
HAL Id: hal-01370000
https://hal.science/hal-01370000

Submitted on 21 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feedback boundary stabilization of 2d fluid-structure
interaction systems

Mehdi Badra, Takéo Takahashi

To cite this version:
Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluid-structure interaction
systems. Discrete and Continuous Dynamical Systems - Series A, 2017, 37 (5), pp.2315-2373.
�10.3934/dcds.2017102�. �hal-01370000�

https://hal.science/hal-01370000
https://hal.archives-ouvertes.fr


Feedback boundary stabilization of 2d fluid-structure interaction

systems

Mehdi Badra∗, Takéo Takahashi †‡

Abstract

We study the feedback stabilization of a system composed by an incompressible viscous fluid and a
deformable structure located at the boundary of the fluid domain. We stabilize the position and the velocity
of the structure and the velocity of the fluid around a stationary state by means of a Dirichlet control,
localized on the exterior boundary of the fluid domain and with values in a finite dimensional space. Our
result concerns weak solutions for initial data close to the stationary state. Our method is based on general
arguments for stabilization of nonlinear parabolic systems combined with a change of variables to handle the
fact that the fluid domain of the stationary state and of the stabilized solution are different. We prove that
for initial data close to the stationary state, we can stabilize the position and the velocity of the deformable
structure and the velocity of the fluid.

Mathematics Subject Classification (2010): 93C20, 93D15, 74F10, 76D55, 76D05, 35Q30.

Key words: feedback stabilization, fluid-structure interaction, Navier-Stokes equations, beam equation.

1 Introduction

We consider the problem of stabilization for a fluid-structure system composed by a viscous incompressible
fluid and a deformable structure located at the boundary of the fluid domain. The fluid motion is modeled
by the Navier-Stokes system and the structure deformation follows the equation of a “viscous” beam. Such
a model is already considered by several authors ([33], [10], etc.). Our aim consists in showing the boundary
stabilization of such a system in the 2d case and for weak solutions. The method used here could be adapted
for other fluid-structure systems in the case of a fluid modeled by the Navier-Stokes system. In the 3d
case or for strong solutions, the stabilization of such fluid-structure systems could be obtained by using the
methodology developed in [6] or in [8].

Let us first describe more precisely the system considered in this paper. The domain of reference for the
fluid is denoted by Fref. We assume that it is a smooth domain of R2 such that its boundary ∂Fref contains

a flat part Γref. We can assume that Γref = (0, 1)× {0} and we set Γ0
def
= ∂Fref\Γref.

On the part Γref, we assume that there is a beam that can deform through the action of exterior forces
and in particular the force due to the fluid. The fluid boundary is thus moving, Γref being transformed into

Γstr(η(t, ·)) def
= {(s, η(t, s)) ; s ∈ (0, 1)} , (1.1)

whereas Γ0 remains unchanged. The new domain of fluid F(η(t, ·)) is the interior of Γ0 ∪ Γstr(η(t)). We
assume that

η(t, 0) = η(t, 1) = ∂sη(t, 0) = ∂sη(t, 1) = 0, (1.2)

and that Γ0∩Γstr(η(t)) = ∅ so that Γ0∪Γstr(η(t)) is a close, simple C1 curve and this definition makes sense
(see Figure 1).
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Figure 1: The fluid-plate system

The fluid-structure system that we consider reads as follows

∂tv + (v · ∇)v − divT(v, p) = fS , t > 0, x ∈ F(η(t)),
div v = 0 t > 0, x ∈ F(η(t)),

v(t, s, η(t, s)) = (∂tη)(t, s)e2 t > 0, s ∈ (0, 1),
v = bS + Ξ(u) t > 0, x ∈ Γ0,

∂ttη + α∂ssssη − β∂ssη − δ∂tssη = −Hη(v, p) + gS , t > 0, s ∈ (0, 1),
η = ∂sη = 0 t > 0, s ∈ {0, 1},

(1.3)

with the initial conditions

η(0) = η0
1 and ∂tη(0) = η0

2 in (0, 1), v(0) = v0 in F(η0
1). (1.4)

Here and in all that follows, (e1, e2) is the canonical basis of R2, in particular e2 =

[
0
1

]
,

T(v, p)
def
= 2νD(v)− pI2, D(v) =

1

2
(∇v + (∇v)∗) , (1.5)

Hη(v, p)
def
=
{

(1 + |∂sη|2)1/2 [T(v, p)n] (t, s, η(t, s)) · e2

}
, (1.6)

the vector fields n is the unit exterior normal to F(η(t)) and in particular, on Γstr(η(t)),

n(t, y1, y2) =
1√

1 + |∂sη(t, y1)|2

[
−∂sη(t, y1)

1

]
. (1.7)

The constants α, β and δ are assumed to satisfy

α > 0, β > 0, δ > 0.

Moreover, fS : R2 → R2, bS : Γ0 → R2 and gS : (0, 1)→ R are time-independent functions corresponding
to a stationary state (vS , pS , ηS) of the above system:

(vS · ∇)vS − divT(vS , pS) = fS , x ∈ F(ηS),
div vS = 0 x ∈ F(ηS),

vS(t, s, ηS(s)) = 0, s ∈ (0, 1),
vS = bS x ∈ Γ0,

α∂ssssη
S − β∂ssηS = −HηS (vS , pS) + gS , s ∈ (0, 1),

ηS = ∂sη
S = 0, s ∈ {0, 1},

(1.8)

where the boundary value bS is supposed to satisfy
∫

Γ0
bS · ndγ = 0.

Finally, u is a control function that we will search in a feedback form so that the corresponding solution
(v, η, ∂tη) tends to the stationary solution (vS , ηS , 0) as t → ∞. The precise statement of this convergence
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is given below. Here Ξ ∈ L(L2(Γ0)) is an operator used to localize the action of the control u in a relatively
compact subset of Γ0 and such that

∫
Γ0

Ξ(u) · ndγ = 0. Precisely, it can be defined by

Ξ(u)
def
= ρu−

(∫
Γ0

ρu · ndγ
)
ρn (1.9)

where ρ ∈ C2(Γ0) is a non zero function compactly supported in Γ0 such that
∫

Γ0
ρdγ = 1.

Before stating in details the main result, let us first rewrite systems (1.3) and (1.8) in a more general
way that allows to take into account the incompressibility of the fluid. A formal calculation yields

0 =

∫
F(η(t))

div v dx =

∫
Γstr(η(t))

v · n dγ =

∫ 1

0

(∂tη)(t, s)e2 · n(1 + |∂sη(t, s)|2)1/2 ds =
d

dt

∫ 1

0

η(t, s) ds.

Consequently, it is natural to work with displacements η with constant mean value along the time. For
simplicity, we assume that the mean value of η is zero:∫ 1

0

η(t, s) ds = 0, (1.10)

that is

η(t, ·) ∈ L2
0(0, 1)

def
=

{
f ∈ L2(0, 1) ;

∫ 1

0

f(s) ds = 0

}
.

With this assumption, we also have ∂ttη(t, ·) ∈ L2
0(0, 1) and from the boundary conditions (1.2), we obtain

∂ssη(t, ·), ∂tssη(t, ·) ∈ L2
0(0, 1). Therefore, the equation for η in (1.3) yields the following condition for all

t > 0, ∫ 1

0

Hη(v, p)(t, s)ds =

∫ 1

0

(gS(s)− α∂ssssη(t, s))ds. (1.11)

From the definition (1.5)-(1.6) of Hη(v, p) and from (1.7), the above condition can be written as∫ 1

0

p(t, s, η(t, s))ds =

∫ 1

0

(
−gS(s) + α∂ssssη(t, s) + 2ν

{
(1 + |∂sη|2)1/2 [D(v)n] (t, s, η(t, s)) · e2

})
ds.

Note that an analogous condition can be imposed on pS to have ηS ∈ L2
0(0, 1). These conditions imply that,

in contrast to the Navier–Stokes system, the pressure is not determined up to a constant in this fluid-structure
interaction system. To avoid to deal with this constraint we will use the orthogonal projection

M : L2(0, 1)→ L2
0(0, 1). (1.12)

Let us introduce the operator Tη : L2(0, 1)→ L2(∂F(η)) defined by

(Tηξ)(x) = ξ(s)e2 if x = (s, η(s)) ∈ Γstr(η) and (Tηξ)(x) = 0 if x ∈ Γ0. (1.13)

Let us note that the adjoint T ∗η : L2(∂F(η))→ L2(0, 1) of Tη is given by

(T ∗η v)(s) = (1 + |∂sη(s)|2)1/2v(s, η(s)) · e2. (1.14)

We also set
HS

def
= L2

0(0, 1), (1.15)

D(A1)
def
= H4(0, 1) ∩H2

0 (0, 1) ∩ L2
0(0, 1), A1ξ

def
= αM∂ssssξ − β∂ssξ, (1.16)

and
D(A2)

def
= H2(0, 1) ∩H1

0 (0, 1) ∩ L2
0(0, 1), A2ξ

def
= −δM∂ssξ. (1.17)

The properties of these operators are described in Section 3. In particular their square roots A
1/2
1 and A

1/2
2

are well defined. We also denote by (·, ·)HS the usual scalar product of L2(0, 1).
With the above notation, systems (1.3) and (1.8) rewrite:

∂tv + (v · ∇)v − divT(v, p) = fS , t > 0, x ∈ F(η(t)),
div v = 0 t > 0, x ∈ F(η(t)),

v = Tη(t)∂tη + 1Γ0(bS + Ξ(u)) t > 0, x ∈ ∂F(η(t)),
∂ttη +A1η +A2∂tη = −MT ∗η(t)T(v, p)n+MgS , t > 0, s ∈ (0, 1),

(1.18)
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and 
(vS · ∇)vS − divT(vS , pS) = fS , x ∈ F(ηS),

div vS = 0 x ∈ F(ηS),
vS = 1Γ0b

S x ∈ ∂F(ηS),
A1η

S = −MT ∗ηST(vS , pS)n+MgS , s ∈ (0, 1),

(1.19)

In above settings 1Γ0 denotes the characteristic function of Γ0.
Our aim is to use the control u in (1.3) in order to “reach” the above stationary state. More precisely, we

impose a feedback law depending on the difference between (v(t, ·), η(t, ·), ∂tη(t, ·)) and (vS , ηS , 0) in order
to obtain that the difference between these states goes to 0 exponentially.

Such results of stabilization are classical for the classical Navier-Stokes system (without any structure),
see for instance, [23], [38], [9], [37], [2], [5], etc. Note that for this problem there is a difference between the
dimension 2 and the dimension 3: due to the nonlinearity in the Navier-Stokes system, and to the method
developed (stabilization of the linearized system, fixed point), in dimension 2 one can take initial data in L2

(or Hs, s < 1/2), whereas in dimension 3, one needs to take the initial data in H1 (or at least Hs, s > 1/2).
As a consequence, in dimension 3, we have to impose compatibility condition at t = 0 between the initial
condition and the feedback control u (see [4, 3, 2] for details). Several techniques have been considered to
overcome this difficulty: [34], [2], [5], etc. For instance in [5], the solution consists in assuming that the
control u satisfies an evolution equation with another feedback control. We are thus reduced to stabilize a
system coupling the fluid velocity and the control u. In dimension 2, the method allows to consider classical
feedback operators for weak solutions. This is done for the Navier-Stokes system in [38]. Note that in
dimension 2, the stabilization of strong solutions leads to the same problem of compatibility conditions.

For the fluid-structure interaction systems, there are few results of stabilization. A first result was
obtained in [36] for the system considered in this article. The target velocity vS is zero, the control is acting
in the whole structure and the author works with strong solutions (initial data in H1 for the fluid velocity).
The case of a deformable structure immersed in a fluid is considered in [19], [18]. For the case of a rigid
body, a 1d simplified model is treated in [7] whereas the 2d and 3d case are considered in [6]. In this last
paper, we work with a notion of weak solutions in order to deal with the 2d case without the problem of the
compatibility conditions. However, in [6] we need that the initial and the final position of the structure are
equal.

The main novelty of this work is to prove stabilizability result for weak solutions of a fluid-structure
system. Moreover, we consider a nontrivial target velocity vS to be stabilized. We work in the 2d case
only and the method for the stabilization follows the same idea as the papers quoted above. One important
difficulty that we need to deal with is that there is no proof in the literature for the existence of weak
solutions of a fluid-structure system with a Banach fixed point. In order to do this here, a first step consists
in performing a change of variables to work on a cylindrical domain (see Section 2). Such an approach is
already considered for strong solutions and there exists changes of variables that allow to keep the divergence
free conditions and the form of the boundary conditions. We don’t employ such a change of variables on
the unknowns but on the test functions. This leads to transform our system in a cylindrical domain with
non homogeneous divergence conditions and non homogeneous boundary conditions. We can overcome the
corresponding difficulty by using a framework developed in [39] for the Navier-Stokes system. All this work
could be adapted to other fluid-structure systems such as the case of rigid bodies moving into a viscous
incompressible fluid as in [6]. Indeed, the presence here of the deformable structure that follows a beam
equation leads to lots of technical difficulties (see the three sections in the appendix).

Let us also mention that several works have been devoted to the study of the fluid–plate system. The
model was proposed in [33]. The existence of weak solutions was proved in [16] and the existence of strong
solutions was obtained in [10] and in [29]. For these two results, as in our case, the damping term, that is
−δ∂tssη, is essential. In [24], the author manages to prove the existence of weak solutions (in 2d or in 3d)
for this problem in the case without damping (δ = 0).

Let us write the weak formulations for both systems (1.18) and (1.19). Assume

ϕ ∈ C1
0 ([0,∞); C1(F(η(t)))), ζ ∈ C1

0 ([0,∞);C2([0, 1]) ∩ L2
0(0, 1))

(see Section 2.1 for the precise definition of such a functional space) satisfy

divϕ = 0 in F(η(t)), (1.20)

ϕ = Tηζ on ∂F(η(t)), (1.21)
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ζ(t, 0) = ζ(t, 1) = ∂sζ(t, 0) = ∂sζ(t, 1) = 0. (1.22)

The weak formulation for (1.18) is

−
∫
F(η01)

v0 · ϕ(0, ·) dx−
∫
R+

∫
F(η(t))

v · (∂tϕ+ (v · ∇)ϕ) dx dt+ 2ν

∫
R+

∫
F(η(t))

D(v) : D(ϕ) dx dt

−
(
η0

2 , ∂tζ(0, ·)
)
HS
−
∫
R+

(
∂tη, ∂tζ

)
HS

dt+

∫
R+

(
A

1/2
1 η,A

1/2
1 ζ

)
HS

dt

−
(
A

1/2
2 η0

1 , A
1/2
2 ζ

)
HS
−
∫
R+

(
A

1/2
2 η,A

1/2
2 ∂tζ

)
HS

dt =

∫
R+

∫
F(η(t))

fS · ϕ dx dt+

∫
R+

(
gS , ζ

)
HS

dt.

(1.23)

Assume ϕS ∈ C1(F(ηS)) and ζS ∈ C2([0, 1]) ∩ L2
0(0, 1) satisfy

divϕS = 0 in F(ηS), (1.24)

ϕS = TηS ζ
S on ∂F(ηS), (1.25)

ζS(0) = ζS(1) = ∂sζ
S(0) = ∂sζ

S(1) = 0. (1.26)

The weak formulation for (1.19) is

−
∫
F(ηS)

vS · (vS · ∇)ϕS dy + 2ν

∫
F(ηS)

D(vS) : D(ϕS) dy +

∫
R+

(
A

1/2
1 ηS , A

1/2
1 ζS

)
HS

=

∫
F(ηS)

fS · ϕS dy +
(
gS , ζ

)
HS
. (1.27)

One of the difficulties, that is classical in fluid-structure interaction problems, is coming from the fact that
the solutions and the test functions of (1.18) and of (1.19) are not written in the same spatial domains. To
overcome this issue, we transform the system (1.18) by using a change of variables X such that X(t,F(ηS)) =
F(η(t, ·)) and X(t,Γstr(η

S)) = Γstr(η(t, ·)), and also such that X(t, ·) = Id on Γ0 for all t. More precisely,
here we use a change of variables depending on time through a dependance on η(t) only: we choose the
particular form X(t, ·) = Xη(t) for all t > 0 where, for any deformation η ∈ H2

0 (0, 1), Xη : R2 → R2 satisfies
Xη(F(ηS)) = F(η) and

Xη(s, ηS(s)) = (s, η(s)) s ∈ (0, 1), Xη(·) = Id on Γ0. (1.28)

The construction of Xη is given in Section 2.2. Note that we will obtain that Xη(t) is a C1-diffeomorphism
of R2 into itself for all t > 0 by assuming that η is a continuous bounded function in time with values in
C1([0, 1]) and is close to ηS .

The change of variables also allows us to describe the feedback law satisfied by u in (1.3). We take u
under the form

u(t, x) =

Nσ∑
j=1

Fj(v(t, .), η(t, .), ∂tη(t, .))vj(x) t > 0, x ∈ Γ0, (1.29)

with

Fj(v, η1, η2) =

∫
F(ηS)

(
∇Xη1(y)∗v(Xη1(y))− vS(y)

)
· ϕj(y) dy

+
(
A

1/2
1 (η1 − ηS), A

1/2
1 ζ1

j

)
HS

+
(
η2, ζ

2
j

)
HS

(1.30)

and

Nσ ∈ N, vj ∈ H2(Γ0),
[
ϕj , ζ

1
j , ζ

2
j

]
∈ L2(F(ηS))× (H2

0 (0, 1) ∩HS)×HS , j ∈ {1, . . . , Nσ}. (1.31)

Now, let us give the definition of a weak solution for our problem.

Definition 1.1. The pair (v, η) is a weak solution of (1.18) if it satisfies the following properties
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1. it satisfies the regularity
η ∈ C([0,+∞);H2

0 (0, 1) ∩ L2
0(0, 1)) ∩ L2

loc(0,+∞;H3(0, 1)),

∂tη ∈ C([0,+∞);L2
0(0, 1)) ∩ L2

loc(0,+∞;H1
0 (0, 1)),

v ∈ C([0,+∞); L2(F(η(t)))) ∩ L2
loc(0,+∞; H1(F(η(t))));

(1.32)

2. there exists a family {X(t, ·)}t>0 of C1-diffeomorphisms that transforms F onto F(η(t, ·)) and such
that both X and X−1 belong to Cb(C

1(F)).

3. we have v = bS + Ξ(u) on (0,+∞)× Γ0, with u obtained through (1.29)–(1.31);

4. relation (1.23) holds for all (ϕ, ζ) ∈ C1
0 ([0,∞);C1(F(η(t)))× (C2([0, 1]) ∩ L2

0(0, 1))) satisfying (1.20)-
(1.22).

We refer to Section 2.1 for the precise definition of the functional spaces used above.

Theorem 1.2. Assume
ηS ∈ C3([0, 1]) and F(ηS) is of class C1,1, (1.33)

and
fS ∈W2,∞(R2), vS ∈W2,∞(F(ηS)). (1.34)

Then for all σ > 0, there exist Nσ ∈ N, µ > 0, C > 0, vj ∈ H2(Γ0), j = 1, . . . , Nσ such that if

‖v0 ◦Xη0 − v
S‖L2(F(ηS)) + ‖η0

1 − ηS‖H2(0,1) + ‖η0
2‖L2(0,1) 6 µ

then there exists a weak solution (v, η) of (1.18), (1.29)-(1.31) (in the sense of Definition 1.1) and:

‖v ◦Xη(t) − vS‖L2(F(ηS)) + ‖η(t)− ηS‖H2(0,1) + ‖∂tη(t)‖L2(0,1)

6 Ce−σt
(
‖v0 ◦Xη01 − v

S‖L2(F(ηS)) + ‖η0
1 − ηS‖H2(0,1) + ‖η0

2‖L2(0,1)

)
.

Remark 1.3. Note that assumption F(ηS) of class C1,1 allows us to freely use H2-regularity results for the
Laplace equation and for the Stokes equations. It is also a natural assumption because, even if the reference
domain Fref and ηS are regular, the boundary conditions ηS = ∂sη

S = 0 on {0, 1} do not guarantee a class
of regularity for F(ηS) better than C1,1.

Remark 1.4. The family
[
ϕj , ζ

1
j , ζ

2
j

]
, j = 1, . . . , Nσ can be obtained for instance from

[
ϕj , ζ

1
j , ζ

2
j

]
= Lvj

where L is finite rank linear operator on L2(F(ηS))×
(
H2

0 (0, 1) ∩HS
)
×HS independent of j which can be

computed from the solution of a finite dimensional Riccati equation, see [5, 8] or [37] for details.

Remark 1.5. The uniqueness of the controlled weak solution (in the sense of Definition 1.1) is not proved
in Theorem 1.2. Since the proof relies on a Banach fixed point argument it is indeed true that the solution
is unique within a class of stable solutions sufficiently close to the stationary state. But uniqueness is not
obtained in the classical energy space defined by (1.32). The uniqueness of weak solution is not an easy issue,
even under the hypothesis of small initial data. It must be the subject of further investigations.

Remark 1.6. Using the method developed here, we can obtain the same result for other fluid-structure
systems. For instance, we could obtain the stabilization of weak solutions for the case where the structure
is a rigid body (see [6]). One could also consider the case of a deformable structure in the case where the
equation of deformation is approximated by a finite dimensional method: see [20], [28], [14]. For these cases,
the fixed point and the estimates are simpler than here. The case of a deformable structure modeled by the
Lame equation or by the wave equation with an adequate damping can also obtained directly from our work.
For other damping laws or without damping, even the well-posedness is not always done and the corresponding
stabilization problems have to be studied differently. Let us quote some references on the well-posedness of
such systems: [15], [12], [13], [30], [40], etc.

The outline of the paper is as follows. In Section 2, we construct the change of variables and we rewrite
the system in a fixed domain. We then obtain the system satisfied by the difference between the controlled
solution and the stationary state. By linearizing this system, we obtain in Section 3 the coupled system (3.1)–
(3.4) that couples an Oseen’s type system with a beam type system with dissipation. With this dissipation,
we prove that the semigroup associated with system (3.1)–(3.4) is analytic. That allows us to use the general
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theory developed in [5, 8] to deduce in Section 4 the feedback stabilization of our linear system, first in the
homogeneous case and then in the non homogeneous case (and in particular with terms corresponding to the
non null divergence condition and non null boundary condition). In Section 5, we use a fixed point procedure
to obtain the stabilization of the nonlinear system and thus to prove the main result. In the appendix, we
postpone technical proofs to the three sections: Section A is devoted to the change of variables, Section B
to the linearization, and Section C to some estimates for the fixed point.

2 Notation and change of variables

2.1 Notation

The classical Lebesgue and Sobolev spaces are written Lα, Hk and we denote by Cb the continuous and
bounded maps. We use the bold notation for the spaces of vector fields: Lα = (Lα)2, Hk = (Hk)2

etc. For a Hilbert space X and 0 < T 6 +∞, Lp(0, T ;X ) and Hs(0, T ;X ), p ∈ [1,∞], s > 0, are
usual vector-valued Lebesgue and Sobolev spaces and in the case T = +∞, we use the shorter expressions

Lp(X )
def
= Lp(0,+∞;X ) and Hs(X )

def
= Hs(0,+∞;X ). We denote by L2

loc(0, T ;X ) (resp. Hs
loc(0, T ;X )) the

set of functions belonging to L2(0, T ;X ) (resp. Hs(0, T ;X )) for all T > 0. For two Hilbert spaces X , Y we

write W (X ,Y)
def
= L2(X ) ∩H1(Y).

If Z is a vector-valued function space of the time variable t > 0, for σ > 0 we use the subscript σ in Zσ
to denote the space

Zσ
def
=
{
Z ∈ Z ; t 7→ eσtZ(t) ∈ Z

}
. (2.1)

For instance,

Wσ(X ,Y)
def
=
{
Z ∈ L2(X ) ∩H1(Y) ; t 7→ eσtZ(t) ∈W (X ,Y)

}
.

We use the notation (X )′, or simply X ′, for the dual space of X , we use the notation L(X ,Y) for the
bounded linear maps from X into Y and the notation X ↪→ Y for the continuous embedding of X into Y.
Moreover, [X ,Y]θ denotes the complex interpolation space of index θ ∈ (0, 1). If X ↪→ Y the following
continuous embeddings hold for all θ ∈ (0, 1) and s ∈ (1/2, 1]:

L2(X ) ∩Hs(Y) ↪→ Cb([X ,Y]1/(2s)) and L2(X ) ∩Hs(Y) ↪→ Hθs([X ,Y]θ). (2.2)

The first above embedding is an easy consequence of the fact that [X ,Y]1/(2s) is the trace space of L2(X ) ∩
Hs(Y), see e.g. [25]. The second one comes from the equality [L2(X ), Hs(Y)]θ = Hθs([X ,Y]θ) (see Theorem
5.1 and (6.8) in [27]) combined with the embedding L2(X ) ∩Hs(Y) ↪→ [L2(X ), Hs(Y)]θ.

In order to simplify the notation, we write in what follows

F def
= F(ηS), Γstr

def
= Γstr(η

S), (2.3)

and we introduce spaces of free divergence functions in F as well as the corresponding trace spaces on ∂F :

V0
n(F)

def
=
{
f ∈ L2(F) ; div f = 0 in F and f · n = 0 on ∂F

}
,

Vs
0(F)

def
= {f ∈ Hs(F) ; div f = 0 in F and f = 0 on ∂F} , (s > 1/2),

Vs(∂F)
def
=

{
w ∈ Hs(∂F) ; 〈w · n, 1〉

H
− 1

2 (∂F),H
1
2 (∂F)

= 0

}
(s > −1/2).

We also use functional spaces of type L2(0,∞; H1(F(η(t)))). Such a space is defined through a family
{X(t, ·)}t>0 of C1-diffeomorphisms that transforms F onto F(η(t, ·)) and such that both X and X−1 belong
to Cb(C

1(F)). We say that v ∈ L2(0,∞; H1(F(η(t)))) if v ◦X ∈ L2(H1(F)). It can be seen that the above
definition of L2(0,∞; H1(F(η(t)))) is independent of the choice of X. For instance, if η ∈ Cb(C1([0, 1])) one
can choose the family of change of variables {Xη(t)}t>0 introduced in Section 2.2 below. Other spaces
of functions defined on a non cylindrical domain of R3 are defined similarly: Cb([0,∞); L2(F(η(t)))),
C1([0,∞); C1(F(η(t))), etc.

In what follows, C > 0 denotes a generic constant that may change from line to line and which is
independent on the other terms of the relation where it is used.
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2.2 Construction of the change of variables

We transform the system (1.18) written in the non cylindrical domain⋃
t>0

{t} × F(η(t))

onto the domain
(0,∞)×F .

We recall that, here and in what follows, we use the simplified notation F def
= F(ηS) and Γstr

def
= Γstr(η

S).
Since ηS ∈ C3([0, 1]), see (1.33), we can extend ηS to a function in C3(R).

We consider the set

Vα =
{

(y1, y2) ∈ R2 ; y1 ∈ (0, 1), y2 ∈ (ηS(y1)− α, ηS(y1))
}
. (2.4)

We suppose that α > 0 is small enough in order that Vα ⊂ F . Note that ∂Vα ∩ ∂F = Γstr. We consider
θ̂ ∈ C∞c (R) such that θ̂ ≡ 1 in (−α/2, α/2) and θ̂ ≡ 0 in R\(−α, α), and for (y1, y2) ∈ R2 we define

θ(y1, y2)
def
= θ̂(y2 − ηS(y1)). Then θ ∈ C3(R2) and for a given function η ∈ H2

0 (0, 1) we define the change of
variables:

Xη : R2 → R2, y 7→
{
y + θ(y)(η(y1)− ηS(y1))e2 if y1 ∈ (0, 1),

y if y1 /∈ (0, 1).

We can check that Xη = Id in F\Vα and that (1.28) holds true, and in particular

Xη(∂F) = ∂F(η). (2.5)

Note that η ∈ H2
0 (0, 1) and ηS ∈ H2

0 (0, 1) imply that the extension of η−ηS by zero outside (0, 1) belongs
to H2(R) and is supported in [0, 1]. As a consequence, Xη ∈ H2(R2). From the continuous embedding
H2

0 (0, 1) ↪→ C1([0, 1]) we also deduce that Xη ∈ C1(R2). Moreover, we can check that for (y1, y2) ∈ R2,

det(∇Xη(y1, y2)) = 1 + θ̂′(y2 − ηS(y1))(η(y1)− ηS(y1)), (2.6)

and that the mapping Xη is a C1-diffeomorphism of R2 onto itself if we assume that

‖θ̂′‖L∞(R)‖η − ηS‖L∞(0,1) < 1. (2.7)

In that case, from (2.5), we deduce that Xη is a C1-diffeomorphism of F onto F(η). We denote by Yη the
inverse of Xη.

In what follows, we will construct a solution t 7→ η(t) in Cb(H
2
0 (0, 1)) such that

‖η − ηS‖L∞(L∞(0,1)) 6 c0 (2.8)

for c0 ∈ (0, 1/‖θ̂′‖L∞(R)). This will guarantee that for all t > 0, Xη(t) is a C1-diffeomorphism of F onto
F(η(t)) and that Xη(·) ∈ Cb(C

1(F)) and Yη(·) ∈ Cb(C
1(F)). In what follows, we will use the simplified

notation
∀(t, y) ∈ R+ ×F , X(t, y)

def
= Xη(t)(y) and Y (t, y)

def
= Yη(t)(y).

From their definitions we observe that

∀t > 0, X(t, ·) = Id in F\Vα,

and
∀t > 0, ∇X(t, ·) = I2 in F\Vα.

In the sequel, we use the above relation on Γ0.
Finally, for a 2×2 matrix M we denote by Cof(M) the cofactor matrix and we recall the classical relations

det(M) = M Cof(M)∗ = Cof(M)∗M. (2.9)

We remark that (2.7), (2.6) imply det(∇X) > 0 and using (2.9) we deduce that for v, ϕ in L2(L2(F(η(t)))),∫
F(η(t))

v(t, x) · ϕ(t, x)dx =

∫
F
ṽ(t, y) · ϕ̃(t, y)dy, (2.10)

where ṽ(t, y) = ∇X(t, y)∗v(t,X(t, y)) and ϕ̃(t, y) = Cof(∇X(t, y))∗ϕ(t,X(t, y)). It is such an observation
that motivates the change of variables that are introduced in the next section (see (2.11) and (2.15) below).
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2.3 Rewriting the system (1.3) in a fixed domain

In this section we assume (2.8). Our change of variables is defined by

ṽ(t, y)
def
= ∇X(t, y)∗v(t,X(t, y)). (2.11)

Remark 2.1. We could have used the change of variables ṽ(t, y)
def
= v(t,X(t, y)) or, as in [41] or [14],

ṽ(t, y)
def
= Cof(∇X(t, y))∗v(t,X(t, y)). The advantage of the latter choice is that it preserves the divergence

free condition. Here we use this formula to transform the test function ϕ, see (2.15) below.

We have the following results (the technical proof is postponed in Section A.1).

Lemma 2.2. With the notation (2.11), we have

det(∇X)(div v) ◦X = div(Kṽ), (2.12)

with
K

def
= det(∇X)[∇Y ](X)[∇Y ]∗(X). (2.13)

Moreover the equation
v = (∂tη)e2 on Γstr(η(t)),

is equivalent to
ṽ = (∇X)∗ [Cof(∇X)]−∗ (∂tη)e2 on Γstr. (2.14)

For the test function in (1.23), we use the following change of variables.

ϕ̃(t, y)
def
= Cof(∇X(t, y))∗ϕ(t,X(t, y)). (2.15)

Lemma 2.3. With the notation (2.15), if ϕ satisfies (1.20)–(1.22) then

div ϕ̃ = 0 in F , (2.16)

ϕ̃ = TηS ζ on ∂F . (2.17)

We can then transform the weak formulation (1.23): combining Lemma A.1, Lemma A.2, and Lemma
A.3 in the appendix (Section A), we obtain that ṽ satisfies the weak formulation

−
∫
F
ṽ0 · ϕ̃(0, ·) dy −

∫
R+

∫
F
ṽ · ∂tϕ̃ dy +

∫
F
M(1)

ξ (ṽ,∇ṽ) : ∇ϕ̃ dy +

∫
F
M(2)

ξ (ṽ,∇ṽ) · ϕ̃ dy

−
∫
F
B(1)
ξ (ṽ, ṽ) : ∇ϕ̃ dy −

∫
F
B(2)
ξ (ṽ, ṽ) · ϕ̃ dy

−
(
η0

2 , ∂tζ(0, ·)
)
HS
−
∫
R+

(
∂tη, ∂tζ

)
HS

dt+

∫
R+

(
A

1/2
1 η,A

1/2
1 ζ

)
HS

dt

−
(
A

1/2
2 η0

1 , A
1/2
2 ζ(0)

)
HS
−
∫
R+

(
A

1/2
2 η,A

1/2
2 ∂tζ

)
HS

dt =

∫
R+

∫
F

(∇X)∗(fS◦X)·ϕ̃ dy dt+
∫
R+

(
gS , ζ

)
HS

dt,

(2.18)

where
ξ

def
= η − ηS ,

where ṽ0 def
= ∇X(0, y)∗v0(X(0, y)), where M(1)

ξ =M(3)
ξ +M(5)

ξ , M(2)
ξ =M(4)

ξ +M(6)
ξ are linear mappings

depending on ξ given in Lemma A.1 and Lemma A.2, and where B(1)
ξ , B(2)

ξ are bilinear mappings depending
on ξ given in Lemma A.3. Note that (2.10) is used to transform (1.23) into (2.18).

Since (vS , ηS) is independent in time, we have∫
F
vS · ϕ̃(0, ·) dy +

∫
R+

∫
F
vS · ∂tϕ̃ dy dt+

(
A

1/2
2 ηS , A

1/2
2 ζ(0)

)
HS

+

∫
R+

(
A

1/2
2 ηS , A

1/2
2 ∂tζ

)
HS

dt = 0,

for (ϕ̃, ζ) ∈ C1
0 ([0,∞);C1(F)× (C2([0, 1]) ∩ L2

0(0, 1))).

9



Using the above relation, (1.27) and (2.18), we deduce that

w̃
def
= ṽ − vS (2.19)

satisfies

−
∫
F
w̃0 · ϕ̃(0, ·) dy −

∫
R+

∫
F
w̃ · ∂tϕ̃ dy +

∫
F
M(1)

ξ (w̃ + vS ,∇w̃ +∇vS) : ∇ϕ̃ dy

+

∫
F
M(2)

ξ (w̃ + vS ,∇w̃ +∇vS) · ϕ̃ dy − 2ν

∫
F
D(vS) : D(ϕ̃) dy

−
∫
F
B(1)
ξ (w̃ + vS , w̃ + vS) : ∇ϕ̃ dy −

∫
F
B(2)
ξ (w̃ + vS , w̃ + vS) · ϕ̃ dy +

∫
F

(vS ⊗ vS) : ∇ϕ̃ dy

−
(
ξ0
2 , ∂tζ(0, ·)

)
HS
−
∫
R+

(
∂tξ, ∂tζ

)
HS

dt+

∫
R+

(
A

1/2
1 ξ, A

1/2
1 ζ

)
HS

dt

−
(
A

1/2
2 ξ0

1 , A
1/2
2 ζ(0)

)
HS
−
∫
R+

(
A

1/2
2 ξ, A

1/2
2 ∂tζ

)
HS

dt =

∫
R+

∫
F

[
(∇X)∗(fS ◦X)− fS

]
· ϕ̃ dy dt, (2.20)

where
w̃0 def

= ṽ0 − vS , ξ0
1

def
= η0

1 − ηS , ξ0
2

def
= η0

2 . (2.21)

Now, we can decompose the above operators in a linear part and surlinear part. First, we define the sets
of type Qi(α1, . . . , αk) where i, k ∈ N. They are the sets of polynomials in the variables α1, . . . , αk and with
coefficients that are Lipschitz continuous functions of y ∈ R2 and of ξ and that vanish in F\Vα (see (2.4)),
and such that the degree of its nonzero monomial of lowest degree is greater or equal to i. For instance, we
can write

1

1 + (∂y2θ)ξ
= 1− (∂y2θ)ξ +

(∂y2θ)
2(ξ)2

1 + (∂y2θ)ξ
.

Using (2.7), we deduce from the above relation that

1

1 + (∂y2θ)ξ
− 1 ∈ Q1(ξ),

1

1 + (∂y2θ)ξ
− 1 + (∂y2θ)ξ ∈ Q2(ξ).

Similarly,

ξ(∂sξ)
3 +

1

1 + (∂y2θ)ξ
(∂tξ)(∂sξ) ∈ Q2(ξ, ∂sξ, ∂tξ).

We also need to consider the partial degree of such terms: for instance if we denote by r = r(ξ, ∂sξ, ∂tξ) the
above polynomial,

deg2 r = 3, deg3 r = 1, deg1,2 r = 4, deg1,3 r = 1.

The last expression means the total degree with respect to the first and the third variables.
For the linear part, we also introduce a notation: we write

γ(i)(α1, . . . , αk)

the linear mappings that depend on y in a Lipschitz continuous way and that vanish in F\Vα (see (2.4)).
From Lemma 2.2 and Lemma B.1, we obtain

div w̃ = − div(γ(1)(ξ, ∂sξ)v
S)− div(r(1)(ξ, ∂sξ, w̃)), (2.22)

where
r(1) ∈ Q2(α1, α2, α3, α4), deg3,4 r

(1) 6 1.

To avoid a linear operator in the divergence condition, we consider another change of variable:

w
def
= w̃ + γ(1)(ξ, ∂sξ)v

S . (2.23)

Then relation (2.22) transforms into

divw = div(r(2)(ξ, ∂sξ, w)),
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and relation (2.14) transforms into (see Lemma B.1)

w = (∂tξ)e2 + r(2)(ξ, ∂sξ, w) on Γstr,

where
r(2) ∈ Q2(α1, α2, α3, α4), deg3,4 r

(2) 6 1. (2.24)

In what follows, we introduce the new state variable

Z = [w, ξ, ∂tξ]

and we write
Fdiv(Z) = div(r(2)(ξ, ∂sξ, w)). (2.25)

Then the divergence condition for w can be rewritten as:

divw = Fdiv(Z) in F . (2.26)

In order to rewrite the boundary condition for w we write

Fb(Z) = r(2)(ξ, ∂sξ, w), (2.27)

and we define
T

def
= TηSM ∈ L(L2(0, 1),V0(∂F)), (2.28)

where M and TηS are defined by (1.12) and (1.13). Note that the fact that the range of T belongs to V0(∂F)
follows from the following calculation:∫

∂F
(Tξ) · ndγ =

∫
Γstr

(TηSMξ) · ndγ =

∫ 1

0

Mξ(s)e2 · (−∂sηS(s)e1 + e2)ds =

∫ 1

0

Mξ(s)ds = 0.

Moreover, since the localization operator Ξ is defined by (1.9) from a smooth cut off function ρ supported
in Γ0 we can abusively consider Ξ as an element of L(L2(F)) and (1.9) becomes:

Ξ(u)
def
= ρu−

(∫
∂F

ρu · ndγ
)
ρn. (2.29)

Then the boundary condition for w can be rewritten as

w = T (∂tξ) + Fb(Z) + Ξ(u) on (0,+∞)× ∂F . (2.30)

Next, (2.20) is transformed into

−
∫
F
w0 · ϕ̃(0, ·) dy −

∫
R+

∫
F
w · ∂tϕ̃ dy −

∫
R+

∫
F
γ(1)(∂tξ, ∂tsξ)v

S · ϕ̃ dy

+

∫
F
M(1)

ξ (w + (1− γ(1))vS ,∇w +∇((1− γ(1))vS)) : ∇ϕ̃ dy

+

∫
F
M(2)

ξ (w + (1− γ(1))vS ,∇w +∇((1− γ(1))vS)) · ϕ̃ dy − 2ν

∫
F
D(vS) : D(ϕ̃) dy

−
∫
F
B(1)
ξ (w + (1− γ(1))vS , w + (1− γ(1))vS) · ϕ̃ dy

−
∫
F
B(2)
ξ (w + (1− γ(1))vS , w + (1− γ(1))vS) : ∇ϕ̃ dy +

∫
F

(vS ⊗ vS) : ∇ϕ̃ dy

−
(
ξ0
2 , ∂tζ(0, ·)

)
HS
−
∫
R+

(
∂tξ, ∂tζ

)
HS

dt+

∫
R+

(
A

1/2
1 ξ, A

1/2
1 ζ

)
HS

dt

−
(
A

1/2
2 ξ0

1 , A
1/2
2 ζ(0)

)
HS
−
∫
R+

(
A

1/2
2 ξ, A

1/2
2 ∂tζ

)
HS

dt =

∫
R+

∫
F

[
(∇X)∗(fS ◦X)− fS

]
· ϕ̃ dy dt, (2.31)

where w0 def
= w̃0 + γ(1)(ξ0

1 , ∂sξ
0
1)vS . In the above expression, we have written γ(1) instead of γ(1)(ξ, ∂sξ) to

shorten the formula.
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From Lemmas B.2, B.3, B.4, B.5, we can write the above relation as

−
∫
F
w0 · ϕ̃(0, ·) dy −

∫
R+

∫
F
w · ∂tϕ̃ dy + 2ν

∫
R+

∫
F
D(w) : D(ϕ̃) dy dt

+

∫
R+

∫
F

[
γ(3)(ξ, ∂sξ, ∂ssξ, ∂tξ) + r(3)(ξ, ∂sξ, ∂ssξ, ∂tξ, w,∇w)

]
: ∇ϕ̃ dy dt

+

∫
R+

∫
F

[
γ(4)(ξ, ∂sξ, ∂ssξ, ∂tξ, ∂tsξ) + r(4)(ξ, ∂sξ, ∂ssξ, ∂tξ, ∂tsξ, w,∇w)

]
· ϕ̃ dy dt

−
∫
R+

∫
F

(w ⊗ vS + vS ⊗ w) : ∇ϕ̃ dy dt

−
(
ξ0
2 , ∂tζ(0, ·)

)
HS
−
∫
R+

(
∂tξ, ∂tζ

)
HS

dt+

∫
R+

(
A

1/2
1 ξ, A

1/2
1 ζ

)
HS

dt

−
(
A

1/2
2 ξ0

1 , A
1/2
2 ζ(0)

)
HS
−
∫
R+

(
A

1/2
2 ξ, A

1/2
2 ∂tζ

)
HS

dt = 0, (2.32)

where

r(3)(ξ, ∂sξ, ∂ssξ, ∂tξ, w,∇w) = r(5)(ξ, ∂sξ, ∂ssξ, ∂tξ, w) + r(6)(ξ, ∂sξ,∇w) + r(7)(ξ, ∂sξ, w), (2.33)

r(5) ∈ Q2(α1, . . . , α6), deg3,4 r
(5) 6 1, deg5,6 r

(5) 6 1, (2.34)

r(6) ∈ Q2(α1, . . . , α6), deg3,...,6 r
(6) 6 1, (2.35)

r(7) ∈ Q2(α1, . . . , α4), deg3,4 r
(7) 6 2, (2.36)

and

r(4)(ξ, ∂sξ, ∂ssξ, ∂tξ, ∂tsξ, w,∇w) = r(8)(ξ, ∂sξ, ∂ssξ, w) + r(9)(ξ, ∂sξ, ∂ssξ,∇w)

+ r(10)(ξ, ∂sξ, ∂ssξ, ∂tξ, w) + r(11)(ξ, ∂sξ, ∂tξ, ∂tsξ, w) + r(12)(ξ, ∂sξ, ∂ssξ, w), (2.37)

r(8) ∈ Q2(α1, . . . , α5), deg3 r
(8) 6 2, deg4,5 r

(8) 6 1, (2.38)

r(9) ∈ Q2(α1, . . . , α7), deg3 r
(9) 6 1, deg4,...,7 r

(9) 6 1, (2.39)

r(10) ∈ Q2(α1, . . . , α6), deg3 r
(10) 6 1, deg4 r

(10) 6 1, deg5,6 r
(10) 6 1, (2.40)

r(11) ∈ Q2(α1, . . . , α6), deg3,4 r
(11) 6 1, deg5,6 r

(11) 6 1, (2.41)

r(12) ∈ Q2(α1, . . . , α5), deg3 r
(12) 6 1, deg4,5 r

(12) 6 2. (2.42)

In what follows we write

F (Z)
def
= −r(4)(ξ, ∂sξ, ∂ssξ, ∂tξ, ∂tsξ, w,∇w), G(Z)

def
= −r(3)(ξ, ∂sξ, ∂ssξ, ∂tξ, w,∇w), (2.43)

and we write γ(3) and γ(4) as operators acting on ξ1 = ξ and ξ2 = ∂tξ, namely

Λ(1)(ξ1, ξ2) = γ(3)(ξ1, ∂sξ1, ∂ssξ1, ξ2) and Λ(2)(ξ1, ξ2) = γ(4)(ξ1, ∂sξ1, ∂ssξ1, ξ2, ∂sξ2). (2.44)

Then (2.32) becomes

−
∫
F
w0 · ϕ̃(0, ·) dy −

∫
R+

∫
F
w · ∂tϕ̃ dy + 2ν

∫
R+

∫
F
D(w) : D(ϕ̃) dy dt

+

∫
R+

∫
F

Λ(1)(ξ, ∂tξ) : ∇ϕ̃ dy dt+

∫
R+

∫
F

Λ(2)(ξ, ∂tξ) · ϕ̃ dy dt−
∫
R+

∫
F

(w ⊗ vS + vS ⊗ w) : ∇ϕ̃ dy dt

−
(
ξ0
2 , ∂tζ(0, ·)

)
HS
−
∫
R+

(
∂tξ, ∂tζ

)
HS

dt+

∫
R+

(
A

1/2
1 ξ, A

1/2
1 ζ

)
HS

dt−
(
A

1/2
2 ξ0

1 , A
1/2
2 ζ(0)

)
HS

−
∫
R+

(
A

1/2
2 ξ, A

1/2
2 ∂tζ

)
HS

dt =

∫
R+

∫
F
F (Z) · ϕ̃+G(Z) : ∇ϕ̃ dx dt. (2.45)
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Hence, using standard arguments, (2.45) can be rewritten as the following dynamical system: for any
(ϕ, ζ) ∈ C1(F)× C1([0, 1]) ∩ L2

0(0, 1) satisfying
divϕ = 0 in F
ϕ = Tζ on ∂F
ζ = ∂sζ = 0 on {0, 1},

(2.46)

we have

d

dt

∫
F
w · ϕ dy + 2ν

∫
F
D(w) : D(ϕ) dy −

∫
F

(w ⊗ vS + vS ⊗ w) : ∇ϕ dy

+

∫
F

Λ(1)(ξ, ∂tξ) : ∇ϕ dy +

∫
F

Λ(2)(ξ, ∂tξ) · ϕ dy dt

+
d

dt

(
∂tξ, ζ

)
HS

+
(
A

1/2
2 ∂tξ, A

1/2
2 ζ

)
HS

+
(
A

1/2
1 ξ, A

1/2
1 ζ

)
HS

=

∫
F
F (Z) · ϕ+G(Z) : ∇ϕ dy,

ξ1(0) = ξ0
1 and ξ2(0) = ξ0

2 , w(0) = w0 in F , (2.47)

satisfied for all (ϕ, ζ) ∈ H1(Ω)×H2(0, 1) verifying (2.46). The main goal of Sections 3, 4 and 5 will be the
construction of a solution of the dynamical system (2.47), (2.26), (2.30).

Finally, the strong formulation of the system (2.47), (2.26), (2.30) is

∂tw − divT(w, q)− div Λ(1)(ξ, ∂tξ) + Λ(2)(ξ, ∂tξ)

+(vS · ∇)w + (w · ∇)vS = F (Z)− divG(Z) in (0,+∞)×F , (2.48)

divw = Fdiv(Z) in (0,+∞)×F , (2.49)

w = T (∂tξ) + Fb(Z) + Ξ(u) on (0,+∞)× ∂F , (2.50)

∂ttξ +A2∂tξ +A1ξ = −T ∗
(
T(w, q)n+ Λ(1)(ξ, ∂tξ)n

)
+ T ∗G(Z), t ∈ (0,+∞), (2.51)

ξ1(0) = ξ0
1 and ξ2(0) = ξ0

2 , w(0) = w0 in F . (2.52)

2.4 Properties of the linear operators Ξ, T , Λ(1), Λ(1)

In order to study system (2.48)-(2.52) we need to give some regularity properties of Ξ, T , Λ(1), Λ(2).
First, observe that Ξ ∈ L(L2(∂F)) defined by (2.29) is self-adjoint and since ∂F is of class C1,1,

Ξ ∈ L(Vs(∂F)), s ∈ [0, 1]. (2.53)

From a classical interpolation argument and (1.16) we have that for any s ∈ [0, 2], D(A
s/2
1 ) ↪→ H2s(0, 1) ∩

L2
0(0, 1) with moreover

D(A
s/2
1 ) =


H2s(0, 1) ∩H2

0 (0, 1) ∩ L2
0(0, 1) for s ∈ (5/4, 2],

H2s
0 (0, 1) ∩ L2

0(0, 1) for s ∈ (1/4, 3/4) ∪ (3/4, 5/4),
H2s(0, 1) ∩ L2

0(0, 1) for s ∈ [0, 1/4).
(2.54)

Next, we recall that T ∈ L(L2(0, 1),V0(∂F)) is defined by (2.28) (and (1.12), (1.13)). Moreover, it satisfies
(Tξ)Γ0 ≡ 0 for all ξ ∈ HS and

∀ξ ∈ HS , ‖Tξ‖V0(∂F) = ‖Tξ‖L2(Γstr) > C‖ξ‖HS . (2.55)

As a consequence, using (1.13), the regularity on ηS and an interpolation argument, we can check that

∀s ∈ [0, 1/2], T ∈ L(D(As1),V4s(∂F)). (2.56)

Finally, from (1.14) and the regularity on ηS we deduce that T ∗ = MT ∗ηS satisfies

∀s ∈ [0, 1], T ∗ ∈ L(Hs(∂F), Hs(0, 1) ∩ L2
0(0, 1)). (2.57)

In particular,
∀s ∈ [0, 1/8), T ∗ ∈ L(H4s(∂F),D(As1)). (2.58)
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We also underline that since T (L2(0, 1)) ⊂ V0(F) we have T ∗(n) = 0.
Finally, since Λ(1), Λ(2) are defined from γ(3) and γ(4) in (2.44) and since γ(3) and γ(4) are linear mappings

that depend on y in a Lipschitz continuous way we deduce:

Λ(1) ∈ L(D(A
1/2
1 )×HS , (L2(F))2×2), Λ(2) ∈ L(D(A

1/2
1 )×D(A

1/4
1 ),L2(F)), (2.59)

Λ(1) ∈ L(D(A
3/4
1 )×D(A

1/4
1 ), (H1(F))2×2). (2.60)

In what follows we introduce the decompositions

Λ(1)(ξ1, ξ2) = Λ(1,1)(ξ1) + Λ(1,2)(ξ2), Λ(2)(ξ1, ξ2) = Λ(2,1)(ξ1) + Λ(2,2)(ξ2). (2.61)

The following lemma is dedicated to some regularity results for their adjoint operators.

Lemma 2.4. The following regularity properties hold:(
Λ(1,1)

)∗
∈ L((H1(F))2×2,D(A

1/4
1 )′)),

(
Λ(2,1)

)∗
∈ L(H2(F),HS), (2.62)(

Λ(1,2)
)∗
∈ L(H1(F))2×2,D(A

1/4
1 )),

(
Λ(2,2)

)∗
∈ L(H2(F),D(A

1/4
1 )). (2.63)

Proof. First, since γ(3) and γ(4) are linear mappings that depend on y in a Lipschitz continuous way and
that vanish in F\Vα (see (2.4)), there exist Γi ∈ (W 1,∞(F))2×2, i = 1, 2, 3, supported in Vα such that

Λ(1,1)ξ = Γ1ξ + Γ2∂sξ + Γ2∂ssξ.

Its adjoint (Λ(1,1))∗ can be defined as an element of L((L2(F))2×2,D(A
1/2
1 )′) through the relation

〈(Λ(1,1))∗Ψ, ξ〉D(A
1/2
1 )′,D(A

1/2
1 )

=

∫
F
ξ(Γ1 : Ψ) dy +

∫
F
∂sξ(Γ2 : Ψ) dy +

∫
F
∂ssξ(Γ3 : Ψ) dy

(Ψ ∈ (L2(F))2×2, ξ ∈ D(A
1/2
1 )). (2.64)

Assume now that Ψ ∈ (H1(F))2×2) and ξ ∈ D(A
1/2
1 ). Then by integrating by parts∫

F
∂ssξ(Γ3 : Ψ) dy =

∫
Vα
∂ssξ(Γ3 : Ψ) dy =

∫ 1

0

∂ssξ(s)

(∫ ηS(s)

ηS(s)−α
Γ3(s, y2) : Ψ(s, y2) dy2

)
ds

=

∫ 1

0

∂ssξ(s)

(∫ 0

−α
Γ3(s, y2 + ηS(s)) : Ψ(s, y2 + ηS(s)) dy2

)
ds

= −
∫
F
∂sξ

((
∂Γ3

∂y1
+ (∂sη

S)
∂Γ3

∂y2

)
: Ψ + Γ3 :

(
∂Ψ

∂y1
+ (∂sη

S)
∂Ψ

∂y2

))
dy.

In the above calculations we have used the fact that Γ3 is supported in Vα and that ∂sξ = 0 on {0, 1}. The

above relation and (2.64) yield that (Λ(1,1))∗Ψ ∈ D(A
1/4
1 )′ and moreover that

(Λ(1,1))∗ ∈ L((H1(F))2×2),D(A
1/4
1 )′).

This gives the first relation of (2.62).
The three other relations can be obtained in a similar way.

3 Operators for the linear system

3.1 General functional settings

This section is devoted to the study of the linear system

∂tw − divT(w, q)− div Λ(1)(ξ, ∂tξ) + Λ(2)(ξ, ∂tξ)

+(vS · ∇)w + (w · ∇)vS = F − divG in (0,+∞)×F , (3.1)

divw = Fdiv in (0,+∞)×F , (3.2)

w = Tξ2 + Fb + Ξ(u) on (0,+∞)× ∂F , (3.3)

∂ttξ +A2∂tξ +A1ξ = −T ∗
(
T(w, q)n+ Λ(1)(ξ, ∂tξ)n

)
+ T ∗G, t ∈ (0,+∞), (3.4)
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where here F , G, Fdiv and Fb are given.
Let us remark that the results given in this section can be obtained for general operators A1, A2, T , Λ(1)

and Λ(2). More precisely, we only need to assume that A1 : D(A1) ⊂ HS → HS and A2 : D(A2) ⊂ HS → HS
are positive, densely defined, self-adjoint and with compact resolvents and that D(A

1/2
1 ) ↪→ D(A2),

D(A
1/4
1 ) = D(A

1/2
2 ). (3.5)

Assumption (3.5) is crucial in our analysis since it allows to invoke [17] and to obtain the analyticity of the
semigroup generated by the underlying linear operator of system (3.1)-(3.4) (see Proposition 3.11 below).
We suppose that T ∈ L(HS ,V0(∂F)) satisfies (2.55), (2.57), (2.56), (2.58), that (Tξ)Γ0 ≡ 0 for any ξ ∈ HS .
Finally, the operators Λ(1), Λ(2) are assumed to satisfy (2.59), (2.60), (2.61), (2.62) and (2.63). Note that the
operators A1, A2, T , Λ(1) and Λ(2) defined by (1.16), (1.17), (2.28) and (2.44) satisfy the above conditions.

We still assume that Ξ ∈ L(L2(∂F)) is the self-adjoint operator defined by (2.29). We need its precise
definition to obtain the adjoint of the control operator (see (3.67) below). We recall that Ξ satisfies (2.53).

We first consider system (3.1)–(3.4) in the case F = 0, G = 0, Fdiv = 0 and Fb = 0:

∂tw − divT(w, p)− div Λ(1)(ξ1, ξ2) + Λ(2)(ξ1, ξ2) + (vS · ∇)w + (w · ∇)vS = 0 in (0,+∞)×F , (3.6)

divw = 0 in (0,+∞)×F , (3.7)

w = Tξ2 + Ξ(u) on (0,+∞)× ∂F , (3.8)

∂tξ1 = ξ2, t ∈ (0,+∞), (3.9)

∂tξ2 +A2ξ2 +A1ξ1 = −T ∗
(
T(w, p)n+ Λ(1)(ξ1, ξ2)n

)
, t ∈ (0,+∞). (3.10)

The above system is completed with the initial conditions

ξ1(0) = ξ0
1 and ξ2(0) = ξ0

2 , w(0) = w0 in F . (3.11)

We show that the system (3.6)–(3.11) can be rewritten in the form

PZ′ = APZ +Bu in D(A∗)′, PZ(0) = PZ0 (3.12)

(I − P)Z = (I − P)DFu, (3.13)

where A is the infinitesimal generator of an analytic semigroup. This abstract form is quite standard in the
study of the stabilizability for the Navier–Stokes system, see [35].

We consider the space L2(F)×D(A
1/2
1 )×HS equipped with the scalar product:〈[

w(1), ξ
(1)
1 , ξ

(1)
2

]
,
[
w(2), ξ

(2)
1 , ξ

(2)
2

]〉
=

∫
F
w(1) · w(2) dy +

(
A

1/2
1 ξ

(1)
1 , A

1/2
1 ξ

(2)
1

)
HS

+
(
ξ

(1)
2 , ξ

(2)
2

)
HS
,

and we introduce the following spaces:

H def
=
{

[w, ξ1, ξ2] ∈ L2(F)×D(A
1/2
1 )×HS ; w · n = (Tξ2) · n on ∂F , div w = 0 in F

}
,

V def
=
{

[w, ξ1, ξ2] ∈ H1(F)×D(A
3/4
1 )×D(A

1/4
1 ) ; w = Tξ2 on ∂F , div w = 0 in F

}
.

Let us define P the orthogonal projection of L2(F)×D(A
1/2
1 )×HS onto H.

We have the following characterization of the orthogonal of H in L2(F)×D(A
1/2
1 )×HS .

Proposition 3.1. The orthogonal of H in L2(F)×D(A
1/2
1 )×HS is given by

H⊥ =

{
[∇p, 0,−T ∗(pn)] ; p ∈ H1(F),

∫
F
p dy = 0

}
. (3.14)

Proof. Assume [w(1), ξ
(1)
1 , ξ

(1)
2 ] ∈ L2(F)×D(A

1/2
1 )×HS satisfies for all [w(2), ξ

(2)
1 , ξ

(2)
2 ] ∈ H:∫

F
w(1) · w(2) dy +

(
A

1/2
1 ξ

(1)
1 , A

1/2
1 ξ

(2)
1

)
HS

+
(
ξ

(1)
2 , ξ

(2)
2

)
HS

= 0. (3.15)
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Then we have in particular that
∫
F w

(1) · w(2) dy = 0 for all w(2) ∈ V1
0(F) and the De Rham Lemma

guarantees that w(1) = ∇p for some p ∈ H1(F) such that
∫
F p dy = 0, see [42, Chap. I, Prop. 1.1 and Rem

1.4]. Thus, by plugging w(1) = ∇p in (3.15) and integrating by parts, we obtain that∫
∂F

pn · (Tξ(2)
2 ) dγ +

(
ξ

(1)
2 , ξ

(2)
2

)
HS

= 0 and
(
A

1/2
1 ξ

(1)
1 , A

1/2
1 ξ

(2)
1

)
HS

= 0

is satisfied for all [ξ
(2)
1 , ξ

(2)
2 ] ∈ D(A

1/2
1 )×HS , which gives the result.

Proposition 3.2. The orthogonal projection operator P : L2(F)×D(A
1/2
1 )×HS → H satisfies for s ∈ [0, 1]:

P ∈ L(Hs(F)×D(A
1/2+s/4
1 )×D(A

s/4
1 ),Hs(F)×D(A

1/2+s/4
1 )×D(A

s/4
1 )). (3.16)

Proof. First, by using (3.14) we verify that for any [w, ξ1, ξ2] ∈ L2(F)×D(A
1/2
1 )×HS ,

P

wξ1
ξ2

 =

 w −∇p
ξ1

ξ2 + T ∗(pn)


where the pressure function p ∈ H1(F) obeys

∫
F p dy = 0 and is solution to the Neumann problem:{

∆p = divw in F ,
∂p

∂n
+ T (T ∗(pn)) · n = w · n− (Tξ2) · n on ∂F ,

that is for all q ∈ H1(F) such that
∫
F q dy = 0,∫

F
∇p · ∇q dy +

(
T ∗(pn), T ∗(qn)

)
HS

=

∫
F
w · ∇qdy −

(
ξ2, T

∗(qn)
)
HS
. (3.17)

From (3.17), we deduce that

‖∇p‖L2(F) + ‖T ∗(pn)‖HS 6 C(‖w‖L2(F) + ‖ξ2‖HS ),

from which, we obtain (3.16) for s = 0.

For s = 1, we take [w, ξ1, ξ2] ∈ H1(F)×D(A
3/4
1 )×D(A

1/4
1 ). Then, we deduce from (2.56) and from the

C1,1 regularity of ∂F that (Tξ2) · n ∈ H1/2(∂F). Similarly, from (2.56) and (2.57) we get

T (T ∗(pn)) · n− w · n ∈ H1/2(∂F)

and from the regularity of ∂F and standard elliptic properties of the Neumann problem we deduce that
P[w, ξ1, ξ2] ∈ H1(F)×D(A

3/4
1 )×D(A

1/4
1 ).

Then the conclusion follows by an interpolation argument.

As a consequence, since P is self-adjoint on H, a duality argument yields the following result.

Corollary 3.3. The orthogonal projection operator P : L2(F)×D(A
1/2
1 )×HS → H can be extended as an

operator satisfying for s ∈ (0, 1]:

P ∈ L(Hs(F)′ ×D(A
1/2−s/4
1 )×D(A

s/4
1 )′,Hs(F)′ ×D(A

1/2−s/4
1 )×D(A

s/4
1 )′). (3.18)

3.2 The operator A0

First, we define the linear operator A0 : D(A0) ⊂ H → H as follows: we set

D(A0)
def
= V ∩

[
H2(F)×D(A1)×D(A

1/2
1 )

]
, (3.19)

and for
[
w, ξ1, ξ2

]
∈ D(A0), we set

Ã0

wξ1
ξ2

 def
=


ν∆w

ξ2

−A1ξ1 −A2ξ2 − T ∗(2νD(w)n)

 (3.20)
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and
A0

def
= PÃ0. (3.21)

Proposition 3.4. The operator A0 defined by (3.19)–(3.21) is densely defined with compact resolvent and
it is the infinitesimal generator of a strongly continuous semigroup of contractions on H.

Proof. Standard calculation gives, for all Z ∈ D(A0), 〈A0Z,Z〉 6 0 which implies that A0 is dissipative.
Then, we show that (λ − A0) is onto for some λ > 0: assume F = [f, g, h] ∈ H, we have to prove the
existence and the uniqueness of Z = [w, ξ1, ξ2] ∈ D(A0) such that

λw − ν∆w +∇q = f in F ,
divw = 0 in F ,

w = Tξ2 on ∂F ,
λξ1 − ξ2 = g,

λξ2 +A2ξ2 +A1ξ1 = −T ∗ (T(w, q)n) + h.

(3.22)

Let us consider a variational formulation associated to (3.22): find

[w, ξ2] ∈ V def
=
{

[w, ξ2] ∈ H1(F)×D(A
1/2
1 ) ; divw = 0, w = Tξ2 on ∂F

}
, (3.23)

such that for any [ϕ, ζ2] ∈ V,

λ

(∫
F
w · ϕdy +

(
ξ2, ζ2

)
HS

)
+ 2ν

∫
F
Dw : Dϕ dy +

(
A

1/2
2 ξ2, A

1/2
2 ζ2

)
HS

+
1

λ

(
A

1/2
1 ξ2, A

1/2
1 ζ2

)
HS

=

∫
F
f · ϕ dy +

(
h, ζ2

)
HS
− 1

λ

(
A

1/2
1 g,A

1/2
1 ζ2

)
HS
. (3.24)

The Riesz theorem gives the existence and uniqueness of [w, ξ2] ∈ V satisfying (3.24). Taking ζ2 = 0 in
(3.24) and using the De Rham theorem, we obtain the existence of q such that (w, q) is the weak solution
of the Stokes system (the three first equations of (3.22)). From (2.56), we deduce Tξ2 ∈ V3/2(∂F) and
thus, since f ∈ L2(F), standard elliptic results on the Stokes system give w ∈ H2(F) and q ∈ H1(F). In
particular, T(w, q)n ∈ H1/2(∂F) and thus T ∗ (T(w, q)n) ∈ HS .

We write ξ1 = λ−1(ξ2 + g) and we use that (w, q) satisfies the Stokes system to transform (3.24) into(
A

1/2
1 ξ1, A

1/2
1 ζ2

)
HS

= −λ
(
ξ2, ζ2

)
HS
−
(
A2ξ2, ζ2

)
HS
−
(
T ∗ (T(w, q)n) , ζ2

)
HS

+
(
h, ζ2

)
HS
,

for all ζ2 ∈ D(A
1/2
1 ). Note that we have used the continuous embedding D(A

1/2
1 ) ↪→ D(A2). The above

system implies that A1ξ1 ∈ HS and thus that ξ1 ∈ D(A1). Finally, the fact that A0 is densely defined with
compact resolvent is straightforward.

Proposition 3.5. The semigroup generated by A0 is exponentially stable on H.

Proof. To show the exponential stability of the semigroup, we use the classical result of Gearhart (see, for
instance, [31, Theorem 1.3.2, p.4]): since (etA)t>0 is a C0-semigroup of contractions on the Hilbert space H
(see Proposition 3.4), then it is exponentially stable if and only if

iR ⊂ ρ(A0), (3.25)

and
sup
τ∈R
‖(iτ −A0)−1‖L(H) <∞. (3.26)

Using that A generates a semigroup of contractions, we have (see, for instance, [32, Corollary 3.6, p.11])

∀λ ∈ C, <λ > 0 <λ‖(λ−A0)−1‖L(H) 6 1. (3.27)

In order to prove the exponential stability of (etA)t>0, we show the existence of C > 0 such that:

∀λ ∈ C, <λ ∈ (0, 1) ‖(λ−A0)−1‖L(H) 6 C. (3.28)
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The above estimate yields the result: indeed, for τ ∈ R and δ ∈ (0, 1), one can write the formula

(iτ −A0) = (iτ + δ −A0)(I − δ(iτ + δ −A0)−1).

Taking δ < 1/C where C is the constant in (3.28), it yields (3.25) and (3.26).
Now let us prove (3.28): assume λ ∈ C with <λ ∈ (0, 1) and assume (λ − A0)[w, ξ1, ξ2] = [f, g, h] ∈ H.

This relation can be written as (3.22). Multiplying by [w, ξ1, ξ2], we first obtain

<λ
(
‖w‖2L2(F) + ‖ξ2‖2HS + ‖A1/2

1 ξ1‖2HS
)

+ 2ν

∫
F
|Dw|2 dy + ‖A1/2

2 ξ2‖2HS

6 C‖[f, g, h]‖H‖[w, ξ1, ξ2]‖H. (3.29)

Moreover, since Γ0 is a nonempty open subset such that w = 0 on Γ0, we have the Poincaré inequality
‖w‖H1(F) 6 C‖∇w‖L2(F). Combining this relation with the trace inequality, the Korn inequality and (2.55),
we deduce that:

‖ξ2‖2HS 6 C‖Tξ2‖2V1/2(∂F) 6 C‖w‖2H1(F) 6 C

∫
F
|Dw|2 dy.

Then using the above inequality with (3.29) we obtain

‖w‖2H1(F) + ‖Tξ2‖2V1/2(∂F) + ‖ξ2‖2HS 6 C‖[f, g, h]‖H‖[w, ξ1, ξ2]‖H. (3.30)

Combining the above inequality with λξ1 = ξ2 + g and (2.56) yields

|λ|2‖ξ1‖2HS + |λ|2‖Tξ1‖2V1/2(∂F) 6 C‖[f, g, h]‖2H + C‖[f, g, h]‖H‖[w, ξ1, ξ2]‖H. (3.31)

Next, from the two last equalities in (3.22) we obtain

A1ξ1 = −T ∗T(w, p)n+ h+A2g − λA2ξ1 + λg − λ2ξ1.

Then by multiplying the above equation by ξ1 and using D(A
1/2
1 ) ↪→ D(A2) we deduce

‖A1/2
1 ξ1‖2HS 6 C

(
‖T(w, p)n‖V−1/2(∂F)‖Tξ1‖V1/2(∂F) + ‖h‖HS‖ξ1‖HS + ‖A1/2

1 g‖HS‖A
1/2
1 ξ1‖HS

+‖A1/2
1 ξ1‖HS |λ|‖ξ1‖HS + ‖g‖HS |λ|‖ξ1‖HS + |λ|2‖ξ1‖2HS

)
. (3.32)

The above inequality, (2.56) and (3.31) yield

‖A1/2
1 ξ1‖2HS 6 C

(
‖T(w, p)n‖2V−1/2(∂F)

1

1 + |λ|2 + ‖[f, g, h]‖2H + ‖[f, g, h]‖H‖[w, ξ1, ξ2]‖H
)
. (3.33)

Moreover, from the following Green formula

∀ϕ ∈ V1(F)

∫
∂F

T(w, p)n · ϕdΓ =

∫
F

divT(w, p) · ϕdy +

∫
F

2νDw : Dϕdy (3.34)

we deduce
‖T(w, p)n‖2V−1/2(∂F) 6 C

(
‖w‖2H1(F) + ‖divT(w, p)‖2L2(F)

)
and with (3.30) and the first equation in (3.22) we obtain

‖T(w, p)n‖2V−1/2(∂F) 6 C
(
‖[f, g, h]‖H‖[w, ξ1, ξ2]‖H + ‖[f, g, h]‖2H + |λ|2‖w‖2L2(F)

)
.

Then combining this last estimate with (3.33) yields

‖A1/2
1 ξ1‖2HS 6 C

(
‖w‖2L2(F) + ‖[f, g, h]‖2H + ‖[f, g, h]‖H‖[w, ξ1, ξ2]‖H

)
.

Moreover, this last estimates with (3.30) yields

‖w‖2L2(F) + ‖ξ2‖2HS + ‖A1/2
1 ξ1‖2HS 6 C

(
‖[f, g, h]‖2H + ‖[f, g, h]‖H‖[w, ξ1, ξ2]‖H

)
,

and it proves (3.28).
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Remark 3.6. Assumption (3.5) is not used in the proof of Proposition 3.5. It remains true even if A2 = 0.

We have the following characterization of the adjoint of A0.

Proposition 3.7. The adjoint of the operator A0 is given by

D(A∗0) = D(A0) (3.35)

and

A∗0

ϕζ1
ζ2

 = P


ν∆ϕ

−ζ2

A1ζ1 −A2ζ2 − T ∗ (2νD(ϕ)n)

 . (3.36)

Proof. Equality (3.36) follows from an integration by parts and (3.35) is obtained from regularity results for
the Stokes system as in Proposition 3.4.

Proposition 3.8. For α ∈ [0, 1], the following equalities hold

D((−A0)α) = [D(A0),H]1−α = [D(A∗0),H]1−α = D((−A∗0)α), (3.37)

where [·, ·]· denotes the complex interpolation method. Moreover, we have

D((−A0)α) =
[
H2α(F)×D(A

1/2+α/2
1 )×D(A

α/2
1 )

]
∩H if α ∈ (0, 1/4) , (3.38)

D((−A0)α)

=
{

[w, ξ1, ξ2] ∈
[
H2α(F)×D(A

1/2+α/2
1 )×D(A

α/2
1 )

]
∩H ; w = Tξ2 on ∂F

}
if α ∈ (1/4, 1) . (3.39)

Proof. Relations (3.37) are consequences of D(A∗0) = D(A0) and of the maximal accretivity of −A0, see [11,
Prop. 6.1, p170].

To prove the last two relations, we introduce the Dirichlet map defined by D0(ξ2) = z where z is the
solution of 

−∆z +∇π = 0 in F ,
div z = 0 in F ,

z = Tξ2 on ∂F .
Using (2.56) and standard result on the Stokes system, we deduce that for any α ∈ [0, 1],

D0 ∈ L
(
D(A

α/2
1 ),H2α(F)

)
.

It is clear that

D(A0) =
{

[w, ξ1, ξ2] ∈ H2(F)×D(A1)×D(A
1/2
1 ) ; w −D0ξ2 ∈ V2

0(Ω)
}

and that
H =

{
[w, ξ1, ξ2] ∈ L2(F)×D(A

1/2
1 )×HS ; w −D0ξ2 ∈ V0

n(F)
}
.

More precisely, [w, ξ1, ξ2] 7→ [w−D0ξ2, ξ1, ξ2] is an isomorphism from D(A0) onto V2
0(Ω)×D(A1)×D(A

1/2
1 )

as well as from H onto V0
n(Ω)×D(A

1/2
1 )×HS . We deduce by interpolation that for all α ∈ [0, 1]:

[D(A0),H]1−α =
{

[w, ξ1, ξ2] ∈ H ; (ξ1, ξ2) ∈ D(A
1/2+α/2
1 )×D(A

α/2
1 ), w −D0ξ2 ∈ [V2

0(F),V0
n(F)]1−α

}
.

Then the conclusion follows from (3.37), from

[V2
0(F),V0

n(F)]1−α = [H2(F) ∩H1
0(F),L2(F)]1−α ∩V0

n(F)

(see [22]) and from the characterization of this last interpolation space (see [25]).
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Corollary 3.9. The following continuous embedding holds:

D((−A0)α)′ ↪→ H2α(F)′ ×D(A
1/2−α/2
1 )×D(A

α/2
1 )′ if α ∈ [0, 1/4). (3.40)

Proof. First, from (3.38) we deduce that for α ∈ [0, 1/4),

P ∈ L(H2α(F)×D(A
1/2+α/2
1 )×D(A

α/2
1 ),D((−A0)α)).

Then for X ∈ H and Y ∈ L2(F)×D(A
1/2
1 )×HS we have

〈X,Y〉 = 〈X,PY〉 6 ‖X‖D((−A0)α)′‖PY‖D((−A0)α) 6 C‖X‖D((−A0)α)′‖Y‖H2α(F)×D(A
1/2+α/2
1 )×D(A

α/2
1 )

.

Then it follows,
‖X‖

H2α(F)′×D(A
1/2−α/2
1 )×D(A

α/2
1 )′

6 C‖X‖D((−A0)α)′ ,

and we conclude with a density argument.

We recall a classical result for analytic semigroups (see [32, Thm 5.2, p.61])

Lemma 3.10. Assume A is the infinitesimal generator of a strongly continuous semigroup on H with an
exponential growth lower or equal to zero i.e. supt>0 ‖etA‖ < +∞. If iR ⊂ ρ(A) and if there exists C0 > 0
such that, ∥∥(iτ −A)−1

∥∥
L(H)

6
C0

|τ | (τ ∈ R∗), (3.41)

then (etA) is an analytic semigroup on H.

We recall the proof of this lemma for sake of completeness.

Proof. First we have 0 ∈ ρ(A). Assume λ ∈ C. We write

(λ−A) = (i=λ−A)
(
Id +<λ(i=λ−A)−1) .

Assume =λ 6= 0. Then from (3.41)

‖(i=λ−A)−1‖L(H) 6
C0

|=λ| .

Therefore, if

|<λ| 6 α
|=λ|
C0

(3.42)

for some α ∈ (0, 1), then
(
Id +<λ(i=λ−A)−1

)
is invertible and∥∥∥(Id +<λ(i=λ−A)−1)−1

∥∥∥
L(H)

6
1

1− α.

Thus any λ satisfying (3.42) belongs to ρ(A) and satisfies

‖(λ−A)−1‖L(H) 6
C

|λ| .

Since (etA) is a strongly continuous semigroup on H with an exponential growth lower or equal to zero,
for λ such that <λ > 0, we have λ ∈ ρ(A) and

‖(λ−A)−1‖L(H) 6
C

<λ ,

see [11, Thm 2.5 p 101]. If moreover,

<λ > α
|=λ|
C0

,

then we deduce

‖(λ−A)−1‖L(H) 6
C

|λ| .
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Thus there exists δ ∈ (0, π/2) such that

ρ(A) ⊃ Σ
def
=
{
λ ∈ C ; | arg λ| < π

2
+ δ
}
∪ {0}

and

‖(λ−A)−1‖L(H) 6
C

|λ| (λ ∈ Σ \ {0}).

Applying [32, Thm 5.2, p.61], we deduce that (etA) is an analytic semigroup.

Proposition 3.11. The operator A0 defined by (3.19), (3.20), (3.21) is the infinitesimal generator of an
analytic semigroup on H.

Proof. We apply Lemma 3.10. We already know from Proposition 3.5 that iR ⊂ ρ(A0). For τ ∈ R∗, we
consider the equation (iτ −A0)Z = F ∈ H. Setting Z = [w, ξ1, ξ2] and F = [f, g, h] we can write

iτw − ν∆w +∇q = f in F ,
divw = 0 in F ,

w = Tξ2 on ∂F ,
iτξ1 − ξ2 = g,

iτξ2 +A2ξ2 +A1ξ1 = −T ∗(T(w, q)n) + h.

(3.43)

Multiplying the first equation by w and performing an integration by parts we obtain:

iτ

(∫
F
|w|2dy + ‖ξ2‖2HS

)
+2ν

∫
F
|Dw|2 dy+‖A1/2

2 ξ2‖2HS +
(
A1ξ1, ξ2

)
HS

=

∫
F
f ·w dy+

(
h, ξ2

)
HS
. (3.44)

Next, using ξ2 = iτξ1 − g we deduce

iτ

(∫
F
|w|2dy + ‖ξ2‖2HS − ‖A

1/2
1 ξ1‖2HS

)
+ 2ν

∫
F
|Dw|2 dy + ‖A1/2

2 ξ2‖2HS

=

∫
F
f · w dy +

(
h, ξ2

)
HS

+
(
A

1/2
1 ξ1, A

1/2
1 g

)
HS
. (3.45)

Then multiplying by τ and taking the imaginary part of the above equation first gives:

|τ |2‖[w, ξ1, ξ2]‖2H = 2|τ |2‖A1/2
1 ξ1‖2HS + =〈[f, g, h], τ [w, ξ1, ξ2]〉H,

and with the Cauchy-Schwarz inequality, we obtain:

|τ |2‖[w, ξ1, ξ2]‖2H 6 4|τ |2‖A1/2
1 ξ1‖2HS + ‖[f, g, h]‖2H. (3.46)

We now consider the equation of the structure (the last two equations of (3.43)): since the dissipation (the
term A2ξ2) is sufficient, the corresponding system is parabolic. More precisely, since A2 is a positive, densely
defined, self-adjoint operator on HS with (3.5), Theorem 1.1 in [17] guarantees that

|τ |(‖A1/2
1 ξ1‖HS + ‖ξ2‖HS ) 6 C(‖T ∗(T(w, q)n)‖HS + ‖A1/2

1 g‖HS + ‖h‖HS ). (3.47)

Then by combining (3.46), (3.47) and the boundedness of T ∗ : L2(∂F)→ HS we deduce that:

|τ |‖[w, ξ1, ξ2]‖H 6 C
(
‖T(w, p)n‖L2(∂F) + ‖[f, g, h]‖H

)
. (3.48)

In order to remove the term ‖T(w, p)n‖L2(∂F) in the above estimate, we first use the trace theorem and
regularity results for the Stokes system, for ε ∈ (0, 1/4):

‖T(w, p)n‖L2(∂F) 6 C(‖ divT(w, p)‖(H2ε(F))′ + ‖Tξ2‖V2−2ε(∂F))

and then with the first equality in (3.43) and the boundedness of T : D(A
1/2−ε/2
1 )→ V2−2ε(∂F) we get

‖T(w, p)n‖L2(∂F) 6 C
(
‖f‖L2(F) + |τ |‖w‖(H2ε(F))′ + ‖ξ2‖D(A

1/2−ε/2
1 )

)
. (3.49)
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Combining the above relation with ξ2 = iτξ1 − g we deduce

‖T(w, p)n‖L2(∂F) 6 C
(
‖f‖L2(F) + ‖g‖D(A

1/2
1 )

+ |τ |‖w‖(H2ε(F))′ + |τ |‖ξ1‖D(A
1/2−ε/2
1 )

)
. (3.50)

Now let us prove that for ε ∈ (0, 1/4),

‖w‖(H2ε(F))′ + ‖ξ1‖D
(
A

1/2−ε/2
1

) 6 C‖[w, ξ1, ξ2]‖(D((−A0)ε))′ . (3.51)

Assume (ϕ, ζ1) ∈ H2ε(F)×D(A
1/2+ε/2
1 ) with ε ∈ (0, 1/4). Using Proposition 3.2 and Proposition 3.8, we

have P[ϕ, ζ1, 0] ∈ D((−A0)ε). Then we can write∣∣∣∣∫
F
w · ϕ dy +

(
A

1/2
1 ξ1, A

1/2
1 ζ1

)
HS

∣∣∣∣ =
∣∣∣〈[w, ξ1, ξ2], [ϕ, ζ1, 0]〉

L2(F)×D(A
1/2
1 )×HS

∣∣∣
= |〈[w, ξ1, ξ2],P[ϕ, ζ1, 0]〉H|
6 ‖[w, ξ1, ξ2]‖(D((−A0)ε))′‖P[ϕ, ζ1, 0]‖D((−A0)ε))

6 C‖[w, ξ1, ξ2]‖(D((−A0)ε))′

(
‖ϕ‖H2ε(F) + ‖ζ1‖D(A

1/2+ε/2
1 )

)
.

Consequently, we deduce (3.51) and combining it with (3.50) yields

‖T(w, p)n‖L2(∂F) 6 C(‖[f, g, h]‖H + |τ |‖(−A0)−ε[w, ξ1, ξ2]‖H).

The above relation and (3.48) imply

|τ |‖[w, ξ1, ξ2]‖H 6 C(|τ |‖(−A0)−ε[w, ξ1, ξ2]‖H + ‖[f, g, h]‖H).

Recalling (iτ −A0)Z = F, this can be written

‖iτ(iτ −A0)−1F‖H 6 C(‖iτ(−A0)−ε(iτ −A0)−1F‖H + ‖F‖H). (3.52)

Thus, remarking that (−A0)−ε(iτ−A0)−1F = (iτ−A0)−1(−A0)−εF, by using (3.52) with (−A0)−εF instead
of F, we deduce that

‖iτ(iτ −A0)−1F‖H 6 C(‖iτ(−A0)−2ε(iτ −A0)−1F‖H + ‖F‖H).

Then by iterating the argument we finally prove that for all n ∈ N∗ there exists Cn > 0 such that

‖iτ(iτ −A0)−1F‖H 6 Cn(‖iτ(−A0)−nε(iτ −A0)−1F‖H + ‖F‖H),

and for n > 1/ε, the above relation with iτ(iτ − A0)−1F = A0(iτ − A0)−1F + F and (3.26) finally yields
‖iτ(iτ −A0)−1F‖H 6 C‖F‖H which gives the result.

3.3 The operator A

Now we define the operator A of our system:

D(A) = V ∩
[
H2(F)×D(A1)×D(A

1/2
1 )

]
, (3.53)

and for
[
w, ξ1, ξ2

]
∈ D(A), we set

Ã

wξ1
ξ2

 def
=


ν∆w + div Λ(1)(ξ1, ξ2)− Λ(2)(ξ1, ξ2)− (vS · ∇)w − (w · ∇)vS

ξ2

−A1ξ1 −A2ξ2 − T ∗(2νD(w)n+ Λ(1)(ξ1, ξ2)n)

 (3.54)

and
A

def
= PÃ, (3.55)

where P : L2(F)×D(A
1/2
1 )×HS → H is the orthogonal projection operator.
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Proposition 3.12. The operator A defined by (3.53), (3.54), and (3.55) is densely defined with compact
resolvent, and it is the infinitesimal generator of an analytic semigroup on H. Moreover, the adjoint of the
operator A is given by D(A∗) = D(A) and

A∗

ϕζ1
ζ2

 = P


ν∆ϕ+ (vS · ∇)ϕ− (∇vS)∗ϕ

−ζ2 −A−1
1

(
Λ(1,1)

)∗
(∇ϕ)−A−1

1

(
Λ(2,1)

)∗
(ϕ)

A1ζ1 −A2ζ2 − T ∗ (2νD(ϕ)n)−
(

Λ(1,2)
)∗

(∇ϕ)−
(

Λ(2,2)
)∗

(ϕ)

 . (3.56)

Proof. We write
A = A0 +A[

where A0 is defined by (3.19), (3.20), (3.21) and is the infinitesimal generator of an analytic semigroup
on H (Proposition 3.11). Relations (2.59), (2.60) and (1.34) combined with Proposition 3.8 yield that
D(A[) ⊂ D((−A0)1/2). Using a perturbation argument (see, for instance, [32, Corollary 2.4, p. 81]), we
deduce the first part of the Proposition.

To characterize the adjoint of A, assume
[
w, ξ1, ξ2

]
,
[
ϕ, ζ1, ζ2

]
∈ D(A) and we observe that:

〈A [w, ξ1, ξ2] , [ϕ, ζ1, ζ2]〉 = 〈[w, ξ1, ξ2] , A∗0 [ϕ, ζ1, ζ2]〉 −
(
T ∗(Λ(1)(ξ1, ξ2)n), ζ2

)
HS

+

∫
F

(
div Λ(1)(ξ1, ξ2)− Λ(2)(ξ1, ξ2)− (vS · ∇)w − (w · ∇)vS

)
· ϕ dy. (3.57)

Thus

〈A [w, ξ1, ξ2] , [ϕ, ζ1, ζ2]〉 = 〈[w, ξ1, ξ2] , A∗0 [ϕ, ζ1, ζ2]〉 −
∫
F

Λ(1)(ξ1, ξ2) : ∇ϕ dy −
∫
F

Λ(2)(ξ1, ξ2) · ϕ dy

+

∫
F

(
(vS · ∇)ϕ− (∇vS)∗ϕ

)
· w dy. (3.58)

Here we have used that vS = 0 on Γstr and ϕ = 0 on Γ0. Using (2.61) we deduce the result.

Let us fix λ0 > 0 large enough so that λ0 −A is positive and (λ0 −A)α is well defined for α ∈ (0, 1). We
deduce from Proposition 3.12 and similarly as for Proposition 3.8 the following result.

Proposition 3.13. For α ∈ [0, 1], the following equalities hold

D((λ0 −A)α) = [D(A),H]1−α = [D(A∗),H]1−α = D((λ0 −A∗)α), (3.59)

In particular, D((λ0 −A)α) = D((λ0 −A∗)α) = D((−A0)α) is characterized by (3.38) and (3.39).

Proof. Equalities (3.59) are consequences of D(A) = D(A∗) and of the maximal accretivity of λ−A for λ > 0
large enough, see [11, Prop. 6.1, p170]. Note that to obtain 〈(λ−A)Z,Z〉 > 0 we have to control the terms
coming from Λ(1), Λ(2) and this can be done by using (2.59), (2.60) and (2.63). In particular we use the fact
that Λ(2,2) ∈ L(HS , (H1(F))′) which follows from (2.59) and (2.63) with an interpolation argument.

3.4 The operator B

Next, we introduce the Dirichlet operator DF : V0(∂F) → L2(F) × D(A
1/2
1 ) × HS defined as follows: for

u ∈ V0(∂F) we denote by DFu
def
= [wu ξ1,u ξ2,u] the unique solution of

λ0w − ν∆w − div Λ(1)(ξ1, ξ2) + Λ(2)(ξ1, ξ2)

+(vS · ∇)w + (w · ∇)vS +∇q = 0 in F ,

divw = 0 in F ,

w = Tξ2 + Ξ(u) on ∂F ,

λ0ξ1 − ξ2 = 0,

λ0ξ2 +A1ξ1 +A2ξ2 + T ∗(T(w, q)n+ Λ(1)(ξ1, ξ2)n) = 0.

(3.60)
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Proposition 3.14. The mapping DF defined above satisfies the following boundedness property:

DF ∈ L(Vs(∂F),Hs+ 1
2 (F)×D(A

s/4+5/8
1 )×D(A

s/4+1/8
1 )) s ∈

[
−1

2
,

1

2

]
. (3.61)

Proof. To obtain (3.61) it suffices to prove it for s = 1/2 and s = −1/2 and then use an interpolation
argument. We first consider the case s = 1/2 and use a lifting argument: according to [1, Cor. 3.8] there
exists z ∈ H1(F) such that div z = 0 in F , z = Ξu on ∂F and satisfying ‖z‖H1(F) 6 C‖u‖

V
1
2 (∂F)

. Then

setting w = w̃ + z, we see that (3.60) writes

(λ0 −A)

w̃ξ1
ξ1

 = P

−λ0z + ν∆z − (vS · ∇)z − (z · ∇)vS

0
−T ∗(2νD(z)n)

 ∈ V ′. (3.62)

By definition of λ0, there exists a unique [w̃, ξ1, ξ2] ∈ V ⊂ H1(F)×D(A
3/4
1 )×D(A

1/4
1 ) solution of (3.62).

To prove the case s = −1/2, we recall that in that case DFu is defined by duality as follows: for any

[f, af , bf ] ∈ L2(F)×D(A
1/2
1 )×HS ,

〈DFu, [f, af , bf ]〉 def
= −〈u,Ξ(T(ϕ, π)n)〉V−1/2(∂F),V1/2(∂F), (3.63)

where [ϕ, ξ, ζ] ∈ D(A∗) and π ∈ H1(F) such that
∫
F πdy = 0 satisfy

λ0ϕ− ν∆ϕ+ (∇vS)∗ϕ− (vS · ∇)ϕ+∇π = f in F ,

divϕ = 0 in F

ϕ = Tζ2 on ∂F ,

λ0ζ1 + ζ2 +A−1
1

(
Λ(1,1)

)∗
(∇ϕ) +A−1

1

(
Λ(2,1)

)∗
(ϕ) = af ,

λ0ζ2 −A1ζ1 +A2ζ2 + T ∗(T(ϕ, π)n) +
(

Λ(1,2)
)∗

(∇ϕ) +
(

Λ(2,2)
)∗

(ϕ) = bf .

(3.64)

Using (3.56), we see that system (3.64) can be written as

(λ0 −A∗)[ϕ, ζ1, ζ2] = P[f, af , bf ].

Then for any [f, af , bf ] ∈ L2(F) × D(A
1/2
1 ) × HS , there exists a unique [ϕ, ζ1, ζ2] ∈ D(A∗), as well as a

corresponding pressure π ∈ H1(F) such that
∫
F πdy = 0, solution of the above equation. Moreover, we have

from standard trace inequalities and Stokes regularity,

‖T(ϕ, π)n‖
V

1
2 (∂F)

6 C‖[f, af , bf ]‖
L2(F)×D(A

1/2
1 )×HS

which yields the result for s = − 1
2
.

Next, we define the input operator

B : V0(∂F)→ [D(A∗)]′, Bu = (λ0 −A)PDFu. (3.65)

Proposition 3.15. The operator B defined by (3.65) satisfies:

(λ0 −A)−1+εB ∈ L(V0(∂F),H), ε ∈
(

0,
1

4

)
. (3.66)

Moreover, the adjoint of B is defined by

B∗
[
ϕ, ζ1, ζ2

]
= −Ξ(T(ϕ, π)n), (3.67)

where π ∈ H1(F) satisfies
∫
F π dy = 0 and

 ∇π
0

−T ∗(πn)

 = −(I − P)


−ν∆ϕ+ (∇vS)∗ϕ− (vS · ∇)ϕ

ζ2 +A−1
1

(
Λ(1,1)

)∗
(∇ϕ) +A−1

1

(
Λ(2,1)

)∗
(ϕ)

−A1ζ1 +A2ζ2 + T ∗(2νD(ϕ)n) +
(

Λ(1,2)
)∗

(∇ϕ) +
(

Λ(2,2)
)∗

(ϕ)

 . (3.68)
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Proof. The regularity property (3.66) is a direct consequence of Proposition 3.2, Proposition 3.13 and of
(3.61). The characterization (3.67) follows directly from (3.63).

We are now in position to deduce formulation (3.12)-(3.13) from (3.6)-(3.10) and (3.11). First, since we
have Z−DFu ∈ H we have (I − P)(Z−DFu) = 0 which implies that Z satisfies (3.13). Moreover, assume
that Z = [w, ξ1, ξ2] is a regular solution of (3.6)-(3.10) and assume that Φ = [ϕ, ζ1, ζ2] ∈ D(A∗). We multiply
(3.6) with ϕ, (3.9) by ζ1 and (3.10) by ζ2. Then, after some integrating by parts and using (3.13), we obtain

d

dt
〈PZ(t),Φ〉 − 〈PZ(t), A∗Φ〉 = 〈u(t), B∗Φ〉. (3.69)

Since the above equality is satisfied for any Φ ∈ D(A∗) we obtain the first equality of (3.12).

4 Feedback Stabilizability of the linear system

4.1 Stabilizability of the homogeneous linear system

The goal of this subsection is to prove, for a fixed rate of decrease σ > 0, the existence of a feedback control

u(t) =

Nσ∑
j=1

(∫
F
w(t) · ϕjdy +

(
A

1/2
1 ξ1(t), A

1/2
1 ζ1,j

)
HS

+
(
ξ2(t), ζ2,j

)
HS

)
vj (4.1)

such that solutions of (3.6)-(3.10) tends to zero as t → +∞ with an exponential rate of decrease σ > 0.
For that, we are going to show the existence of families (ϕj , ζ1,j , ζ2,j) and vj , j = 1, . . . , Nσ such that the
underlying closed-loop linear operator of (3.6)-(3.10) with (4.1) generates and analytic and exponentially
stable semigroup of type lower than −σ (see [11, II-1, (2.8) and Cor. 2.1]). It then permits to deduce results
for nonhomogeneous system (3.1)-(3.4) that are used in the next subsection to construct solutions of the
nonlinear system (2.48)-(2.51) with a fixed-point argument.

Proposition 4.1. For σ > 0, there exist Nσ ∈ N∗ and families [ϕj , ζ1,j , ζ2,j ] ∈ D(A∗) and vj ∈ V2(∂F),
j = 1, . . . , Nσ, and a corresponding feedback operator Fσ : H → V2(∂F) defined by

Fσ[w, ξ1, ξ2] =

Nσ∑
j=1

(∫
F
w · ϕjdy +

(
A

1/2
1 ξ1, A

1/2
1 ζ1,j

)
HS

+
(
ξ2, ζ2,j

)
HS

)
vj (4.2)

such that the linear operator Aσ
def
= A + BFσ with domain D(Aσ)

def
= {Z ∈ H | AZ + BFσZ ∈ H} is

the infinitesimal generator of an analytic and exponentially stable semigroup on H of type lower than −σ.
Moreover, for α ∈ [0, 1] we have D((−Aσ)α) ↪→ [H2α(F)×D(A

1/2+α/2
1 )×D(A

α/2
1 )] ∩H and D((−A∗σ)α) =

D((λ0 −A∗)α), and for α ∈ [0, 1/4) we have D((−A∗σ)α)′) ↪→ H2α(F)′ ×D(A
1/2−α/2
1 )×D(A

α/2
1 )′.

Proof. The proof of the above proposition relies on the Hautus-Fattorini stabilizability criterion, see [5,
Theorem 1] or [8]. Since A has compact resolvent and generates an analytic semigroup on H, and since
B is relatively bounded with respect to A, then the homogeneous linear system is stabilizable by finite
dimensional feedback control for any rate of decrease if and only if the following criterion is satisfied for all
λ ∈ C:

λΦ−A∗Φ = 0 and B∗Φ = 0 =⇒ Φ = 0. (4.3)

Assume Φ = [ϕ, ζ1, ζ2] ∈ D(A∗) satisfies the two first relations (4.3). From (3.56) and (3.67), it implies that

λϕ− ν∆ϕ+ (∇vS)∗ϕ− (vS · ∇)ϕ+∇π = 0 in F ,

divϕ = 0 in F ,

ϕ = Tζ2 on ∂F ,

λζ1 + ζ2 +A−1
1

(
Λ(1,1)

)∗
(∇ϕ) +A−1

1

(
Λ(2,1)

)∗
(ϕ) = 0,

λζ2 −A1ζ1 +A2ζ2 + T ∗(T(ϕ, π)n) +
(

Λ(1,2)
)∗

(∇ϕ) +
(

Λ(2,2)
)∗

(ϕ) = 0,

(4.4)
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and

ρT(ϕ, π)n =

(∫
∂F

ρT(ϕ, π)n · ndγ
)
ρn on ∂F . (4.5)

In what follows we denote c(ϕ, π)
def
=
∫
∂F ρT(ϕ, π)n ·ndγ. Combining (4.5) and the classical uniqueness result

of [21] for Stokes type systems (see also [8, Appendix A]) we deduce that ϕ = 0 and π− c(ϕ, π) = 0 in F . It
implies in particular that T(ϕ, π − c(ϕ, π))n = 0 on ∂F and Tζ2 = 0 on ∂F . Using (2.55), we deduce that
ζ2 = 0. Moreover, since we have T ∗(n) = 0, from T(ϕ, π − c(ϕ, π))n = 0 we deduce T ∗(T(ϕ, π)n) = 0 on
∂F . Then using the last equation of (4.4) we obtain A1ζ1 = 0 and then ζ1 = 0. We have obtained Φ = 0.

Then the general framework of [5, 8] can be applied and for a given σ > 0, there exist families

[ϕj , ζ1,j , ζ2,j ] ∈ D(A∗)

and vj ∈ V0(∂F), j = 1, . . . , Nσ, and a feedback law of the form (4.2) such that the conclusions of the
proposition hold. Moreover, each vj can be chosen in V2(∂F). This comes from the fact that the set
of admissible families (vj) is a nonempty open set of (V0(∂F))Nσ (see [5, Theorem 5] or [8, Theorem 6]).
Indeed, if a family (ṽj) is admissible then all families in a neighborhood of (ṽj) in (V0(∂F))Nσ are admissible.
Then the conclusion follows from the density of V2(∂F) in V0(∂F).

Finally, the statements concerning D((−Aσ)α) and D((−A∗σ)α) are obtained as in [6] and the statement
concerning D((−A∗σ)α)′ then follows from (3.40).

Remark 4.2. From the definition (4.2) we can extend Fσ to an operator from L2(F) × D(A
1/2
1 ) × HS to

V2(∂F) by using the same formula (4.2). Moreover, since [ϕj , ζ1,j , ζ2,j ] ∈ H, it yields that Fσ = FσP and
that Fσ = 0 on H⊥. We can also extend Fσ as an operator from D(A∗σ)′ to V2(∂F) by setting

Fσ[w, ξ1, ξ2] =

Nσ∑
j=1

〈[w, ξ1, ξ2], [ϕj , ζ1,j , ζ2,j ]〉D(A∗σ)′,D(A∗σ) vj .

4.2 Stabilizability of the non homogeneous linear system

The goal of this section is to obtain regularity results for the following nonhomogeneous linear system:

∂tw − divT(w, p)− div Λ(1)(ξ1, ξ2) + Λ(2)(ξ1, ξ2)

+(vS · ∇)w + (w · ∇)vS = F − divG in (0,+∞)×F , (4.6)

divw = Fdiv in (0,+∞)×F , (4.7)

w = Tξ2 + Ξ(Fσ([w, ξ1, ξ2])) + Fb on (0,+∞)× ∂F , (4.8)

∂tξ1 = ξ2, t ∈ (0,+∞), (4.9)

∂tξ2 +A2ξ2 +A1ξ1 = −T ∗
(
T(w, p)n+ Λ(1)(ξ1, ξ2)n

)
+ T ∗Gn, t ∈ (0,+∞), (4.10)

with the initial conditions

ξ1(0) = ξ0
1 and ξ2(0) = ξ0

2 , w(0) = w0 in F . (4.11)

In above settings we have extended the feedback operator Fσ to L2(F) × D(A
1/2
1 ) × HS (see Remark

4.2) and F , G, Fdiv, Fb are nonhomogenous right-hand terms which play the role of the nonlinearities F (Z),
G(Z), Fdiv(Z), Fb(Z) in (2.48)-(2.51).

Suppose for the moment that (Fdiv, Fb) = (0, 0). By taking into account (4.1) in formulation (3.12)-
(3.13) complemented with the nonhomogeneous right-hand terms F , G, we deduce that the above system
with Fdiv = 0 and Fb = 0 can be rewritten as

PZ′ = AσPZ + P(F − divG) in D(A∗)′, PZ(0) = PZ0 (4.12)

(I − P)Z = (I − P)DFFσPZ. (4.13)

Here we have used that Fσ vanishes on H⊥. The notation F − divG means here the operator

〈F − divG, [ϕ, ζ1, ζ2]〉D(A∗)′,D(A∗)
def
= 〈F,ϕ〉H1(F)′,H1(F) +

∫
F
G : ∇ϕ dy ([ϕ, ζ1, ζ2] ∈ D(A∗)). (4.14)

In what follows, we recall that we use the notation (2.1). We have the following result.
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Proposition 4.3. Assume [w0, ξ0
1 , ξ

0
2 ] ∈ L2(F) × D(A

1/2
1 ) × HS, F ∈ L2

σ(H1(F)′), G ∈ L2
σ(L2(F)) and

(Fdiv, Fb) = (0, 0). Then system (4.6)-(4.11) admits a unique solution

[w, ξ1, ξ2] ∈Wσ(D((−Aσ)1/2),D((−A∗σ)1/2)′) +H1
σ(H1(F)×D(A

3/4
1 )×D(A

1/4
1 ))

and we have

‖P[w, ξ1, ξ2]‖Wσ(D((−Aσ)1/2),D((−A∗σ)1/2)′) + ‖(I − P)[w, ξ1, ξ2]‖
H1
σ(H1(F)×D(A

3/4
1 )×D(A

1/4
1 ))

6 C
(
‖[F,G]‖L2

σ(H1(F)′×L2(F)) + ‖P[w0, ξ0
1 , ξ

0
2 ]‖H

)
.

Proof. We write system (4.6)-(4.11) as (4.12)-(4.13). By using (4.14) we have

P(F − divG) ∈ L2
σ(D((−A∗σ)1/2)′). (4.15)

Since Aσ generates an analytic semigroup on H, from maximal regularity results applied to equation (4.12),
we deduce from (4.15) and PZ0 ∈ H that PZ ∈Wσ(D((−Aσ)1/2),D((−A∗σ)1/2)′). Finally, from the definition
(4.2) of the operator Fσ, from Proposition 3.14 and from Proposition 3.2, equality (4.13) yields (I − P)Z ∈
H1
σ(H1(F)×D(A

3/4
1 )×D(A

1/4
1 )).

Let us now consider the case of non zero nonhomegeneous terms Fdiv and Fb. For that we need to
introduce a lifting operator for the divergence condition which is compatible with the feedback condition,
namely we set Ldiv[g, h] = [w, ξ1, 0] with (w, ξ1) satisfying

−divT(w, p)− div Λ(1)(ξ1, 0) + Λ(2)(ξ1, 0) + (vS · ∇)w + (w · ∇)vS = 0 in F , (4.16)

divw = h in F , (4.17)

w = Ξ(Fσ([w, ξ1, 0])) + g on ∂F , (4.18)

A1ξ1 = −T ∗
(
T(w, p)n+ Λ(1)(ξ1, 0)n

)
. (4.19)

To state regularity properties for Ldiv we need the functional framework introduced in [39]. For s ∈
[−1/2, 2] we define

Hs,σ
∂F,F

def
=

{
(g, h) ∈ Hs(∂F)×Hσ(F) ; 〈g · n, 1〉Hs(∂F),H−s(∂F) =

∫
F
h dy

}
if σ > 0,

Hs,σ
∂F,F

def
=

{
(g, h) ∈ Hs(∂F)×H−σ(F)′ ; 〈g · n, 1〉Hs(∂F),H−s(∂F) = 〈h, 1〉H−σ(F)′,H−σ(F)

}
if σ < 0.

In what follows, we need another assumption than the ones introduced in Section 3.1: for some ε ∈
(0, 1/8):

∀ξ ∈ D(A
1/2+ε/2
1 ), ‖Aε/21 A2ξ‖HS 6 ‖A1/2+ε/2

1 ξ‖HS . (4.20)

Inequality (4.20) is only needed to prove (4.21) for s ∈ [−2ε, 0) in Proposition 4.4 below. Note that the
operators A1, A2 defined by (1.16), (1.17) satisfy the above condition. It is an easy consequence of (2.54).

Proposition 4.4. Let ε ∈ (0, 1/8) be given in (4.20). The mapping Ldiv defined above satisfies:

Ldiv ∈ L(H
s−1/2,s−1
∂F,F ,Hs(F)×D(A

1/2+s/4
1 )× {0}) s ∈ [−2ε, 2]. (4.21)

Proof. This existence and properties of Ldiv are obtained by a duality argument. First we consider [f, ζf1 , ζ
f
2 ] ∈

L2(F)×D(A
1/2
1 )×HS . From Proposition 4.1, there exists a unique solution [ϕ, ζ1, ζ2] ∈ D(A∗) of

−A∗σ[ϕ, ζ1, ζ2] = [f, ζf1 , ζ
f
2 ].

Moreover we have the estimate

‖[ϕ, ζ1, ζ2]‖
H2(F)×D(A1)×D(A

1/2
1 )

6 C‖P[f, ζf1 , ζ
f
2 ]‖H. (4.22)
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From (3.56) and (4.2), it means that we have the existence and uniqueness of the solution of

−ν∆ϕ+ (∇vS)∗ϕ− (vS · ∇)ϕ+∇χ =

Nσ∑
j=1

ϕj

∫
∂F

vj ·B∗[ϕ, ζ1, ζ2]dγ + f in F ,

divϕ = 0 in F ,

ϕ = Tζ2 on ∂F ,

ζ2 +A−1
1

(
Λ(1,1)

)∗
(∇ϕ) +A−1

1

(
Λ(2,1)

)∗
(ϕ) =

Nσ∑
j=1

ζ1,j

∫
∂F

vj ·B∗[ϕ, ζ1, ζ2]dγ + ζf1 ,

−A1ζ1 +A2ζ2 +
(

Λ(1,2)
)∗

(∇ϕ) +
(

Λ(2,2)
)∗

(ϕ)

= −T ∗(T(ϕ, χ)n) +

Nσ∑
j=1

ζ2,j

∫
∂F

vj ·B∗[ϕ, ζ1, ζ2]dγ + ζf2 .

(4.23)
Using that [ϕj , ζ1,j , ζ2,j ] ∈ D(A∗) and Proposition 3.1, we deduce that the pressure χ satisfies

 ∇χ
0

−T ∗(χn)

 = (I − P)


ν∆ϕ− (∇vS)∗ϕ+ (vS · ∇)ϕ+ f

−ζ2 −A−1
1

(
Λ(1,1)

)∗
(∇ϕ)−A−1

1

(
Λ(2,1)

)∗
(ϕ) + ζf1

A1ζ1 −A2ζ2 − T ∗(2ν(Dϕ)n)−
(

Λ(1,2)
)∗

(∇ϕ)−
(

Λ(2,2)
)∗

(ϕ) + ζf2

 . (4.24)

We can assume χ ∈ L2
0(F) and in that case, using the Poincaré-Wirtinger inequality, Lemma 2.4 and (4.22),

we obtain
‖χ‖H1(F) 6 C‖[f, ζf1 , ζ

f
2 ]‖

L2(F)×D(A
1/2
1 )×HS

.

Note that χ can be decomposed as χ = π + pf with π, pf ∈ H1(F) ∩ L2
0(F) defined by

 ∇π
0

−T ∗(πn)

 = (I − P)


ν∆ϕ− (∇vS)∗ϕ+ (vS · ∇)ϕ

−ζ2 −A−1
1

(
Λ(1,1)

)∗
(∇ϕ)−A−1

1

(
Λ(2,1)

)∗
(ϕ)

A1ζ1 −A2ζ2 − T ∗(2ν(Dϕ)n)−
(

Λ(1,2)
)∗

(∇ϕ)−
(

Λ(2,2)
)∗

(ϕ)

 , (4.25)

and  ∇pf
0

−T ∗(pfn)

 = (I − P)

 fζf1
ζf2

 . (4.26)

Now, let us assume that

[f, ζf1 , ζ
f
2 ] ∈

[
H2ε(F)×D(A

1/2+ε/2
1 )×D(A

ε/2
1 )

]
. (4.27)

From (2.56) and (4.22), combined with the above assumption and standard elliptic regularity for the Stokes
system, we deduce

‖ϕ‖H2+2ε(F) + ‖χ‖H1+2ε(F) 6 C(‖f‖H2ε(F) + ‖B∗[ϕ, ζ1, ζ2]‖V0(F) + ‖Tζ2‖H3/2+2ε(∂F))

6 C(‖f‖H2ε(F) + ‖[f, ζf1 , ζ
f
2 ]‖

L2(F)×D(A
1/2
1 )×HS

).

Using the forth equation of (4.23) and (2.62), we deduce that ζ2 ∈ D(A
1/2+ε/2
1 ). Then combining (2.63),

(4.20) and (2.58) and the above regularity for (ϕ, χ, ζ2), we deduce that ζ1 ∈ D(A
1+ε/2
1 ) with the estimate

‖χ‖H1+2ε(F) + ‖[ϕ, ζ1, ζ2]‖
H2+2ε(F)×D(A

1+ε/2
1 )×D(A

1/2+ε/2
1 )

6 C‖[f, ζf1 , ζ
f
2 ]‖

H2ε(F)×D(A
1/2+ε/2
1 )×D(A

ε/2
1 )

.

(4.28)
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We can now prove the well-posedness of (4.16)-(4.19) by a duality argument. First we rewrite this system
as

− divT(w, p)− div Λ(1)(ξ1, ξ2) + Λ(2)(ξ1, ξ2) + (vS · ∇)w + (w · ∇)vS = 0 in F , (4.29)

divw = h in F , (4.30)

w = Tξ2 + Ξ(Fσ([w, ξ1, ξ2])) + g on ∂F , (4.31)

−ξ2 = 0, (4.32)

A2ξ2 +A1ξ1 = −T ∗
(
T(w, p)n+ Λ(1)(ξ1, ξ2)n

)
. (4.33)

Assume now that [w, ξ1, ξ2] is a regular solution of the above system and [ϕ, ζ1, ζ2] ∈ D(A∗) is the solution
(4.23). We multiply the first equation of (4.23) by w and (4.29) by ϕ. After some calculation, we obtain

〈[w, ξ1, ξ2], [f, ζf1 , ζ
f
2 ]〉 = −

∫
F
χhdy−

∫
∂F

(T(ϕ, χ)n·g dγ−
∫
∂F

(Ξ(T(ϕ, χ)n) +B∗[ϕ, ζ1, ζ2])·Fσ[w, ξ1, ξ2] dγ.

(4.34)

From (3.67), (3.68) and (4.25), we have

B∗[ϕ, ζ1, ζ2] = −Ξ(T(ϕ, π)n).

Combining the two above relations with the fact that
∫
F hdy =

∫
∂F g · ndγ leads to

〈[w, ξ1, ξ2], [f, ζf1 , ζ
f
2 ]〉 = −

∫
F

(χ− k(ϕ, χ))hdy −
∫
∂F

(T(ϕ, χ)n+ k(ϕ, χ)n) · g dγ

−
∫
∂F

pfn · Ξ(FσP[w, ξ1, ξ2]) dγ, (4.35)

for any [f, ζf1 , ζ
f
2 ] satisfying (4.27) and where

k(ϕ, χ)
def
=

1

|∂F|+ |F|

(∫
F
χ dy −

∫
∂F

T(ϕ, χ)n · n dγ
)
.

In order to prove the existence and uniqueness of [w, ξ1, ξ2] ∈ (H2ε(F))′×D(A
1/2−ε/2
1 )×D(A

ε/2
1 )′ satisfying

(4.35), we proceed as follows: first there exists a unique [ŵ, ξ̂1, ξ̂2] ∈ D(A
ε/2
0 )′ such that for any [f, ζf1 , ζ

f
2 ] ∈

D(A
ε/2
0 ),

〈[ŵ, ξ̂1, ξ̂2], [f, ζf1 , ζ
f
2 ]〉D(A

ε/2
0 )′,D(A

ε/2
0 )

= −〈(T(ϕ, χ)n+ k(ϕ, χ)n, χ− k(ϕ, χ)) , (g, h)〉
H

1/2+2ε,1+2ε
∂F,F ,H

−1/2−2ε,−1−2ε
∂F,F

, (4.36)

where (ϕ, χ, ζ1, ζ2) is the solution of (4.23) associated with [f, ζf1 , ζ
f
2 ]. The existence and uniqueness for this

problem is a consequence of (4.28).

Second, there exists a unique [w, ξ1, ξ2] ∈ (H2ε(F))′ ×D(A
1/2−ε/2
1 )×D(A

ε/2
1 )′ such that for any

[f, ζf1 , ζ
f
2 ] ∈ H2ε(F)×D(A

1/2+ε/2
1 )×D(A

ε/2
1 ),

〈
[w, ξ1, ξ2], [f, ζf1 , ζ

f
2 ]
〉

(H2ε(F))′×D(A
1/2−ε/2
1 )×(D(A

ε/2
1 ))′,H2ε(F)×D(A

1/2+ε/2
1 )×D(A

ε/2
1 )

= −〈(T(ϕ, χ)n+ k(ϕ, χ)n, χ− k(ϕ, χ)) , (g, h)〉
H

1/2+2ε,1+2ε
∂F,F ,H

−1/2−2ε,−1−2ε
∂F,F

−
∫
∂F

pfn · Ξ(Fσ[ŵ, ξ̂1, ξ̂2]) dγ (4.37)

where (ϕ, χ, ζ1, ζ2) is the solution of (4.23) associated with [f, ζf1 , ζ
f
2 ] and pf is defined by (4.26). The

existence and uniqueness for this problem is a consequence of (4.28). Taking [f, ζf1 , ζ
f
2 ] ∈ D(A

ε/2
0 ) in (4.37)

yields that pf = 0 (see (4.26)) and thus that

P[w, ξ1, ξ2] = [ŵ, ξ̂1, ξ̂2].
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Consequently, [w, ξ1, ξ2] is the solution of (4.35) and we can define

Ldiv : H
−1/2−2ε,−1−2ε
∂F,F → (H2ε(F))′ ×D(A

1/2−ε/2
1 )×HS

as Ldiv(g, h)
def
= [w, ξ1, ξ2] for any (g, h) ∈ H

−1/2−2ε,−1−2ε
∂F,F , where [w, ξ1, ξ2] is the solution of (4.35). Using

(4.28), from (4.37)-(4.36) we deduce that,

‖Ldiv(g, h)‖
(H2ε(F))′×D(A

1/2−ε/2
1 )

6 C‖(g, h)‖
H
−1/2−2ε,−1−2ε
∂F,F

. (4.38)

Finally, assume ζ1 ∈ D(A
1+ε/2
1 ) and set

[f, ζf1 , ζ
f
2 ] = −F ∗σB∗[0, ζ1, 0] + [0, 0,−A1ζ1].

Then, the corresponding solution of (4.23) is ϕ = 0, ζ2 = 0 and χ = 0. In that case (see (4.25)),

B∗[0, ζ1, 0] = Ξ(πn), where

 ∇π
0

−T ∗(πn)

 = (I − P)

 0
0

A1ζ1

 ,
and since [ϕj , ζ1,j , ζ2,j ] ∈ D(A∗), pf = −π (see (4.26)). Consequently, (4.37) reduces to

〈ξ2, A1ζ1〉 = 0.

Since the above relation holds for any ζ1 ∈ D(A
1+ε/2
1 ), a density argument implies ξ2 = 0.

Now let us prove (4.21) in the case s = 2. For that, we assume (g, h) ∈ H
3/2,1
∂F,F and we use the elliptic

regularity for the Stokes system with nonhomogeneous divergence and boundary conditions. More precisely,
by performing the above calculations in the case ε = 0 we first obtain (w, ξ1) ∈ L2(F) × D(A

1/2
1 ), and

from (2.59) we have in particular Λ(1)(ξ1, 0) ∈ (L2(F))2×2. Then Stokes regularity result applied to system
(4.16)-(4.19) yields w ∈ H1(F). We also have div(T(w, p) + Λ(1)(ξ1, 0)) ∈ L2(F) which guarantees that

(T(w, p)+Λ(1)(ξ1, 0))n ∈ V−1/2(F). Then (2.56) for s = 1/8 yields T ∗
[
(T(w, p) + Λ(1)(ξ1, 0))n

]
∈ D(A

1/8
1 )′

and from equation (4.19) we deduce ξ1 ∈ D(A
7/8
1 ). Finally, using again Stokes regularity results with the

fact that (w, ξ1) ∈ H1(F)×D(A
3/4
1 ) yields (4.21) for s = 2.

The case s ∈ (−2ε, 2) then follows by interpolation.

Using the lifting operator Ldiv, system (4.6)–(4.10), (4.11) can be written as

Z = Ẑ + Ldiv(Fb, Fdiv), (4.39)

PẐ′ = AσPẐ + P(F − divG)− PLdiv(Fb, Fdiv)′ in D(A∗)′, (4.40)

PẐ(0) = P(Z0 − Ldiv(Fb(0), Fdiv(0)), (4.41)

(I − P)Ẑ = (I − P)DFFσPẐ. (4.42)

In order to analyze (4.40), we need the following proposition.

Proposition 4.5. Assume F ∈ H1/2+δ
σ (D((−A∗σ)δ)′) for some δ ∈ (0, 1/2). Then, the solution of

W′ = AσW + F′, W(0) = 0 (4.43)

belongs to H
1/2+δ
σ (D((−Aσ)δ)′) ∩ L2

σ(D((−Aσ)1/2)) and satisfies

‖W‖
H

1/2+δ
σ (D((−A∗σ)δ)′)

+ ‖W‖L2
σ(D((−Aσ)1/2)) 6 C‖F‖

H
1/2+δ
σ (D((−A∗σ)δ)′)

. (4.44)

Proof. First, since Aσ − σI is of negative type and is the infinitesimal generator of an analytic semigroup,
for any F ∈ H1

σ(D((−A∗σ)δ)′) the solution of (4.43) satisfies

‖W‖L2
σ(D((−Aσ)1−δ)) + ‖W‖H1

σ(D((−A∗σ)δ)′) 6 C‖F‖H1
σ(D((−A∗σ)δ)′). (4.45)

Second, assume F ∈ L2
σ(D((−A∗σ)δ)′). There exists a sequence (Fn) in C1

c (H) that converges to F in
L2
σ(D((−A∗σ)δ)′). We remark that the solution Wn of (4.43) corresponding to Fn satisfies

(Wn − Fn)′ = Aσ(Wn − Fn) +AσFn, (Wn − Fn)(0) = 0,
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and using again the maximal regularity results, we find

‖Wn − Fn‖L2
σ(D((−Aσ)δ)′) 6 C‖AσFn‖L2

σ(D((−A∗σ)1+δ)′) 6 C‖Fn‖L2
σ(D((−Aσ)δ)′).

Thus, passing to the limit as n → +∞ we obtain ‖W‖L2
σ(D((−Aσ)δ)′) 6 C‖F‖L2

σ(D((−Aσ)δ)′). Then we
conclude with (4.45) and with an interpolation argument.

Next, for ε ∈ (0, 1/8) given in (4.20) let us define the following functional spaces:

E def
= L2

σ(H1(F)′)× L2
σ(L2(F))×

[
H1/2+ε
σ (H

−1/2−2ε,−1−2ε
∂F,F ) ∩ L2

σ(H
1/2,0
∂F,F )

]
, (4.46)

G def
=
[
H1/2+ε
σ (H2ε(F)′ ×D(A

1/2−ε/2
1 )×D(A

ε/2
1 )′)

]
∩
[
L2
σ(H1(F)×D(A

3/4
1 )×D(A

1/4
1 ))

]
. (4.47)

Notice that (2.2) yields the following continuous embedding:

G ↪→
[
H1/2
σ (L2(F)×D(A

1/2
1 )×HS)

]
∩
[
Cb,σ(L2(F)×D(A

1/2
1 )×HS)

]
. (4.48)

We are now in position to state the main result of this section.

Corollary 4.6. Assume [w0, ξ0
1 , ξ

0
2 ] ∈ L2(F) × D(A

1/2
1 ) ×HS and [F,G, Fb, Fdiv] ∈ E. Then system (4.6)-

(4.11) admits a unique solution [w, ξ1, ξ2] ∈ G and we have

‖[w, ξ1, ξ2]‖G 6 C
(
‖[F,G, Fb, Fdiv]‖E + ‖[w0, ξ0

1 , ξ
0
2 ]‖

L2(F)×D(A
1/2
0 )×HS

)
. (4.49)

Proof. We write system (4.6)-(4.11) as (4.39)-(4.42) with Z = [w, ξ1, ξ2]. Since

[Fb, Fdiv] ∈ H1/2+ε
σ (H

−1/2−2ε,−1−2ε
∂F,F ) ∩ L2

σ(H
1/2,0
∂F,F )

we deduce from Proposition 4.4, that
Ldiv(Fb, Fdiv) ∈ G.

Using Corollary 3.3 and (4.48) we deduce from the above relation

PLdiv(Fb, Fdiv) ∈ H1/2+ε
σ (H2ε(F)′ ×D(A

1/2−ε/2
1 )×D(A

ε/2
1 )′) ∩ Cb,σ(H).

Using Proposition 4.1, Proposition 3.13 and (3.38) we deduce from the above relation,

PLdiv(Fb, Fdiv) ∈ H1/2+ε
σ (D((−A∗σ)ε)′) ∩ Cb,σ(H). (4.50)

From the hypotheses on the initial conditions, and from the above relation, we obtain

P(Z0 − Ldiv(Fb(0), Fdiv(0)) ∈ H, (4.51)

where Z0 def
= [w0, ξ0

1 , ξ
0
2 ].

Gathering (4.50), (4.51) and applying Proposition 4.5 and Proposition 4.3 with the fact that

Wσ(D((−Aσ)1/2),D((−A∗σ)1/2)′) ↪→ H1/2+ε
σ (D((−A∗σ)ε)′) ∩ L2

σ(D((−Aσ)1/2))

we deduce that
PẐ ∈ H1/2+ε

σ (D((−A∗σ)ε)′) ∩ L2
σ(D((−Aσ)1/2)) ↪→ G.

We underline that the last above embedding is well justified by Proposition 4.1. In particular the embedding
D((−A∗σ)ε)′ ↪→ H2ε(F)′ ×D(A

1/2−ε/2
1 )×D(A

ε/2
1 )′ is true since ε < 1/4.

We deduce from the above relation, from the definition (4.2) of the operator Fσ, from Proposition 3.14
and from Proposition 3.2 that

(I − P)DFFσPẐ ∈ H1/2+ε
σ (H1(F)×D(A

1/2
1 )×HS).

Combining the above relations, we deduce that

[w, ξ1, ξ2] = Z = PẐ + (I − P)Ẑ + Ldiv(Fb, Fdiv) ∈ G

with the estimate (4.49).
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5 Fixed point

5.1 Proof of Theorem 1.2

In order to prove Theorem 1.2, we consider the Banach spaces E and G defined by (4.46) and (4.47) and the
following mapping defined on a closed ball of E of radius R > 0,

Ψ : BE(0, R)→ E ,
[
F,G, Fb, Fdiv

]
7→
[
F (Z), G(Z), Fb(Z), Fdiv(Z)

]
where Z =

[
w, ξ1, ξ2

]
∈ G is the solution of (4.6)-(4.11) given by Corollary 4.6 and where F (Z), G(Z), Fb(Z),

Fdiv(Z) are defined by (2.43), (2.25) and (2.27).
We remark that if

[
F,G, Fb, Fdiv

]
is a fixed point of the mapping Ψ, then the corresponding solution[

w, ξ1, ξ2
]

of (4.6)-(4.11) is a solution of (2.48)-(2.52). Consequently, we are reduced to show that Ψ admits
a fixed point. We prove that for R small enough, Ψ is well-defined from BE(0, R) onto itself and that the
restriction of Ψ on this closed ball is a contraction mapping.

First, we notice that (4.49) implies (2.8) provided that
[
F,G, Fb, Fdiv

]
∈ BE(0, R) with R small enough

and that [w0, ξ0
1 , ξ

0
2 ] has a norm small enough in L2(F) × D(A

1/2
1 ) × HS . In particular, the changes of

variables X and Y are well-defined as well as F (Z), G(Z), Fb(Z), Fdiv(Z).
Second, we use several technical results whose proofs are given in the next subsections. To simplify the

notation, in what follows, we assume

R+ ‖[w0, ξ0
1 , ξ

0
2 ]‖

L2(F)×D(A
1/2
1 )×HS

6 1. (5.1)

Proposition 5.1. There exists C# > 0 such that for all R > 0 and [w0, ξ0
1 , ξ

0
2 ] satisfying (5.1), and all[

F,G, Fdiv, Fb
]
∈ BE(0, R),

‖Ψ(
[
F,G, Fb, Fdiv

]
)‖E 6 C#

(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖

L2(F)×D(A
1/2
1 )×HS

)2

.

From the above proposition, we remark that if

‖[w0, ξ0
1 , ξ

0
2 ]‖

L2(F)×D(A
1/2
1 )×HS

6 R, (5.2)

and R is small enough so that
4C#R 6 1, (5.3)

then Ψ is well-defined from BE(0, R) into itself.
The second important technical result we need is the following:

Proposition 5.2. There exists C# > 0 such that for all R > 0 and [w0, ξ0
1 , ξ

0
2 ] satisfying (5.1), and all[

F (1), G(1), F
(1)
b , F

(1)
div

]
and

[
F (2), G(2), F

(2)
b , F

(2)
div

]
in BE(0, R),

∥∥∥Ψ
([
F (1), G(1), F

(1)
b , F

(1)
div

])
−Ψ

([
F (2), G(2), F

(2)
b , F

(2)
div

])∥∥∥
E

6 C#

(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖

L2(F)×D(A
1/2
0 )×HS

)∥∥∥[F (1), G(1), F
(1)
b , F

(1)
div

]
−
[
F (2), G(2), F

(2)
b , F

(2)
div

]∥∥∥
E
.

With the same conditions (5.2) and (5.3), we deduce that the restriction of Ψ on BE(0, R) is a contraction
mapping. The classical Banach fixed point theorem allows us to deduce the existence of a solution.

5.2 Proof of Proposition 5.1

Since [F,G, Fb, Fdiv] satisfies,
‖ [F,G, Fb, Fdiv] ‖E 6 R, (5.4)

then from (4.49) we deduce that the corresponding solution of (4.6)-(4.11) obeys

‖[w, ξ1, ξ2]‖G 6 C
(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)
. (5.5)

By definition of G (see (4.47)) and from (4.48), we deduce for ε ∈ (0, 1/8),

ξ1 ∈ H1/2+ε
σ (H2−2ε

0 (0, 1)), (5.6)
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ξ2 ∈ H1/2+ε
σ (H−2ε(0, 1)), (5.7)

w ∈ H1/2
σ (L2(F)) ∩ Cb,σ(L2(F)) ∩ L2

σ(H1(F)), (5.8)

ξ1 ∈ H1/2
σ (H2

0 (0, 1)) ∩ Cb,σ(H2
0 (0, 1)) ∩ L2

σ(H3(0, 1)), (5.9)

ξ2 ∈ H1/2
σ (L2(0, 1)) ∩ Cb,σ(L2(0, 1)) ∩ L2

σ(H1
0 (0, 1)), (5.10)

and since ξ2 = ∂tξ1
ξ1 ∈ H3/2

σ (L2(0, 1)) ∩ C1
b,σ(L2(0, 1)) ∩H1

σ(H1
0 (0, 1)). (5.11)

Using interpolation arguments and Sobolev embeddings we deduce the following embeddings,

H1/2+ε
σ (H1−2ε(0, 1)) ↪→ Cb,σ(L∞(0, 1)),

H1/2
σ (L2(0, 1)) ∩ L2

σ(H1(0, 1)) ↪→ H1/4
σ (H1/2(0, 1)) ↪→ L4

σ(L4(0, 1)),

H1/2
σ (L2(0, 1)) ∩ L2

σ(H1(0, 1)) ↪→ H3/8
σ (H1/4(0, 1)) ↪→ L8

σ(L4(0, 1)),

H1/2
σ (L2

σ(F)) ∩ L2
σ(H1

σ(F)) ↪→ H1/4
σ (H1/2(F)) ↪→ L4

σ(L4(F)),

from which we deduce
ξ1, ∂sξ1 ∈ Cb,σ(L∞(0, 1)), (5.12)

∂ssξ1, ξ2 ∈ L4
σ(L4(0, 1)), (5.13)

∂ssξ1, ξ2 ∈ L8
σ(L4(0, 1)), (5.14)

w ∈ L4
σ(L4(F)), (5.15)

with the corresponding estimate:

‖ξ1‖H1/2+ε
σ (H2−2ε

0 (0,1))
+ ‖ξ2‖H1/2+ε

σ (H−2ε(0,1))
+ ‖ξ1‖Cb,σ(L∞(0,1)) + ‖∂sξ1‖Cb,σ(L∞(0,1))

+ ‖∂ssξ1‖L4
σ(L4(0,1)) + ‖ξ2‖L4

σ(L4(0,1)) + ‖∂ssξ1‖L8
σ(L4(0,1)) + ‖ξ2‖L8

σ(L4(0,1))

+ ‖w‖L4
σ(L4(F)) 6 C

(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)
. (5.16)

Note that ξ1 and ξ2 can be considered as functions defined on F but only depending on y1 and equal to
zero outside (0, 1), and, in particular by using the fact that ∂sξ1 = ξ1 = 0 on {0, 1}, the above spacial
norms in (0, 1) can be replaced by spacial norms in F . Moreover, by combining (4.8), (5.7), (4.2) and
T ∈ L(H−2ε(0, 1),H−1/2−2ε(∂F)), (obtained from (2.57) with duality argument) we deduce

w ∈ H1/2+ε
σ (H−1/2−2ε(∂F)),

and with (5.4), (5.16) and (5.5) we obtain

‖w‖
H

1/2+ε
σ (H−1/2−2ε(∂F))

6 C
(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)
. (5.17)

Lemma 5.3. The maps F and G defined by (2.43), (2.33) and (2.37) satisfy

‖G(Z)‖L2
σ(L2(F)) + ‖F (Z)‖L2

σ((H1(F)′) 6 C
(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)2
.

Proof. We first estimate r(5)(ξ1, ∂sξ1, ∂ssξ1, ξ2, w). Using (2.34), we see in particular that we have to estimate
terms of the form

a(x, ξ1)ξn1
1 (∂sξ1)n2∂ssξ1wi (i = 1, 2),

or
a(x, ξ1)ξn1

1 (∂sξ1)n2ξ2wi (i = 1, 2),

where n1, n2 ∈ N and where a is a Lipschitz continuous function. For that we use (5.12), (5.13) and (5.15).
Thus, with (5.1) and (5.16) we finally deduce

‖r(5)(ξ1, ∂sξ1, ∂ssξ1, ξ2, w)‖L2
σ(L2(F)) 6 C

(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)2
. (5.18)
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Similarly, using (2.35), (2.36) and (5.8), (5.12), (5.15), with (5.1) and (5.16) we obtain

‖r(6)(ξ1, ∂sξ1,∇w)‖L2
σ(L2(F)) + ‖r(7)(ξ1, ∂sξ1, w)‖L2

σ(L2(F))

6 C
(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)2
. (5.19)

Combining, (2.33), (2.43) with (5.18) and (5.19) we deduce the result for G(Z).
Then, we estimate F (Z). First, using (5.14) and (5.15), we deduce that

|∂ssξ1|2|w| ∈ L2
σ(L4/3(F)).

Thus, using (2.38), (5.12) and L2
σ(L4/3(F)) ↪→ L2

σ(H1(F)′), with (5.1) and (5.16) we obtain

‖r(8)(ξ1, ∂sξ1, ∂ssξ1, w)‖L2
σ(H1(F)′) 6 C

(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)2
. (5.20)

Moreover, with the same proof,

‖r(10)(ξ1, ∂sξ1, ∂ssξ1, ξ2, w)‖L2
σ(H1(F)′) 6 C

(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)2
. (5.21)

Next, using Lemma C.2, we have for any function τ ∈W 1,∞(R3),

τ(ξ1, ∂sξ1)(∂ssξ1)(∇w) ∈ L2
σ(H1(F)′)2×2),

using Lemma C.3, we have for any functions τ1, τ2 ∈W 1,∞(R3),

τ1(ξ1, ∂sξ1)ξ2w + τ2(ξ1, ∂sξ1)(∂sξ2)w ∈ L2
σ(H1(F)′),

and using Lemma C.4, we have for any function τ ∈W 1,∞(R3), and for any i, j,

τ(ξ1, ∂sξ1)(∂ssξ1)(wiwj) ∈ L2
σ(H1(F)′).

Then gathering the corresponding of above results with (2.39), (2.41), (2.42), (5.1) and (5.16), we deduce

‖r(9)(ξ1, ∂sξ1, ∂ssξ1,∇w)‖L2
σ(H1(F)′)

+ ‖r(11)(ξ1, ∂sξ1, ξ2, ∂sξ2, w)‖L2
σ(H1(F)′) + ‖r(12)(ξ1, ∂sξ1, ∂ssξ1, w)‖L2

σ(H1(F)′)

6 C
(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)2
.

These estimates with (2.43) and (2.37) give the result for F (Z).

Lemma 5.4. The maps Fb(·) and Fdiv(·) defined by (2.25), (2.27) and (2.24) satisfy

‖(Fb(Z), Fdiv(Z))‖
L2
σ(H

1/2,0
∂F,F )

+ ‖(Fb(Z), Fdiv(Z))‖
H

1/2+ε
σ (H

−1/2−2ε,−1−2ε
∂F,F )

6 C
(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)2
Proof. Using (5.8), (5.12) and (5.13), (5.15) we deduce that

(∂sξ1)∇w ∈ L2
σ(L2(F)2×2) and (∂ssξ1)w ∈ L2

σ(L2(F)),

so that, with (2.24), (5.8), (5.12), (5.15) and (5.1), (5.16) we deduce r(2)(ξ1, ∂sξ1, w) ∈ L2
σ(H1(F)) and

‖r(2)(ξ1, ∂sξ1, w)‖L2
σ(H1(F)) 6 C

(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)2
.

In particular,
(Fb(Z), Fdiv(Z)) ∈ L2

σ(H
1/2,0
∂F,F ),

with
‖(Fb(Z), Fdiv(Z))‖

L2
σ(H

1/2,0
∂F,F )

6 C
(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)2
. (5.22)
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Next, assume (g, h) ∈ H
1/2+2ε,1+2ε
∂F,F . For a.e. in (0,∞), we have

〈(Fb(Z), Fdiv(Z)), (g, h)〉
H
−1/2−2ε,−1−2ε
∂F,F ,H

1/2+2ε,1+2ε
∂F,F

=

∫
∂F

r(2) · g dγ +

∫
F

(div r(2))h dy

=

∫
∂F

r(2) · (g + hn) dγ −
∫
F
r(2) · ∇h dy. (5.23)

On the other hand, since we have (5.17), we can apply Lemma C.5 to obtain,

‖r(2)(ξ1, ∂sξ1, w)‖
H

1/2+ε
σ (H−1/2−2ε(∂F))

6 C
(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)2
. (5.24)

Note that assumption ε ∈ (0, 1/8) is needed in Lemma C.5 to obtain ∂sξ1 ∈ H
1/2+ε
σ (H1/2+2ε(0, 1)) from

(5.6). Moreover, from ξ1, ∂sξ1 ∈ H1/2+ε
σ (H1/2+2ε(F)) we also deduce from Lemma C.5

‖r(2)(ξ1, ∂sξ1, w)‖
H

1/2+ε
σ (H2ε(F)′)

6 C
(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)2
.

Combining the above inequality with (5.24) and (5.23) yields

‖(Fb(Z), Fdiv(Z))‖
H

1/2+ε
σ (H

−1/2−2ε,−1−2ε
∂F,F )

6 C
(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

)2
.

The above estimate and (5.22) give the result.

5.3 Proof of Proposition 5.2

First,
[
F (i), G(i), F

(i)
b , F

(i)
div

]
, i = 1, 2 and the corresponding solutions of (4.6)-(4.11) satisfy (5.4)-(5.17).

Moreover, if we write
[w, ξ1, ξ2] = [w(1), ξ

(1)
1 , ξ

(1)
2 ]− [w(2), ξ

(2)
1 , ξ

(2)
2 ],[

F,G, Fb, Fdiv

]
=
[
F (1), G(1), F

(1)
b , F

(1)
div

]
−
[
F (2), G(2), F

(2)
b , F

(2)
div

]
,

then we have from Corollary 4.6,

‖[w, ξ1, ξ2]‖G 6 C‖
[
F,G, Fb, Fdiv

]
‖E , (5.25)

and as in the previous section we thus deduce

‖ξ1‖H1/2+ε
σ (H2−2ε

0 (0,1))
+ ‖ξ2‖H1/2+ε

σ (H−2ε(0,1))
+ ‖ξ1‖Cb,σ(L∞(0,1)) + ‖∂sξ1‖Cb,σ(L∞(0,1))

+ ‖∂ssξ1‖L4
σ(L4(0,1)) + ‖ξ2‖L4

σ(L4(0,1)) + ‖∂ssξ1‖L8
σ(L4(0,1)) + ‖ξ2‖L8

σ(L4(0,1))

+ ‖w‖L4
σ(L4(F)) + ‖w‖

H
1/2+ε
σ (H−1/2−2ε(∂F))

6 C‖
[
F,G, Fb, Fdiv

]
‖E .

In the same way as for Lemma 5.3 and Lemma 5.4 we can prove the following Lemma.

Lemma 5.5. The maps F and G defined by (2.43), (2.33) and (2.37) satisfy

‖G(Z(1))−G(Z(2))‖L2
σ(L2(F) + ‖F (Z(1))− F (Z(2))‖L2

σ((H1(F)′)

6 C
(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2(0,1)×L2(0,1)

) ∥∥[F,G, Fb, Fdiv

]∥∥
E .

The maps Fb(·) and Fdiv(·) defined by (2.25), (2.27) and (2.24) satisfy

‖(Fb(Z(1)), Fdiv(Z(1)))− (Fb(Z
(2)), Fdiv(Z(2)))‖

L2
σ(H

1/2,0
∂F,F )

+ ‖(Fb(Z(1)), Fdiv(Z(1)))− (Fb(Z
(2)), Fdiv(Z(2)))‖

H
1/2+ε
σ (H

−1/2−2ε,−1−2ε
∂F,F )

6 C
(
R+ ‖[w0, ξ0

1 , ξ
0
2 ]‖L2(F)×H2

0 (0,1)∩L2
0(0,1)×L2

0(0,1)

)∥∥[F,G, Fb, Fdiv

]∥∥
E .
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A Calculation for the change of variables

In this section, we gather several lemmas and several proofs for the change of variables (Section 2).

A.1 Proof of Lemma 2.2 and of Lemma 2.3

Proof of Lemma 2.2. First we write (2.11) as

vi =
∑
j

∂Yj
∂xi

ṽj(Y ). (A.1)

Thus
∂vi
∂xk

=
∑
j

∂2Yj
∂xi∂xk

ṽj(Y ) +
∑
j,`

∂Yj
∂xi

∂Y`
∂xk

∂ṽj
∂y`

(Y ). (A.2)

and in particular ∑
i

∂vi
∂xi

=
∑
i,j

∂2Yj
∂x2

i

ṽj(Y ) +
∑
i,j,`

∂Yj
∂xi

∂Y`
∂xi

∂ṽj
∂y`

(Y ). (A.3)

We thus deduce that

det(∇X)(div v) ◦X = det(∇X)(∆Y )(X) · ṽ + det(∇X)[∇Y ](X)[∇Y ]∗(X) : ∇ṽ. (A.4)

We set
K

def
= det(∇X)[∇Y ](X)[∇Y ]∗(X). (A.5)

We recall that for a matrix-valued function M ,

(divM)i
def
=
∑
j

∂Mij

∂yj

and that for a vector-valued function b,

div(Mb) = div(M∗) · b+M∗ : ∇b.

After some calculation, we have
div(K) = det(∇X)∆Y (X). (A.6)

Thus,
det(∇X)(div v) ◦X = div(Kṽ). (A.7)

Finally,
ṽ = (∇X)∗(∂tη)e2 on Γstr,

and on Vα/2 (c.f. (2.4)),

X(y1, y2) =
(
y1, y2 + (η(y1)− ηS(y1))

)
.

Thus on Γstr,

Cof(∇X)∗(y1, y2) =

[
1 0

−(∂sη(y1)− ∂sηS(y1)) 1

]
.

and (2.14) follows from
[Cof(∇X)]−∗ e2 = e2.

Proof of Lemma 2.3. Relation (2.16) is proved in [14, Lemma 3.1] and (2.17) follows from the equality
[Cof(∇X)]∗ e2 = e2.
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A.2 Calculation of M(i)
ξ and B(i)

ξ

Lemma A.1. Assume (2.11) and (2.15). Then

2ν

∫
F(η)

D(v) : D(ϕ) dx =

∫
F
M(3)

ξ (ṽ,∇ṽ) : ∇ϕ̃ dx+

∫
F
M(4)

ξ (ṽ,∇ṽ) · ϕ̃ dx, (A.8)

where [
M(3)

ξ (ṽ,∇ṽ)
]
α,β

def
= 2ν [(Dṽ)(∇Y )(X)(∇Y )(X)∗]α,β + 2ν

∑
i,j,k

∂Xi
∂yα

∂2Yj
∂xi∂xk

(X)
∂Yβ
∂xk

(X)ṽj , (A.9)

and

[
M(4)

ξ (ṽ,∇ṽ)
]
k

def
= 2ν

∑
i,j,α,`,k

∂2Yα
∂xi∂xj

(X)

(∑
m

∂X`
∂ym

∂2Ym
∂x`∂xj

(X)
∂Xi
∂yk

+
∂Y`
∂xj

(X)
∂2Xi
∂yk∂y`

)
ṽα

+ 2ν
∑

i,j,α,β,`

∂Yα
∂xi

(X)(Dṽ)α,β
∂Yβ
∂xj

(X)

(∑
m

∂X`
∂ym

∂2Ym
∂x`∂xj

(X)
∂Xi
∂yk

+
∂Y`
∂xj

(X)
∂2Xi
∂yk∂y`

)
. (A.10)

Proof. We first write

2ν

∫
F(η)

D(v) : D(ϕ) dx = 2ν

∫
F
D(v) ◦X : D(ϕ) ◦X det(∇X) dy

= 2ν

∫
F
D(v) ◦X : (∇ϕ) ◦X det(∇X) dy. (A.11)

From (2.15)
ϕ(t, x) = Cof(∇Y (t, x))∗ϕ̃(t, Y (t, x)). (A.12)

Thus
∂ϕi
∂xj

=
∑
k

∂ Cof(∇Y )ki
∂xj

ϕ̃k(Y ) +
∑
k,`

Cof(∇Y )ki
∂Y`
∂xj

∂ϕ̃k
∂y`

(Y ).

and

(∇ϕ) ◦X det(∇X) =

(
det(∇X)

∑
k

∂ Cof(∇Y )ki
∂xj

(X)ϕ̃k

)
i,j

+ det(∇X) Cof(∇Y )(X)∗(∇ϕ̃)(∇Y )(X)

=

(
det(∇X)

∑
k

∂ Cof(∇Y )ki
∂xj

(X)ϕ̃k

)
i,j

+ (∇X)(∇ϕ̃)(∇Y )(X). (A.13)

From (A.2), we have

(∇v)(X) =

(∑
j

∂2Yj
∂xi∂xk

(X)ṽj

)
ik

+ (∇Y )∗(X)(∇ṽ)(∇Y )(X). (A.14)

We deduce

(Dv)(X) =

(∑
j

∂2Yj
∂xi∂xk

(X)ṽj

)
ik

+ (∇Y )∗(X)(Dṽ)(∇Y )(X). (A.15)
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Gathering (A.11), (A.13) and (A.15), we obtain

2ν

∫
F(η)

D(v) : D(ϕ) dx

= 2ν

∫
F

(∑
j

∂2Yj
∂xi∂xk

(X)ṽj

)
ik

:

(
det(∇X)

∑
k

∂ Cof(∇Y )ki
∂xj

(X)ϕ̃k

)
i,j

dy

+ 2ν

∫
F

(∑
j

∂2Yj
∂xi∂xk

(X)ṽj

)
ik

: (∇X)(∇ϕ̃)(∇Y )(X) dy

+ 2ν

∫
F

(∇Y )∗(X)(Dṽ)(∇Y )(X) :

(
det(∇X)

∑
k

∂ Cof(∇Y )ki
∂xj

(X)ϕ̃k

)
i,j

dy

+ 2ν

∫
F

(∇Y )∗(X)(Dṽ)(∇Y )(X) : (∇X)(∇ϕ̃)(∇Y )(X) dy. (A.16)

Standard calculation gives

2ν

∫
F

(∇Y )∗(X)(Dṽ)(∇Y )(X) : (∇X)(∇ϕ̃)(∇Y )(X) dy = 2ν

∫
F

(Dṽ)(∇Y )(X)(∇Y )(X)∗ : (∇ϕ̃) dy,

(A.17)
and

2ν

∫
F

(∑
j

∂2Yj
∂xi∂xk

(X)ṽj

)
ik

: (∇X)(∇ϕ̃)(∇Y )(X) dy

= 2ν

∫
F

∑
i,j,k

∂Xi
∂yα

∂2Yj
∂xi∂xk

(X)ṽj
∂Yβ
∂xk

(X)


αβ

: (∇ϕ̃) dy. (A.18)

On the other hand,

∂ Cof(∇Y )ki
∂xj

=
∂

∂xj
(det(∇Y )[∇X]ik(Y )) =

∂ det(∇Y )

∂xj

∂Xi
∂yk

(Y ) + det(∇Y )
∑
`

∂Y`
∂xj

∂2Xi
∂yk∂y`

(Y ). (A.19)

We can compute the first part of the above right hand side by using

∂ det(∇Y )

∂xj
=
∑
m,`

∂ det

∂Mm,`
(∇Y )

∂2Ym
∂x`∂xj

=
∑
m,`

det(∇Y )
∂X`
∂ym

(Y )
∂2Ym
∂x`∂xj

. (A.20)

Combining (A.19) and (A.20), we deduce

det(∇X)
∂ Cof(∇Y )ki

∂xj
(X) =

∑
m,`

∂X`
∂ym

∂2Ym
∂x`∂xj

(X)
∂Xi
∂yk

+
∑
`

∂Y`
∂xj

(X)
∂2Xi
∂yk∂y`

. (A.21)

Using the above relation, we obtain

2ν

∫
F

(∑
j

∂2Yj
∂xi∂xk

(X)ṽj

)
ik

:

(
det(∇X)

∑
k

∂ Cof(∇Y )ki
∂xj

(X)ϕ̃k

)
i,j

dy

= 2ν

∫
F

∑
i,j,α,`,k

∂2Yα
∂xi∂xj

(X)

(∑
m

∂X`
∂ym

∂2Ym
∂x`∂xj

(X)
∂Xi
∂yk

+
∂Y`
∂xj

(X)
∂2Xi
∂yk∂y`

)
ṽαϕ̃k dy (A.22)

The third term in (A.16) is

2ν

∫
F

(∇Y )∗(X)(Dṽ)(∇Y )(X) :

∑
m,`,k

∂X`
∂ym

∂2Ym
∂x`∂xj

(X)
∂Xi
∂yk

+
∑
`,k

∂Y`
∂xj

(X)
∂2Xi
∂yk∂y`

 ϕ̃k


i,j

dy

= 2ν

∫
F

∑
i,j,α,β,`,k

∂Yα
∂xi

(X)(Dṽ)α,β
∂Yβ
∂xj

(X)

(∑
m

∂X`
∂ym

∂2Ym
∂x`∂xj

(X)
∂Xi
∂yk

+
∂Y`
∂xj

(X)
∂2Xi
∂yk∂y`

)
ϕ̃k dy. (A.23)
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Finally, gathering (A.16), (A.17), (A.18), (A.22) and (A.23), we deduce the result.

Lemma A.2. Assume (2.11) and (2.15). Then∫
F(η)

v · ∂tϕ dx =

∫
F
ṽ · ∂tϕ̃ dy +

∫
F
M(5)

ξ (ṽ) : ∇ϕ̃ dy +

∫
F
M(6)

ξ (ṽ) · ϕ̃ dy, (A.24)

where
M(5)

ξ (ṽ)
def
= −ṽ ⊗ (∇Y )(X) (∂tX),

and[
M(6)

ξ (ṽ)
]
j

def
=

[
∂t

[
1

det(∇X)
[∇X]∗

]
Cof(∇X)ṽ

]
j

−
∑

k,`,i,j,α

∂Yα
∂xi

(X)∂tXk

(∑
m

∂X`
∂ym

∂2Ym
∂x`∂xk

(X)
∂Xi
∂yj

+
∂Y`
∂xk

(X)
∂2Xi
∂yj∂y`

)
ṽα.

Proof. We first write ∫
F(η)

v · ∂tϕ dx =

∫
F

(v ◦X) · (∂tϕ) ◦X(det∇X) dy. (A.25)

Therefore, ∫
F(η)

v · ∂tϕ dx =

∫
F
ṽ · (∇Y )(X)(∂tϕ) ◦X(det∇X) dy. (A.26)

Then, using (2.15), we have

∂tϕ = [∂t Cof(∇Y )∗] ϕ̃(Y ) + Cof(∇Y )∗ (∂tY · ∇) ϕ̃(Y ) + Cof(∇Y )∗∂tϕ̃(Y ). (A.27)

and thus

(∇Y )(X)(∂tϕ) ◦X(det∇X) = Cof(∇X)∗ [∂t Cof(∇Y )∗] (X)ϕ̃

+ Cof(∇X)∗ Cof(∇Y )∗(X) (∂tY (X) · ∇) ϕ̃+ Cof(∇X)∗ Cof(∇Y )∗(X)∂tϕ̃. (A.28)

The above relation yields

(∇Y )(X)(∂tϕ) ◦X(det∇X) = Cof(∇X)∗ [∂t Cof(∇Y )∗] (X)ϕ̃+ (∂tY (X) · ∇) ϕ̃+ ∂tϕ̃. (A.29)

Then, we use
(∂tY )(X) = −(∇Y )(X) (∂tX) (A.30)

and

[∂t Cof(∇Y )∗]i,j (X) = ∂t [Cof(∇Y )∗(X)]i,j −
∑
k

∂tXk
∂ Cof(∇Y )j,i

∂xk
(X). (A.31)

From (A.21),∑
k

∂tXk
∂ Cof(∇Y )j,i

∂xk
(X) =

1

det∇X
∑
k,`

∂tXk

(∑
m

∂X`
∂ym

∂2Ym
∂x`∂xk

(X)
∂Xi
∂yj

+
∂Y`
∂xk

(X)
∂2Xi
∂yj∂y`

)
. (A.32)

We also have

∂t [Cof(∇Y )∗(X)] = ∂t

[
1

det(∇X)
[∇X]

]
. (A.33)

Finally, we conclude∫
F(η)

v · ∂tϕ dx =

∫
F
ṽ · ∂tϕ̃ dy +

∫
F
−ṽ ⊗ (∇Y )(X) (∂tX) : ∇ϕ̃ dy

+

∫
F
∂t

[
1

det(∇X)
[∇X]∗

]
Cof(∇X) ṽ · ϕ̃ dy

−
∫
F

∑
k,`,i,j,α

∂Yα
∂xi

(X)∂tXk

(∑
m

∂X`
∂ym

∂2Ym
∂x`∂xk

(X)
∂Xi
∂yj

+
∂Y`
∂xk

(X)
∂2Xi
∂yj∂y`

)
ϕ̃j ṽα dy. (A.34)
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Lemma A.3. Assume (2.11) and (2.15). Then∫
F(η)

v · ((v · ∇)ϕ) dx =

∫
F
B(1)
ξ (ṽ, ṽ) · ϕ̃+ B(2)

ξ (ṽ, ṽ) : (∇ϕ̃) dy, (A.35)

where

[
B(1)
ξ (ṽ, ṽ)

]
k

def
=
∑
i,j,α,β

∂Yα
∂xi

(X)ṽαṽβ
∂Yβ
∂xj

(X)

∑
m,`

∂X`
∂ym

∂2Ym
∂x`∂xj

(X)
∂Xi
∂yk

+
∑
`

∂Y`
∂xj

(X)
∂2Xi
∂yk∂y`

 (A.36)

and
B(2)
ξ (ṽ, ṽ)

def
= [ṽ ⊗ ṽ] (∇Y )(X)(∇Y )(X)∗. (A.37)

Proof. We first write∫
F(η)

v · ((v · ∇)ϕ) dx =

∫
F(η)

v ⊗ v : (∇ϕ) dx =

∫
F

(v ◦X)⊗ (v ◦X) : (∇ϕ) ◦X(det(∇X)) dy.

We have
(v ◦X)⊗ (v ◦X) = (∇Y )(X)∗ [ṽ ⊗ ṽ] (∇Y )(X)

and from (A.13) and (A.21)

(∇ϕ) ◦X det(∇X) =

∑
k

∑
m,`

∂X`
∂ym

∂2Ym
∂x`∂xj

(X)
∂Xi
∂yk

+
∑
`

∂Y`
∂xj

(X)
∂2Xi
∂yk∂y`

 ϕ̃k


i,j

+ (∇X)(∇ϕ̃)(∇Y )(X). (A.38)

Thus

(v ◦X)⊗ (v ◦X) : (∇ϕ) ◦X(det(∇X))

=
∑
i,j,α,β

∂Yα
∂xi

(X)ṽαṽβ
∂Yβ
∂xj

(X)
∑
k

∑
m,`

∂X`
∂ym

∂2Ym
∂x`∂xj

(X)
∂Xi
∂yk

+
∑
`

∂Y`
∂xj

(X)
∂2Xi
∂yk∂y`

 ϕ̃k

+ [ṽ ⊗ ṽ] (∇Y )(X)(∇Y )(X)∗ : (∇ϕ̃). (A.39)

This yields the result.

B Calculation for the linearization

Here we suppose that (2.7) is satisfied. We recall that

X(t, y1, y2) =

[
y1

y2 + θ(y1, y2)ξ(t, y1)

]
,

where θ ∈ C3(R2) is defined in Section 2.2 and where ξ = η − ηS , which originally belongs to H2
0 (0, 1), has

been extended by zero outside (0, 1) to a function of H2(R) while keeping the same notation.
In what follows, we recall that γ(i)(y, ·) are linear mappings that depend on y in a Lipschitz continuous

way and that vanish in F\Vα (see (2.4)). We also recall that Q2(α1, . . . , αk) where k ∈ N denote the set
of polynomials in the variables α1, . . . , αk and with coefficients that are Lipschitz continuous functions of
y ∈ R2 and of ξ and that vanish in F\Vα, and such that the degree of its nonzero monomial of lowest degree
is greater or equal to 2.

We have

(∇X) =

[
1 0

(∂y1θ)ξ + θ(∂sξ) 1 + (∂y2θ)ξ

]
= I2 + γ(13)(y, ξ, ∂sξ). (B.1)
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We also have
∂2Xi
∂yj∂yk

= γ
(14)
i,j,k(y, ξ, ∂sξ, ∂ssξ). (B.2)

We deduce from (B.1)

(∇Y )(X) =
1

1 + (∂y2θ)ξ

[
1 + (∂y2θ)ξ 0

−(∂y1θ)ξ − θ(∂sξ) 1

]
. (B.3)

We can write
1

1 + (∂y2θ)ξ
= 1 +

−(∂y2θ)ξ

1 + (∂y2θ)ξ
= 1− (∂y2θ)ξ +

(∂y2θ)
2(ξ)2

1 + (∂y2θ)ξ

which implies the following relations

1

1 + (∂y2θ)ξ
= 1 + r(15)(ξ) = 1 + γ(16)(ξ) + r(16)(ξ),

with r(15) ∈ Q1(α1), r(16) ∈ Q2(α1).

(B.4)

We deduce from (B.3) and (B.4)

(∇Y )(X) = I2 + γ(17)(ξ, ∂sξ) + r(17)(ξ, ∂sξ), r(17) ∈ Q2(α1, α2). (B.5)

From (B.3), some standard calculation yields

∂

∂y1
∇Y (X) =

γ(18)(ξ, ∂sξ)

(1 + (∂y2θ)ξ)
2

(
I2 + γ(19)(ξ, ∂sξ)

)
+

1

1 + (∂y2θ)ξ
γ(20)(ξ, ∂sξ, ∂ssξ),

∂

∂y2
∇Y (X) =

γ(21)(ξ)

(1 + (∂y2θ)ξ)
2

(
I2 + γ(19)(ξ, ∂sξ)

)
+

1

1 + (∂y2θ)ξ
γ(22)(ξ, ∂sξ),

which leads to ∑
j

∂Xj
∂y`

∂2Yi
∂xj∂xk

(X) = γ
(23)
`,i,k(ξ, ∂sξ, ∂ssξ) + r(23)(ξ, ∂sξ, ∂ssξ),

with r(23) ∈ Q2(α1, α2, α3), deg3(r(23)) 6 1.

(B.6)

Relations (B.5) and (B.6) imply

∂2Yi
∂xj∂xk

(X) = γ
(24)
i,j,k(ξ, ∂sξ, ∂ssξ) + +r(24)(ξ, ∂sξ, ∂ssξ),

with r(24) ∈ Q2(α1, α2, α3), deg3(r(24)) 6 1.

(B.7)

We also have
∂tX(t, y1, y2) = (∂tξ)θe2. (B.8)

We deduce from (B.1) that

∂t

[
1

det(∇X)
[∇X]∗

]
= γ(25)(∂tξ, ∂tsξ) + r(25)(ξ, ∂sξ, ∂tξ, ∂tsξ), ,

with r(25) ∈ Q2(α1, α2, α3, α4), deg3,4(r(25)) 6 1.

(B.9)

We use now the above decomposition in order to linearize the operators appearing with the change of
variables. We recall that ṽ is defined by (2.11) and w̃ by (2.19). We also recall that (2.7) is satisfied and
that we assume vS ∈W 2,∞(F), div vS = 0 and fS ∈W 2,∞(F).

First we deal with the linearization of the condition on the divergence.
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Lemma B.1. The following equality holds:

K(w̃ + vS)− vS = w̃ + γ(1)(ξ, ∂sξ)v
S + r(1)(ξ, ∂sξ, w̃),

with r(1) ∈ Q2(α1, α2, α3, α4), deg3,4 r
(1) 6 1.

(B.10)

In particular,

div
(
K(w̃ + vS)

)
= div w̃ + div(γ(1)(ξ, ∂sξ)v

S) + div(r(1)(ξ, ∂sξ, w̃)) in F (B.11)

and
w̃ = (∂tξ)e2 − r(1)(ξ, ∂sξ, w̃) on ∂F . (B.12)

Proof. We write K(w̃ + vS)− vS = w̃ + (K − I2)(w̃ + vS) and using (see (B.1) and (B.5))

K = det(∇X)[∇Y ](X)[∇Y ]∗(X) = Cof(∇X)∗[∇Y ]∗(X) = I2 + γ(26)(ξ, ∂sξ) + r(26)(ξ, ∂sξ)

with r(26) ∈ Q2(α1, α2).
(B.13)

we deduce (B.10) and (B.11). To obtain (B.12), we start from (2.14):

Kṽ = (∂tη)e2 = (∂tξ)e2.

Then, since ṽ = w̃ + vS and since vS = 0 on ∂F , the result follows from (B.10).

We then consider w define by (2.23), i.e. w = w̃ + γ(1)(ξ, ∂sξ)v
S . Using (B.1)-(B.9) with lemmas A.1,

A.2 and A.3 we deduce the following lemmas.

Lemma B.2. The following equalities hold:

M(3)
ξ (w + (1− γ(1))vS ,∇w +∇((1− γ(1))vS)) = 2νDvS + 2νDw + γ(27)(ξ, ∂sξ, ∂ssξ)

+ r(27)(ξ, ∂sξ, ∂ssξ, w) + r(28)(ξ, ∂sξ,∇w) (B.14)

with

r(27) ∈ Q2(α1, α2, α3, α4, α5) deg3 r
(27) 6 1, deg4,5 r

(27) 6 1, (B.15)

r(28) ∈ Q2(α1, α2, α3, . . . , α6) deg3,...,6 r
(28) 6 1, (B.16)

and

M(4)
ξ (w + (1− γ(1))vS ,∇w +∇((1− γ(1))vS)) = γ(29)(ξ, ∂sξ, ∂ssξ)

+ r(29)(ξ, ∂sξ, ∂ssξ, w) + r(30)(ξ, ∂sξ, ∂ssξ,∇w) (B.17)

with
r(29) ∈ Q2(α1, α2, α3, α4, α5) deg3 r

(29) 6 2, deg4,5 r
(29) 6 1, (B.18)

r(30) ∈ Q2(α1, α2, α3, α4, α5, α6, α7) deg3 r
(30) 6 1, deg4,...,7 r

(30) 6 1. (B.19)

Lemma B.3. The following equalities hold:

M(5)
ξ (w + (1− γ(1))vS) = γ(31)(∂tξ) + r(31)(ξ, ∂sξ, ∂tξ, w), (B.20)

with
r(31) ∈ Q2(α1, α2, α3, α4, α5) deg3 r

(31) 6 1, deg4,5 r
(31) 6 1, (B.21)

and

M(6)
ξ (w + (1− γ(1))vS) = γ(32)(∂tξ, ∂tsξ) + r(32)(ξ, ∂sξ, ∂tξ, ∂tsξ, w) + r(33)(ξ, ∂sξ, ∂ssξ, ∂tξ, w) (B.22)

with
r(32) ∈ Q2(α1, α2, α3, α4, α5, α6) deg3,4 r

(32) 6 1, deg5,6 r
(32) 6 1, (B.23)

r(33) ∈ Q2(α1, α2, α3, α4, α5, α6) deg3 r
(33) 6 1, deg4 r

(33) 6 1, deg5,6 r
(33) 6 1. (B.24)
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Lemma B.4. The following equalities hold:

B(1)
ξ (w + (1− γ(1))vS , w + (1− γ(1))vS) = γ(34)(ξ, ∂sξ, ∂ssξ) + r(34)(ξ, ∂sξ, ∂ssξ, w) (B.25)

B(2)
ξ (w+ (1− γ(1))vS , w+ (1− γ(1))vS) = vS ⊗ vS +w⊗ vS + vS ⊗w+ γ(35)(ξ, ∂sξ) + r(35)(ξ, ∂sξ, w) (B.26)

with
r(34) ∈ Q2(α1, α2, α3, α4, α5) deg3 r

(34) 6 1, deg4,5 r
(34) 6 2, (B.27)

r(35) ∈ Q2(α1, α2, α3, α4) deg3,4 r
(35) 6 2. (B.28)

Lemma B.5. The following equality holds:

(∇X)∗(fS ◦X)− fS = γ(36)(ξ, ∂sξ) + r(36)(ξ, ∂sξ),

with r(36) ∈ Q2(α1, α2).
(B.29)

Proof. We write

(∇X)∗(fS ◦X)− fS = [(∇X)∗ − I2]fS + (∇X)∗
[
(fS ◦X)− fS

]
and the result follows from

fS(X(y)) = fS(y) + θξ∇fS(y) · e2 +

∫ 1

0

(1− s)∇2fS(y + sθξe2)θξe2 · θξe2 ds.

C Anisotropic Estimates

In this section, we suppose that [w, ξ1, ξ2] ∈ G and w ∈ H1/2+ε
σ (H−1/2−2ε(∂F)), where G is defined by (4.47),

with the estimates
‖[w, ξ1, ξ2]‖G + ‖w‖

H
1/2+ε
σ (H−1/2−2ε(∂F))

6 R0, (C.1)

for R0 ∈ (0, 1]. This implies (5.6)-(5.15) with the corresponding bound in term of R0. From (5.12) and from

ξ1 ∈ H3/2
σ (L2(0, 1)) ∩H1/2

σ (H2
0 (0, 1)) ↪→ H5/8

σ (H
7/4
0 (0, 1)),

ξ1 ∈ H1
σ(H1

0 (0, 1)) ∩ L2
σ(H3(0, 1) ∩H2

0 (0, 1)) ↪→ H3/8
σ (H

9/4
0 (0, 1)) ↪→ L8

σ(H
9/4
0 (0, 1)),

ξ2 ∈ H1/2
σ (L2(0, 1)) ∩ L2

σ(H1
0 (0, 1)) ↪→ H1/8

σ (H
3/4
0 (0, 1)) ↪→ L8/3

σ (H
3/4
0 (0, 1)),

ξ2 ∈ H1/2
σ (L2(0, 1)) ∩ L2

σ(H1
0 (0, 1)) ↪→ H3/8

σ (H1/4(0, 1)) ↪→ L8
σ(H1/4(0, 1)),

w ∈ H1/2
σ (L2(F)) ∩ L2

σ(H1(F)) ↪→ H1/8
σ (H3/4(F)) ↪→ L8/3

σ (H3/4(F)),

w ∈ H1/2
σ (L2(F)) ∩ L2

σ(H1(F)) ↪→ H3/8
σ (H1/4(F)) ↪→ L8

σ(H1/4(F)),

we obtain the following estimate:

‖ξ1‖H5/8
σ (H7/4(0,1))

+ ‖ξ1‖L8
σ(H9/4(0,1)) + ‖ξ2‖L8/3

σ (H3/4(0,1))
+ ‖ξ2‖L8

σ(H1/4(0,1))

+ ‖w‖
L

8/3
σ (H3/4(F))

+ ‖w‖L8
σ(H1/4(F)) + ‖ξ1‖L∞σ (L∞(0,1)) + ‖∂sξ1‖L∞σ (L∞(0,1)) 6 CR0. (C.2)

In what follows, we suppose R0 > 0 small enough so that

‖ξ1‖L∞(L∞(0,1)) 6 c0 for c0 > 0 given in (2.8). (C.3)

Let T = [−L,L]× [−L,L] be a rectangle such that F ⊂ T . There exists an extension operator E which is
continuous from L2(F) into L2(T ) as well as from H1(F) into H1

0 (T ). Note that an interpolation argument
guarantees that we also have E ∈ L(Hs(F), Hs

0(T )) for s ∈ (0, 1). Then using this extension operator, any
function in Hs(F), s ∈ [0, 1] can be considered as a function in Hs

0(T ): in what follows we will extend wi,
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i = 1, 2 or some test functions ϕ, but for simplicity we will keep the same name wi and ϕ instead of E(wi)
and E(ϕ). We will also freely use the boundedness properties of E without recalling it.

Moreover, any function defined on (0, 1) is considered as a function defined on T but only depending on
y1 and equal to zero outside (0, 1): by this way we can consider ξ1 and ξ2 as functions defined on T .

For p ∈ [1,+∞), s > −1 and a function f : T → R we write

‖f‖Lpy2 (Hsy1
)

def
=

(∫ L

−L
‖f(·, y2)‖pHs(−L,L)dy2

)1/p

and
‖f‖L∞y2 (Hsy1

)
def
= supessy2∈(−L,L) ‖f(·, y2)‖Hs(−L,L).

We also define the ‖ · ‖Lpy1 (Hsy2
) analogously, just by reversing the role of y1, y2.

Let us stress some basic properties that we use below. First for s > 0 and f ∈ Hs(T ) we have

‖f‖L2
yi

(Hsyj
) 6 ‖f‖Hs(T ), (i, j ∈ {1, 2}, i 6= j), (C.4)

and (see [26, Cor 1.4.4.5]),
‖1Ff‖Hs(T ) 6 C‖f‖Hs(T ) if s ∈ [0, 1/2). (C.5)

Above and in what follows, 1F denotes the characteristic functions of F . Moreover, for p ∈ [1,+∞],
s ∈ [0, 2]\{ 1

2
, 3

2
} and g ∈ Hs

0(0, 1),
‖g‖Lpy2 (Hsy1

) 6 C‖g‖Hs0 (0,1). (C.6)

We also have the following result.

Lemma C.1. Assume p ∈ [1,+∞], s ∈ [0, 1/2) and g ∈ Hs(0, 1). Then we have,

‖1Fg‖Lpy2 (Hsy1
) 6 C‖g‖Hs(0,1).

Proof. First, for any nonempty open interval I and any function f ∈ Hs(I), we denote its extension by 0
outside I by EI(f). Thus, we define H̃s(I) as the space of functions f in Hs(I) such that EI(f) ∈ Hs(R)

equipped with the norm ‖f‖H̃s(I)

def
= ‖EI(f)‖Hs(R). Since s < 1/2, one can prove (see [26, Cor. 1.4.4.5]),

‖f‖H̃s(I) 6 C‖f‖Hs(I). (C.7)

Moreover, we can verify that the above constant C is independent of I. Let us detail the argument. We
recall that if X is an open subset of R the norm of Hs(X) is defined by

‖f‖Hs(X)
def
=

∫
X

∫
X

|f(y1)− f(ỹ1)|2

|y1 − ỹ1|1+2s
dy1dỹ1.

Then if we assume I = (0, A) with A > 0, from easy calculations we deduce

‖f‖2H̃s(I)

def
= ‖EI(f)‖2Hs(R) = ‖f‖2Hs(I) +

∫ A

0

|f(y1)|2ρs,A(y1)dy1,

with

ρs,A(y1)
def
= 2

∫
(−∞,0)∪(A,+∞)

du

|y1 − u|1+2s
=

1

s

(
1

y2s
1

+
1

(A− y1)2s

)
.

Thus, by observing that ρs,A(y1) = A−2sρs,1(y1/A) and by using Hardy’s inequality we obtain∫ A

0

|f(y1)|2ρ1,A(y1)dy1 = A−1

∫ 1

0

|f(Au)|2ρ1,1(u)du

6 C∗A
−1

∫ 1

0

|Af ′(Au)|2du = C∗

∫ A

0

|f ′(y1)|2dy1 = C∗‖f‖2H1
0 (I)

for a constant C∗ > 0 which is independent on A. Thus, with an interpolation argument (see [43, Thm.
1.18.5, p. 130]) we deduce that ∫ A

0

|f(y1)|2(ρ1,A(y1))sdy1 6 Cs∗‖f‖2Hs0 (I),
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and (C.7) follows from (ρ1,A(y1))s > s2s−1ρs,A(y1) and from Hs(I) = Hs
0(I) (because s ∈ [0, 1/2)) and

‖ · ‖Hs(I) = ‖ · ‖Hs0 (I).
Next, the lemma is a consequence of the following inequality: for a.e. y2 ∈ (−L,L),

‖1F (·, y2)g‖Hs(−L,L) 6 C‖g‖Hs(−L,L), (C.8)

for a constant C > 0 independent on y2. In order to prove this inequality, we define for y2 ∈ R the set

∆y2
def
= {y1 ∈ (−L,L) ; (y1, y2) ∈ F}. Since F is smooth, the set ∆y2 is a finite union of open segments:

∆y2 = ∪Ny2j=1 Ij with Ny2 bounded independently on y2. Finally, using (C.7), we can prove (C.8):

‖1F (·, y2)g‖Hs(−L,L) 6 ‖1F (·, y2)g‖Hs(R) =

∥∥∥∥∥∥
Ny2∑
j=1

1Ijg

∥∥∥∥∥∥
Hs(R)

6

Ny2∑
j=1

∥∥1Ijg∥∥Hs(R)
=

Ny2∑
j=1

‖g‖H̃s(Ij)

6 C

Ny2∑
j=1

‖g‖Hs(Ij) 6 CNy2‖g‖Hs(R) = CNy2‖g‖H̃s(0,1) 6 C‖g‖Hs(0,1).

Here, 1Ij denote the characteristic functions of Ij . Above we have use the fact that g is zero outside (0, 1).

In Lemmas C.2 to C.4 below τ is a bounded Lipschitz continuous function of R2 × [−c0, c0] × R with
values in R for c0 > 0 given in (2.8). From (C.3) we deduce

‖τ(y, ξ1, ∂sξ1)‖L∞σ (L∞y2
(H1
y1

)) + ‖∂y2τ(y, ξ1, ∂sξ1)‖L∞σ (L∞(T )) 6 C. (C.9)

Lemma C.2. Assume (C.9). For i, j = 1, 2 the following estimate holds,∥∥τ(y, ξ1, ∂sξ1)(∂ssξ1)∂yjwi
∥∥
L2
σ((H1(F)′)

6 CR2
0.

Proof. We start with the case j = 1. Assume ϕ ∈ H1(F). First, we have for a.e. t ∈ (0,∞),∣∣∣∣∫
F
τ(y, ξ1, ∂sξ1)(∂ssξ1)∂y1wiϕdy

∣∣∣∣ =

∣∣∣∣∫
T

1Fτ(y, ξ1, ∂sξ1)(∂ssξ1)∂y1wiϕdy

∣∣∣∣
6 ‖1Fτ(y, ξ1, ∂sξ1)(∂ssξ1)ϕ‖

L2
y2

(H
1/4
y1

)
‖∂y1wi‖L2

y2
(H
−1/4
y1

)
.

Since
‖g1g2‖H1/4(−L,L) 6 C‖g1‖H1(−L,L)‖g2‖H1/4(−L,L), (C.10)

and
‖∂y1wi‖L2

y2
(H
−1/4
y1

)
6 C‖wi‖L2

y2
(H

3/4
y1

)

we deduce∣∣∣∣∫
F
τ(y, ξ1, ∂sξ1)(∂ssξ1)∂y1wiϕdy

∣∣∣∣ 6 C‖1Fτ(y, ξ1, ∂sξ1)(∂ssξ1)‖
L∞y2

(H
1/4
y1

)
‖ϕ‖L2

y2
(H1
y1

)‖wi‖L2
y2

(H
3/4
y1

)
.

Now using (C.4) and Lemma C.1, we obtain∣∣∣∣∫
F
τ(y, ξ1, ∂sξ1)(∂ssξ1)∂y1wiϕdy

∣∣∣∣ 6 C‖τ(y, ξ1, ∂sξ1)‖L∞y2 (H1
y1

)‖(1F∂ssξ1)‖
L∞y2

(H
1/4
y1

)
‖ϕ‖H1(T )‖wi‖H3/4(T )

6 C‖τ(y, ξ1, ∂sξ1)‖L∞y2 (H1
y1

)‖∂ssξ1‖H1/4(0,1)‖ϕ‖H1(T )‖wi‖H3/4(T )

and thus with (C.9),

‖τ(y, ξ1, ∂sξ1)(∂ssξ1)∂y1wi‖L2
σ(H1(F)′) 6 C‖ξ1‖L8

σ(H
9/4
0 (0,1))

‖wi‖L8/3
σ (H3/4(F))

.

We conclude by using (C.2).
Finally, the case j = 2 follows more easily from an integration by parts with (5.13)-(5.15), by taking into

account the estimate of ∂y2τ in (C.9) and the fact that ξ1 is independent on y2. The details are left to the
reader.
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Lemma C.3. Assume (C.9). For i = 1, 2 the following estimate holds,

‖τ(y, ξ1, ∂sξ1)(∂sξ2)wi‖L2
σ((H1(F)′) + ‖τ(y, ξ1, ∂sξ1)ξ2wi‖L2

σ((H1(F)′)) 6 CR2
0.

Proof. We only prove the first estimate, the second can be obtained more easily. Assume ϕ ∈ H1(F). First,
using (C.10), (C.4), (C.6), (C.9) and (C.5) we have for a.e. t ∈ (0,∞),∣∣∣∣∫

F
τ(y, ξ1, ∂sξ1)(∂sξ2)wiϕdy

∣∣∣∣ =

∣∣∣∣∫
T
τ(y, ξ1, ∂sξ1)(∂sξ2)(1Fwi)ϕdy

∣∣∣∣
6 C ‖τ(y, ξ1, ∂sξ1)(1Fwi)ϕ‖L1

y2
(H

1/4
y1

)
‖∂sξ2‖L∞y2 (H

−1/4
y1

)

6 C ‖τ(y, ξ1, ∂sξ1)(1Fwi)‖L2
y2

(H
1/4
y1

)
‖ϕ‖L2

y2
(H1
y1

) ‖ξ2‖L∞y2 (H
3/4
y1

)

6 C ‖τ(y, ξ1, ∂sξ1)‖L∞y2 (H1
y1

) ‖(1Fwi)‖L2
y2

(H
1/4
y1

)
‖ξ2‖H3/4

0 (0,1)
‖ϕ‖H1(T )

6 C ‖(1Fwi)‖H1/4(F) ‖ξ2‖H3/4
0 (0,1)

‖ϕ‖H1(F) 6 C ‖wi‖H1/4(F) ‖ξ2‖H3/4
0 (0,1)

‖ϕ‖H1(F) .

The above estimate yields

‖τ(y, ξ1, ∂sξ1)(∂sξ2)wi‖L2
σ((H1(F)′) 6 C ‖wi‖L8

σ(H1/4(F)) ‖ξ2‖L8/3
σ (H3/4(0,1))

and we conclude by using (C.2).

Lemma C.4. Assume (C.9). For i, j = 1, 2 the following estimate holds,

‖τ(y, ξ1, ∂sξ1)(∂ssξ1)wiwj‖L2
σ(H1(F)′) 6 CR2

0.

Proof. Assume ϕ ∈ H1(F). First, we have for a.e. t ∈ (0,∞),∣∣∣∣∫
F
τ(y, ξ1, ∂sξ1)(∂ssξ1)wiwjϕdy

∣∣∣∣ =

∣∣∣∣∫
T
τ(y, ξ1, ∂sξ1)(∂ssξ1)(1Fwi)wjϕdy

∣∣∣∣
6 C ‖τ(y, ξ1, ∂sξ1)(1Fwi)wjϕ‖L1

y2
(L2
y1

) ‖∂ssξ1‖L∞y2 (L2
y1

)

6 C ‖τ(y, ξ1, ∂sξ1)(1Fwi)wj‖L2
y2

(L2
y1

) ‖ϕ‖L2
y2

(H1
y1

) ‖ξ1‖H2
0 (0,1)

6 C‖τ(y, ξ1, ∂sξ1)‖L∞y2 (H1
y1

)‖(1Fwi)wj‖L2(T ) ‖ξ1‖H2
0 (0,1) ‖ϕ‖H1(F). (C.11)

On the other hand,
‖(1Fwi)wj‖L2(T ) 6 C ‖(1Fwi)‖H1/4(F) ‖wj‖H3/4(F) .

Combining the above equation and (C.11), with (C.5) and (C.9) we deduce

‖τ(y, ξ1, ∂sξ1)(∂ssξ1)wiwj‖L2
σ(H1(F)′) 6 C ‖ξ1‖L∞σ (H2

0 (0,1)) ‖wi‖L8
σ(H1/4(F)) ‖wj‖L8/3

σ (H3/4(F))
,

and we conclude by using (C.2).

In Lemma C.5 below, τ is a bounded Lipschitz continuous function of R2 × [−c0, c0] with values in R for
c0 > 0 given in (2.8). From (C.2) and (C.3) we deduce that t 7→ τ(y, ξ1(t, y1)) satisfies

‖τ(y, ξ1)‖L∞(W1,∞(T )) 6 C. (C.12)

Moreover, we also assume that τ(y, ·) is zero for y ∈ F\Vα (see (2.4)). By this way,

∀(y, ζ) ∈ (∂F\Γstr)× [−c0, c0] τ(y, ζ) = 0. (C.13)

Lemma C.5. Let n1, n2 ∈ N such that n1 + n2 > 1 and assume (C.12)-(C.13). Then

‖τ(y, ξ1)ξn1
1 (∂sξ1)n2wi‖H1/2+ε

σ (H2ε(F)′)
+ ‖τ(y, ξ1)ξn1

1 (∂sξ1)n2wi‖H1/2+ε
σ (H−1/2−2ε(∂F))

6 CR2
0. (C.14)
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Proof. We start by estimating the first term in the left-hand side of (C.14). First we have the following
relations

H2ε(T ) = [H1(T ), L2(T )]1−2ε = [H1
y1(L2

y2(−L,L)) ∩ L2
y1(H1

y2(−L,L)), L2
y1(L2

y2(−L,L))]1−2ε

= H2ε
y1 (L2

y2(−L,L)) ∩ L2
y1(H2ε

y2 (−L,L)).

Each of the above equalities follows from classical arguments (see for instance[25]). The last relation can be
written

H2ε(T ) = L2
y1(H2ε

y2 (−L,L)) ∩ L2
y2(H2ε

y1 (−L,L)).

Assume now that ϕ ∈ H2ε(F). Using (C.12) and the above relation, we have for a.e. t ∈ (0,∞),∣∣∣∣∫
F
τ(y, ξ1)ξn1

1 (∂sξ1)n2wiϕdy

∣∣∣∣ =
∣∣〈wi, τ(y, ξ1)ξn1

1 (∂sξ1)n2ϕ〉H2ε(F)′,H2ε(F)

∣∣
6 C ‖wi‖H2ε(F)′ ‖τ(y, ξ1)ξn1

1 (∂sξ1)n2ϕ‖H2ε(F)

6 C ‖wi‖H2ε(F)′ ‖ξ
n1
1 (∂sξ1)n21Fϕ‖H2ε(T )

6 C ‖wi‖H2ε(F)′

(
‖ξn1

1 (∂sξ1)n21Fϕ‖L2
y2

(H2ε
y1

) + ‖ξn1
1 (∂sξ1)n21Fϕ‖L2

y1
(H2ε
y2

)

)
. (C.15)

Moreover, using (C.4), (C.6), (C.5) we deduce,

‖ξn1
1 (∂sξ1)n21Fϕ‖L2

y2
(H2ε
y1

) 6 C ‖ξn1
1 (∂sξ1)n2‖

L∞y2
(H

1/2+2ε
y1

)
‖1Fϕ‖L2

y2
(H2ε
y1

)

6 C‖ξ1‖n1

L∞y2
(H

1/2+2ε
y1

)
‖∂sξ1‖n2

L∞y2
(H

1/2+2ε
y1

‖1Fϕ‖H2ε(T )

6 C‖ξ1‖n1

H
1/2+2ε
0 (0,1)

‖∂sξ1‖n2

H
1/2+2ε
0 (0,1)

‖ϕ‖H2ε(T )

and using (C.4) and (C.5) with the fact that ξ1 is independent on y2 we deduce,

‖ξn1
1 (∂sξ1)n21Fϕ‖L2

y1
(H2ε
y2

) 6 C ‖ξn1
1 (∂sξ1)n2‖

L∞y1
(H

1/2+2ε
y2

)
‖1Fϕ‖L2

y1
(H2ε
y2

)

6 C‖ξ1‖n1
L∞(0,1)‖∂sξ1‖

n2
L∞(0,1) ‖ϕ‖H2ε(T ) .

Finally, since ε ∈ (0, 1/8) we have H1−2ε
0 (0, 1) ↪→ H

1/2+2ε
0 (0, 1)) ↪→ L∞(0, 1) and combining the above

inequalities with (C.15) the result follows from (C.1), (C.2).
For the second relation, assume ϕ ∈ H1/2+2ε(∂F). For a.e. t ∈ (0,∞) we have,

∣∣∣∣∫
∂F

τ(y, ξ1)ξn1
1 (∂sξ1)n2wiϕdγ

∣∣∣∣ =
∣∣∣〈wi, τ(y, ξ1)ξn1

1 (∂sξ1)n2ϕ〉H−1/2−2ε(∂F),H1/2+2ε(∂F)

∣∣∣
6 C ‖wi‖H−1/2−2ε(∂F) ‖τ(y, ξ1)ξn1

1 (∂sξ1)n2‖H1/2+2ε(∂F) ‖ϕ‖H1/2+2ε(∂F) . (C.16)

Thus, taking (C.13) into account we deduce that

‖τ(y, ξ1)ξn1
1 (∂sξ1)n2‖H1/2+2ε(∂F) = ‖τ(y, ξ1)ξn1

1 (∂sξ1)n2‖H1/2+2ε(Γstr)

6 C ‖τ(y, ξ1)‖W1,∞(Γstr)
‖ξ1‖n1

H1/2+2ε(Γstr)
‖∂sξ1‖n2

H1/2+2ε(Γstr)
. (C.17)

Moreover, we remark that for a function g defined on T and only depending on y1 we have

‖g‖2H1/2+2ε(Γstr)
=

∫
Γstr

|g(y)|dγ(y) +

∫
Γstr

∫
Γstr

|g(y)− g(ỹ)|2

|y − ỹ|2+4ε
dγ(y)dγ(ỹ)

6
∫

Γstr

|g(y1)|dγ(y) +

∫
Γstr

∫
Γstr

|g(y1)− g(ỹ1)|2

|y1 − ỹ1|2+4ε
dγ(y)dγ(ỹ)

6
∫ 1

0

|g(s)|`(s)ds+

∫ 1

0

∫ 1

0

|g(s)− g(τ)|2

|s− τ |2+4ε
`(s)`(τ)dsdτ 6 ‖`‖2L∞(0,1)‖g‖2H1/2+2ε(0,1),
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where we have used the notation `(s) =
√

1 + (∂sηS(s))2. Then combining (C.16) and (C.17) with the above
estimate for g = ξ1 and g = ∂sξ1, with (C.12) we obtain for a.e. t ∈ (0,+∞),

‖τ(y, ξ1)ξn1
1 (∂sξ1)n2wi‖H−1/2−2ε(∂F) 6 C ‖ξ1‖n1

H1/2+2ε(0,1)
‖∂sξ1‖n2

H1/2+2ε(0,1)
‖wi‖H−1/2−2ε(∂F) .

Finally, since ε ∈ (0, 1/8) we have H1−2ε(0, 1) ↪→ H1/2+2ε(0, 1) and the conclusion follows from (C.1).
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[27] Pierre Grisvard. Commutativité de deux foncteurs d’interpolation et applications. J. Math. Pures Appl.
(9), 45:207–290, 1966.

[28] J. Lequeurre. Null Controllability of a Fluid-Structure System. SIAM J. Control Optim., 51(3):1841–
1872, 2013.

[29] Julien Lequeurre. Existence of strong solutions to a fluid-structure system. SIAM J. Math. Anal.,
43(1):389–410, 2011.

[30] Julien Lequeurre. Existence of strong solutions for a system coupling the Navier-Stokes equations and
a damped wave equation. J. Math. Fluid Mech., 15(2):249–271, 2013.

[31] Zhuangyi Liu and Songmu Zheng. Semigroups associated with dissipative systems, volume 398 of Chap-
man & Hall/CRC Research Notes in Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 1999.

[32] A. Pazy. Semigroups of linear operators and applications to partial differential equations, volume 44 of
Applied Mathematical Sciences. Springer-Verlag, New York, 1983.

[33] Alfio Quarteroni, Massimiliano Tuveri, and Alessandro Veneziani. Computational vascular fluid dy-
namics: problems, models and methods. Computing and Visualization in Science, 2(4):163–197, 2000.

[34] J.-P. Raymond. Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes
equations. J. Math. Pures Appl. (9), 87(6):627–669, 2007.

[35] J.-P. Raymond. Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions. Ann.
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