; (X) ) P

£ Oy
i,3,a,8
+[F R (VY)(X)(VY)(X)* : (VE). (A.39)

This yields the result.

B Calculation for the linearization

Here we suppose that (2.7)) is satisfied. We recall that

U1
X(t =
(6 y1,32) Y2 + 0(y1,y2)6(t, 1) |

where # € C*(R?) is defined in Section and where £ = — n°, which originally belongs to HZ(0,1), has
been extended by zero outside (0,1) to a function of H?(R) while keeping the same notation.

In what follows, we recall that ’y(”(y, -) are linear mappings that depend on y in a Lipschitz continuous
way and that vanish in F\V, (see (2.4)). We also recall that Qs(a1,...,ar) where k € N denote the set
of polynomials in the variables aa,...,ar and with coefficients that are Lipschitz continuous functions of
y € R? and of ¢ and that vanish in F\V,, and such that the degree of its nonzero monomial of lowest degree
is greater or equal to 2.

We have
1 0

(VX) = (0, 0)€ + 0(9sE) 1+ (9y,0)€

= L+ (y,¢,0.0). (B.1)
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We also have ,
0°X: @
8yj8yk - ,Yi,j,k(y?£7asga assg)-

We deduce from (B.1])

1 1+ (9y,0)¢ 0
YV(X)= ———— .
V0 = 750,008 [~ 0,006 — 0(0.9) 1
We can write ) (00,0)¢ @ 9)2(5)2
= —\y2 —1_ YyoV) \S)
T+ @008 T Tr 0.0 TP G,0e
which implies the following relations
L _
e = PO =140 D)
with @ ¢ Qi(a1), @ ¢ Qs(ar).
We deduce from ) and .

(VY)(X) = I + 78 (£, 8,6) + rED (£,0,6), +ED € Qz(cnr, ).

From (B.3)), some standard calculation yields

0 _ ®ea.9 .
oy = W(bﬂ(g,as@)+

R 18 (¢)

_
L+ (9,,0)¢

Y(X) = st s (e +970(6,0.9)) + 1577 @ (6,0.9),
9" O = T @0 (2 11600) + 1 e P 09
which leads to
0X; 0%V, _
Z dye Ox;0zk (X) = ’Ye,i,k(gaasgv 0558) + 12 (€, 05, 0s58),
with & ¢ Qs(a, az, as), degg(r) <1
Relations and (B.6)) imply
0%Y; 2] )
W(X) Vi (& 0s€, 0ss8) + +1= (€, 05, 0s56),

with 8 ¢ Qo (an, a2, as), deg3(7') <L

We also have
XX (t,y1,y2) = (0:€)0es.
We deduce from (B.1]) that
1
O {m
with 8 ¢ Qy(a1, a2, a3, au), deg, ,(r2¥) < 1.

[VX]*:| = 7 (atfv 8t5'£) + 7' (67 85&7 at§7 atsf)v s

’7 (67 85&-7 8855)7

(B.3)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

We use now the above decomposition in order to linearize the operators appearing with the change of
variables. We recall that v is defined by (2.11) and w by (2.19). We also recall that (2.7) is satisfied and

that we assume v® € W (F), dive® = 0 and 5 € W (F).
First we deal with the linearization of the condition on the divergence.
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Lemma B.1. The following equality holds:
K(@+v%) v = @+ 70 0.90° + 10, 0.6, 9),

with @ ¢ Qa(, a2, a3,04), degs 4 @ < 1. (B-10)
In particular,
div (K(@ + vs)> = diva + divi(y® (¢, 8.6)0%) + div(rD (¢, 0.6, @) in F (B.11)
and
@ = (0:6)es — rD (g, 0.6, @) on OF. (B.12)
Proof. We write K(w + v%) —v¥ = @ 4 (K — I)(@ + v°) and using (see and (B.5))
K = det(VX)[VY](X)[VY]"(X) = Cof (VX) [VY] (X) = I + 18 (6,0.6) + v (¢, 0.)
with B ¢ Qa(an, az). (B.13)
we deduce and . To obtain , we start from :
Kv = (0in)ez = (0:€)es.
Then, since ¥ = @ + v° and since v¥ = 0 on dF, the result follows from .
O

We then consider w define by (2.23), i.e. w = w + 'y(f,asﬁ)vs. Using (B.I)-(B.9) with lemmas
and [A73] we deduce the following lemmas.

Lemma B.2. The following equalities hold:
MB w+ (1 =D v+ V(1 = 1 0)0%)) = 20Dv% + 20Dw + D (¢, 0., 0..€)
+rBD (¢, 0.¢, 0.6, w) +r BV (g, 0.6, Vw)  (B.14)

with
D ¢ Qa(ar, a2, a3, a4, 05)  degy r8 < L, deg,s r8 < 1, (B.15)
B ¢ Q2(a1, a2, a3,...,06) degz ¢ rB < 1, (B.16)

and

MB (w1 (1= 1 ®)%, Vo + V(1 - 1 B)%)) = 1B (g, 0,¢,0,.¢)
+r8(¢,0,¢, 0,06, w) + 1B (£, 0., 0006, V) (B.17)

vt r& ¢ Qo (e, a2, 3,04, 05)  degy & <2, deg475r <1, (B.18)
I E Qs (a1, a2, a3, a4, a5, as, a7)  degs rE9 < 1, deg, ,r® <1 (B.19)
Lemma B.3. The following equalities hold:
MB (w+ (1 —18)0%) = B (3,6) + rBD (¢, 0.8, 016, w), (B.20)
with
ED € Qa(a, 2, 3,04, a5)  degy rE <1, degys rED <L (B.21)
and

M(’LU + (1 - H )US) = ry (8t£> atsf) + T (57 8357 at§7 8t$£> U)) + T (57 8557 83557 8t€> ’LU) (B22)

with
r8 € 0y(a1,02,05,04,05,00)  degy  ED <1, degs B <1, (B.23)
EE) € Qs(an, 02, as, 0, a5, a6)  degy B3 <1, deg, ED <1, degsg rE3 < 1. (B.24)
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Lemma B.4. The following equalities hold:
B (w+ (1 - 780w+ (1 - 18)0%) = /B (¢, 0.8, 0..6) +rED (€, 0.6, 0.0, 0) (B.25)

B(w—l—(l—’y)vs,w—i—(l—*y)vs)—v @v° +wev’ v ®w+’y.(£8§)+r(§,asﬁ,w) (B.26)

with
rEY € Qy(ar, s, a3, a4, 05)  degy BV <1, d6g475 r8 <o, (B.27)
1" € Qa(au, s, as, aa) deg&4 7’ < 2. (B.28)

Lemma B.5. The following equality holds:
(VX) (%0 X) = £ = 1B (g, 0.0) + 1B (¢, 0.9),

with 78 € Qy(as, a). (B.29)
Proof. We write
(VX)" (/%0 X) = £° = [(VX)" = BIf* + (VX)" [(f* 0 X) - f°]
and the result follows from
FPX W) = 17() + 06V 5 () 2 + /0 (1= )RSy + she)fées - Oes ds.
O

C Anisotropic Estimates

In this section, we suppose that [w, &1,£2] € G and w € HY/?e (H71/2728 (0F)), where G is defined by (4.47)),
with the estimates

Ifw, &1, &2llle + 1wl 172+ ggo1/2-2- 57y, < Ro, (C.1)
or Ro € (0,1]. is implies ([5.6)-(5.15)) with the corresponding bound in term of Rg. From (5.12)) and from
for R Th 1 h th ding bound f Ro. F df

& € HY>(L2(0,1)) N HY*(H3(0,1)) — HY*(Hy/*(0,1)),
€1 € Hy(H§(0,1)) N L3 (H*(0,1) N HG (0,1)) < HY*(Hy'*(0,1)) — L3 (Hy'* (0, 1)),
& € HY?*(L*(0,1)) N L2(H(0,1)) — HY3(H*(0,1)) < L¥3(HY*(0,1)),
& € H,/*(L*(0,1)) N L2 (Hy (0,1)) < HY*(H'Y*(0,1)) < Ly (H'*(0,1)),
w e HY*(L*(F)) N LI (HN(F)) — HY*(HY*(F)) — LY\ (F)),
w e Hy>(L*(F)) N L3 (H'(F)) — HY*(HY*(F)) < Ly (HY*(F)),

we obtain the following estimate:

||§1HH2/8(H7/4(0,1)) + H61|‘L§(H9/4(0,1)) + ||£2||L§/3(H3/4(0,1)) =+ ‘|£2HL§(H1/4(0,1))
Hllwll ps/s ggasa gy + 1wy @rvaey) + 1l @ 0.0) + 10561l g (o 0.1)) < CRo. (C.2)

In what follows, we suppose Ro > 0 small enough so that

1€1] oo (Loo(0,1)) < co for co > 0 given in (2.8). (C.3)

Let 7 = [-L, L] x [~ L, L] be a rectangle such that F C 7. There exists an extension operator E which is
continuous from L?(F) into L*(T) as well as from H'(F) into H}(T). Note that an interpolation argument
guarantees that we also have E € L(H®(F), H§(T)) for s € (0,1). Then using this extension operator, any
function in H*(F), s € [0,1] can be considered as a function in H5(7): in what follows we will extend w;,
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i = 1,2 or some test functions ¢, but for simplicity we will keep the same name w; and ¢ instead of E(w;)
and E(y). We will also freely use the boundedness properties of E without recalling it.

Moreover, any function defined on (0, 1) is considered as a function defined on 7 but only depending on
y1 and equal to zero outside (0,1): by this way we can consider & and &2 as functions defined on 7.

For p € [1,400), s > —1 and a function f: 7 — R we write

aor L 1/p
g,z ([ 10Com ey nyie)

and
ef
1fllLgg rg, ) = supessy, e py 1S (o y2)llme (- L)
We also define the || - HL”l (H3,) analogously, just by reversing the role of y1, y2.

Let us stress some basic propertles that we use below. First for s > 0 and f € H*(T) we have
1Flleg, oy s < Ifllarerys (g € 41,2}, 0 # 3), (C.4)

and (see [26], Cor 1.4.4.5]),
117 fllzs(ry < Cllfllms(r) if s €[0,1/2). (C.5)
Above and in what follows, 17 denotes the characteristic functions of F. Moreover, for p € [1,4o0],
s€[0,2]\{%,3}and g € HO(O 1),
H9||L,,2(Ha y < Cligllag0,1)- (C.6)

We also have the following result.

Lemma C.1. Assume p € [1,+00], s € [0,1/2) and g € H*(0,1). Then we have,
1179llzs, g ) < Cllgllaso,)-
Proof. First, for any nonempty open interval I and any function f € H®(I), we denote its extension by 0

outside I by E(f). Thus, we define H*(I) as the space of functions f in H*(I) such that E;(f) € H*(R)

def

equipped with the norm || f| ;) = [|E1(f)|l#s(=). Since s < 1/2, one can prove (see [26, Cor. 1.4.4.5]),
1Al s 1y < ClSf s y- (C.7)

Moreover, we can verify that the above constant C is independent of I. Let us detail the argument. We
recall that if X is an open subset of R the norm of H*(X) is defined by

(N2
1l ) /X i ) = F@IE e

[yr — gu|t+2e

Then if we assume I = (0, A) with A > 0, from easy calculations we deduce

A
def
£ W oy = WEr (e y = 1 IFrs +/ [ (y2)*ps,a(y1)dyn,
0

with

def du 1 1 1
sty [ TR YW
’ (oo U(A 1oo) [y1 —u[F25 s \y* * (A—)?

Thus, by observing that ps a(y1) = A72*ps.1(y1/A) and by using Hardy’s inequality we obtain

A
/ |f(y1)p1,a(y1)dyr = A /lfAU|Pll()
0

<CLA™ / |Af Au|du—C/ (y0)[*dyr = Cul| fllzza or)

for a constant C. > 0 which is independent on A. Thus, with an interpolation argument (see [43] Thm.
1.18.5, p. 130]) we deduce that

A
| @ P ona)du < CEfllga,
0
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and (C.7) follows from (p1,4(y1))® > s2° *ps a(y1) and from H*(I) = H§(I) (because s € [0,1/2)) and
- Mlrsy = 1 - lag -
Next, the lemma is a consequence of the following inequality: for a.e. y2 € (—L, L),

117 y2)gllms(~r,0) < Clgllms (-1, (C.8)

for a constant C' > 0 independent on y2. In order to prove this inequality, we define for y2 € R the set
Ay, & {yl € (—L,L) ;(y1,y2) € F}. Since F is smooth, the set AyZ is a finite union of open segments:
Ay, = U Y2 I; with Ny, bounded independently on y2. Finally, using 7 we can prove ((C.8):

Ny, Ny, Ny,

117( y2)gllme -2,y < [17(y2)gllmem) = le g <9l ey = 2 lallge )
i—1 =1

H¢(R)
Ny,

<CD lgllaey) < CNy,ligllas ) = CNus llgll g 0.1y < Cllgllze0,1)-
j=1

Here, 17, denote the characteristic functions of I;. Above we have use the fact that g is zero outside (0,1). O

In Lemmas to below 7 is a bounded Lipschitz continuous function of R? x [—co, co] X R with
values in R for ¢g > 0 given in (2.8]). From (C.3)) we deduce

[ (y, 51,5s€1)||Lgo(L§3(H;1)) + 1|0y, (Y, &1, 05€1) || Loo (oo (7)) < C. (C.9)
Lemma C.2. Assume (C.9). Fori,j = 1,2 the following estimate holds,
17y, €1, 0561) (9es1) 0y, will s (41 () < CRE.

Proof. We start with the case j = 1. Assume o € H'(F). First, we have for a.e. t € (0, 00),

\ / T<y,sl,aszl><ass£1>aylwwdy] _ ] [ 170,61, 0,601,y
F T

< H]']:T(yv £17 8351)(83551)@HL52 (H;{Al) ||8y1leL2 (H71/4)

Since
91920l 14—,y < Cllgallm - r,)llg2ll gra—r,ny» (C.10)
and
100wl vy < Cllwill s
we deduce

‘/}_T(yvéh6551)(65551)8ylwi¢dy‘ < CH].]:’T(y,El,8551)(85561”‘[‘;02(1{5{4)||(,0HL§2(H;1)HH)7,HL2 (H3/4)

Now using (C.4) and Lemma we obtain

‘/ T(y,fh8551)(833&)8y1wi<pdy’ CHT(yaflzafl)HLW(Hl ||(1]:833£1)||Lgo(H;{‘l)H@||H1(T)||wi||H3/4(T)
F 2

Y2

< COlI7(y, &1, 0561) HLOQ(Hl )||83351HHI/4(0,1)H‘P||H1(T)||wi||H3/4(T)

Y2
and thus with (C.9),
||T(y7£178351)(853€1)6y1wi||Lg(H1(.7:)’) < CHgl|‘L§(H8/4(0,1))||wi||L§/3(H3/4(}"))'

We conclude by using (C.2).

Finally, the case j = 2 follows more easily from an integration by parts with (5.13))-(5.15)), by taking into
account the estimate of 9y,7 in (C.9)) and the fact that & is independent on y2. The details are left to the
reader. O
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Lemma C.3. Assume . For i = 1,2 the following estimate holds,
||7'(.7J7 §1,3351)(3352)?1)1‘||L§((H1(_7.-)/) + ”T(y7 flaasfl)f2wi|‘Lg((H1(]:)/)) < CR%-
Proof. We only prove the first estimate, the second can be obtained more easily. Assume ¢ € H'(F). First,
using , , 7 and we have for a.e. t € (0,00),
[ a0 @] = | [ rn6.0000.8) 0000
< Ol €100 Arw)ely un 10:6all, o1
< Ol €100l . rasny 191, g, 1621 s

< Ol €:0.80) gy g ) NFwl 3 oy €2l o Il

< CINFwliacry Nl 371 0 11 oy < C Nl gy NEall oy Il
The above estimate yields

7y €1, 05€1) (Ds&2)will L2 (1 (7)) < Cllwill o crrrrageyy N1€2ll 573 rasa o 1)
and we conclude by using (C.2]). O
Lemma C.4. Assume . Fori,j = 1,2 the following estimate holds,
17 (y, €1, 0561) (Bss&)wiw; || 12 (41 (7)) < CRj.

Proof. Assume ¢ € H'(F). First, we have for a.e. t € (0, c0),

[ 7600 @ wis s = | [ 06,0, (150 s
F T
<C HT(y’51»3551)(1fwi)wj@||L?1/2(L§1) HassleLgcQ(Lgl)
S OlI(y: €, 0:6) Arwi)willpz 12 ) Iellez, gy 16l mz0,0)
< C”T(Z/wfl,asfl)Hng(Hllll)”(lfwi)ijL?(T) ||51HH§(0,1) el F- (C.11)

On the other hand,
[(Arwi)w;llp2cr) < CIAFwa)|l g/ace) 1wl gs/az) -

Combining the above equation and (C.11)), with (C.5) and (C.9) we deduce
HT(Z%flv8sfl)(assfl)wiwj||Lg(H1(]:)/) <C ||fl||Lgo(Hg(o,1)) HwiHLg(Hl/él(]:)) ||wj||L§7/3(H3/4(f)) )
and we conclude by using (C.2]). O

In Lemma below, 7 is a bounded Lipschitz continuous function of R? x [—co, co] with values in R for
co > 0 given in (2.8). From (C.2)) and (C.3) we deduce that ¢ — 7(y, &1 (¢, y1)) satisfies

I (y, fl)HLoo(Wl,oo(T)) <C (C.12)
Moreover, we also assume that 7(y, -) is zero for y € F\Va (see ([2.4)). By this way,
(y,€) € (OF\Tur) X [—co,c0]  7(y,¢) = 0. (C.13)
Lemma C.5. Let ni,n2 € N such that n1 +n2 > 1 and assume —. Then

||T(y7€1)€?1 (8351)712“‘)7«'||H;/2+5(H25<]:)/) + ||T(y7 51) ?1 (8361)"2wiHH;/2+E(H—1/2—25(6]:)) < CRS (014)
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Proof. We start by estimating the first term in the left-hand side of (C.14)). First we have the following
relations

HZE(T) = [Hl(T)7L2(T)]1*25 = [H?}l (L§2(_L7 L)) n L?241 (H;Z (_L7 L))7L?241 (L?QJQ(_L?L))]l*QE
= HSf(Lim(*Lv L)) N Lzl (Hszs(fL?L))'

Each of the above equalities follows from classical arguments (see for instance[25]). The last relation can be

written
5 2 2e 2 2e
H2 (T) = Lyl (Hyz (7L7L)) n Ly2 (Hy1(7LvL))'

Assume now that ¢ € H?**(F). Using (C.12)) and the above relation, we have for a.e. ¢ € (0,00),

[ )€ @ gy = (s, 70 8068 0.6 ) sy
F

< Cwill grae gy I17(y, €0)E7 (9561) " @l groe (7

<C ”wiHHZE(f)' Hg?l (8851)n2 1-7-'90”}125(7*)
< Cllwillgaegry (1657 (0:6) 2 1r0ll 3 () + 161 (0s€)"1r0llps (rzs) ) - (C-15)

Moreover, using (C.4)), (C.6), (C.5) we deduce,
167 (060" Lr@ll s a3y < CNE™ (96" o /2020 170N 2z (a2

C||£1Hn1 1/2+2s H8 £1||n2

LS (Hy) LS (Hy)

C”&” 1/2+25

1/242e Hl]’—@HH?E(T)

”a fl” 1/2+25 ”‘p“H?E(T)

0.1) 0.1)

and using (C.4) and (C.5|) with the fact that & is independent on y» we deduce,
€1 (9s61)™ lJ-'SOHLgl(Hg;) <C Hf?l(asgl)nQHchl (H%HZE) ||1J-'€0||L2 L(HZE)
C”flquXJ(o 1)”a £1||Loc(0 1) ”‘PHHZE(T) :
Finally, since ¢ € (0,1/8) we have Hj™2¢(0, 1) ‘—> H1/2+2€(0 1)) <= L°°(0,1) and combining the above

inequalities with - ) the result follows from 7

For the second relation, assume ¢ € H1/2+25(3}") For a.e. t € (0,00) we have,

/ T(yafl)ffl(ﬁs&)mwi@dvl = ’<wi»7'(y, §1)&11 (0s€1)"% ) yr—1/2-2¢ (o.7), /2422 (5 7)
oF
<C ||wi||H—1/2—2s(a]:) ll7(y,&1) IL] (8551)n2”1{1/2+26(a}-) ||90HH1/2+26(3]:) . (C.16)

Thus, taking (C.13) into account we deduce that

7 (y, €)1 (9s61)" ||H1/2+25(0}") = [|7(y,&1)&1" (9s61) 2||H1/2+26(Fm)
< O @)l ey NI 2 gy 1058172 e+ (C1T)

Moreover, we remark that for a function g defined on 7 and only depending on y; we have

2 9(H)I* .
||g||H1/2+2s<FS“) = /1" | y)ld’)/ \/1" /1: |y y|2+4€ d’Y(y)d”Y(y)
5 str str

str

lg(y1) —g@)* _
< g(y1)|dy(y / / = —dy(y)dy(y
/lj‘str | | Tstr 7 Dstr |y1 yl |2+4E ( ) ( )

1 2
/ l9(s)1é(s)ds + / [ O yaryasir < el on lolFyereeae oy
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where we have used the notation £(s) = y/1 + (9:1°(s))?. Then combining (C.16)) and (C.17) with the above
estimate for g = & and g = 0s&1, with (C.12)) we obtain for a.e. ¢t € (0, +00),

||T(y,§1)£fl (8551)n2wi||H*1/2*2€(a]:) <C ||£1||211/2+25(071) ||85§1||221/2+2e(0,1) ||wi||H*1/2*2€(8]~‘) :

Finally, since € € (0,1/8) we have H'~%(0,1) < H'/?>72¢(0,1) and the conclusion follows from (C.1). O
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