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ABSTRACT

The speed wobble is a phenomenon in nonlinear dynamics

that can occur in many vehicles such as bicycles, motorbikes,

skateboards and airplanes nose landing gear. The dynamic in-

stability affects the steerable wheels of a vehicle and can lead to

the loss of control. While for bikes, motorbikes and airplanes the

dynamics and causes of the wobble are well known and the liter-

ature fully describes the subject, for the skateboard the literature

is very poor and there is no paper which investigates this type of

instability.

In order to do that, the skateboard equations of motion were

obtained through Lagrange formalism and Lagrange multipli-

ers method was used to solve the non-holonomic constraints.

A parametric stability study was carried out on the linearized

equations of motion and the influence of different skateboard pa-

rameters was investigated.

The main discovery is that the wobble doesn’t strictly depend on

skateboard configuration, but the human control characteristics

are predominant in the vehicle dynamics.

Keywords: wobble, skateboard, stability

NOMENCLATURE

a Skateboard wheelbase

COM Center of Mass

µ Ratio between front and rear truck torsional stiffness

γ Board tilt

h Board height from axles plane

IBx Board moment of inertia about x-axis

IRx Rider moment of inertia about x-axis

IBz Board moment of inertia about z-axis

IRz Rider moment of inertia about z-axis

λ f Pivot angle front truck

λr Pivot angle rear truck

kγ Overall skateboard truck torsional stiffness

kγ f
Front truck torsional stiffness

kγr Rear truck torsional stiffness

l Rider COM height from board

mB Skateboard mass

mR Rider mass

p Distance from the board center of the COM projection

TB Total ankles torque

Ws Somatosensory weighting factor

Wv Visual+Vestibular weighting factor

u Longitudinal skateboard speed

INTRODUCTION

The skateboard is a recreational vehicle whose origin extend

back to the early 20’s, when it consisted of a rudimentary crate

scooter made of a wooden board, metal wheels and a wooden

box. In the 50’s the first commercially produced skateboards ap-

peared on the market. The very turning point in the skateboard

history took place in the 70’s, thanks to the use of polyurethane

wheels, which allowed more controllability and traction proper-

ties than the previous metal wheels. They also allowed higher
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speeds which brought to the emergence of a new type of skate-

board, called longboard, specially designed for downhill skate-

boarding. They are longer than normal skateboards, they have

different shapes and very high speed can be reached. The fastest

skateboard speed achieved in a standing position is 129.94 km/h

(80.74 mph) and was achieved by Mischo Erban at Les boule-

ments, Quebec, Canada, on 18 June 2012 on a road descending

at an 18% grade.

To achieve high speeds the skateboard has to be set up correctly

and the rider has to adapt his body to control the vehicle. If one

of the this two aspects fails, at a certain speed the skateboard-

rider system can become unstable, showing an oscillatory behav-

ior that can lead to loss of control and very dangerous falls. This

phenomenon is known as speed wobble.

Literature Review
The existing literature about skateboard is limited and the

speed wobble has never been treated. In [1] Hubbard studied the

lateral dynamics stability of a 1-DOF and a 2-DOF linearized

skateboard model, but the speed wobble is not treated.

Again Hubbard, in [2], after simplifying hypotheses and reduc-

ing the 2-DOF model to a 1-DOF model, implemented an op-

timal control to the skateboard in order to simulate the human

control. However, even if the perfect control has been experi-

mentally verified to be similar to the actual human control for

low speeds, it’s not interesting for higher speed ranges.

Another major work in the skateboard field is [3], in which

Kremnev and Kuleshov, on the basis of [1], study the stability

of a more accurate 1 DOF skateboard model, obtaining the equa-

tions of motion through the Gibbs-Appell method. They offer a

mathematically accurate nonlinear stability analysis, demonstrat-

ing a rattleback behavior for asymmetric skateboards around the

equilibrium position. However, the speed wobble is never men-

tioned.

The objective of this paper is to study the skateboard stability

in a speed-wobble-focused way, analyzing the most affecting pa-

rameters, and to verify or disprove common skaters beliefs about

speed wobble. In order to do that, a parametric stability analysis

will be carried out on a 1 DOF skateboard model, with the in-

tention of determining the parameters that has more influence on

stability at higher speeds. Furthermore, a human control model

based on Biomechanics researches on the human postural con-

trol (see [10]- [16]) will be implemented on a second model of

skateboard.

THE SKATEBOARD
The skateboard typically consists of three major compo-

nents: a board, a set of two trucks and four wheels. A skateboard
model is shown in Fig.1. Modern boards are generally from 50
to 110 cm long, 15 to 30 cm wide and 1 to 2 cm thick. The stiff-
ness of the board depends on the particular application desired:

FIGURE 1: LATERAL AND TOP VIEW OF A SKATEBOARD

when a great manoeuvrability is required, a more flexible board
is used, while stability at high speeds calls for more stiffness. In
this study the board stiffness won’t be considered in the equations
of motion. The skateboard wheels are mounted on the axles on
ball bearings and their stiffness is measured with the durometer A
scale. The range of commercial wheels hardness is between 75A
and 97A. Concerning the trucks, they are the elements that allow
the skateboard to turn. The most common model is called Randal
truck and it is characterized by three parameters: the wheelbase
a, the pivot angle λ and the bushings.
The wheelbase a is simply the distance between the front and
rear truck. The pivot angle λ is the angle between the baseplate
and the kingpin. The front truck pivot angle is λ f , while the rear
one λr, as shown in Fig.1. Normally the mounted trucks are the
same, thus λ f = λr, but sometimes different configurations are
used. The bushings exist in different shapes and hardness and,
together with the tightening of the kingpin bolt, they determine
the overall torsional spring stiffness kγ , shown in Fig.3. The lat-
ter applies a restoring torque Tγ between the wheel-set and the
board, proportional to the tilt angle γ .
In [1–5], the effect of different trucks tightening is not taken into
account. In this study we will consider the possibility that the
front and rear truck torsional spring levels of stiffness kγF

and
kγR

are different, which is a very common set up among skaters.
We can write the overall restoring torque as

Tγ = kγ γ = kγ f
γ f + kγr

γr (1)

where γ f andγr are the board tilt angles at the points F and R
shown in Fig.1. Assuming that

kγ f
γ f = kγr

γr (2)

and by replacing (2) in (1),we can find

γ f =
1+µ

2µ
γ γr =

1+µ

2
γ (3)

where µ = kγ f
/kγr .
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FIGURE 2: SKATEBOARD COORDINATE SYSTEM

Steering system
The skateboard is a negative-four wheel steering vehicle (for

more details see [6]): the angular motion of both the front and
rear axles is constrained to be about their respective pivot axes,
thus causing steering angles δ f and δr, shown in Fig.2, whenever
the axles are not parallel to the plane of the board. The relation-
ship between the board tilt angle γ and the steering angles δ f and
δr has been demonstrated in [3] to be

tanδ f = tanλ f sinγ tanδr = tanλr sinγ (4)

Once the trucks are mounted, the pivot angles λ f and λr are fixed.
Furthermore taking into account (3), (4) becomes

tanδ f = c f sin

(

1+µ

2µ
γ

)

tanδr = cr sin

(

1+µ

2
γ

)

(5)

where c f = tanλ f and cr = tanλr. The last step to fully define the
skateboard steering system is to assume that its wheels roll with-
out lateral sliding. Looking at Fig.2, this condition is satisfied
through two nonholonomic constraints defined in [3] as:

ẋo sin(θ −δ f )− ẏo cos(θ −δ f )−
a

2
θ̇ cosδ f = 0

ẋo sin(θ +δr)− ẏo cos(θ +δr)+
a

2
θ̇ cosδr = 0

(6)

EQUATIONS OF MOTION
The skateboard equations of motion are obtained for two dif-

ferent models with different assumptions. In Model 1, outlined
in Fig.3, the rider is assumed to remain fixed and perpendicular
to the board, so that the angle between the z-axis and the rider
COM is the same board tilt angle γ .
In Model 2, outlined in Fig.4, the rider is assumed to move freely
about the x-axis, thus forming an angle φ between the rider COM
and the vertical z-axis. The rider is assumed to control its posi-
tion through a torque exerted at the ankles level about the axis
passing from the center of the board. In both models, when γ = 0,
the projection of the rider COM is assumed to lie on the board

centerline FR at a distance p from the board center B,as shown
in Fig.2. If p > 0 the rider COM is shifted in the front of the
vehicle, while if p < 0 in the back. The equations of motion are
obtained through Lagrange formalism with Lagrange multipliers
to account for the nonholonomic constraints (6).
Choosing the vector of N Lagrangian generalized coordinates
q= (q1,q2, ...,qN)

T , the Lagrange energy method allows to write
the equations of motion from the kinetic energy T and potential
energy U expressions for the system under investigation. Being
NC the number of constraints and

N

∑
i=1

c ji(q) · q̇i = 0 , j = 1, ...,NC (7)

the resulting first-order differential equations in Pfaffian form,
following [7], the equations of motion with NC Lagrange multi-
pliers λ can be written as

d

dt

∂L(q, q̇)

∂ q̇i
−

∂L(q, q̇)

∂qi
= Qi +

NC

∑
j=1

λ jc ji(q) i = 1, ..,N (8)

where L(q, q̇) = T (q, q̇)−U(q) is called Lagrangian,Qi contains
the generalized forcing terms fi and the dissipative forces terms
di.
The second-order differential system of equations (8) and the
first-order differential system of equations (7) give a total of
N + NC equations for computation of the N + NC unknowns
q1,q2, ...,qN and λ1, ...,λNC

. Here the Lagrange multipliers rep-
resent the constraint forces required to maintain the constraints
in Eq.(7).
The final first-order differential system of equations is:





I 0 0

0 A CT

0 C 0









q̇

q̈

−λ



=





q̇

Q(q̇,q, t)+B(q̇,q, t)
D(q̇,q, t)



 (9)

where

D(q̇,q, t) =Cq̈ (10)

on which the Baumgarte stabilization method have been applied.

FIGURE 3: FRONT VIEW OF MODEL 1
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Model 1 - Rider Constrained
The generalized coordinate vector for Model 1 is:

q = [xO,yO,θ ,γ], where xO and yO are the coordinates of point
O, shown in Fig.2,3. Considering a skateboard with a mass mB,
moments of inertia IBx , IBz and its COM in point B and a rider
with a mass mR, moments of inertia IRx , IRz and its COM in point
R, the expression of the kinetic energy is:

T =
1

2
mB(ẋ

2
B + ẏ2

B + ż2
B)+

1

2
mR(ẋ

2
R + ẏ2

R + ż2
R)+

1

2
Ixγ̇2 +

1

2
Izθ̇

2 (11)

where Ix = IBx + IRx and Iz = IBz + IRz , since the rotational speeds

γ̇ and θ̇ are the same for the board and the rider. The potential
energy is:

U =
1

2
kγ γ2 +mBgzB +mRgzR (12)

Concerning the generalized forces, there are no active forces or
torques acting on the skateboard, thus the generalized forces vec-
tor is Q1 = [0,0,0,0]T .
In order to write Eq.(11) and (12) as function of the generalized
coordinates, looking at Figs.2-3, the following geometric con-
straints were found:

xB = xO +hsinγ sinθ , xR = xO +(h+ l)sinγ sinθ + pcosθ

yB = yO −hsinγ cosθ , yR = yO − (h+ l)sinγ cosθ + psinθ

zB = hcosγ , zR = (h+ l)cosγ

(13)

and deriving them in respect of time we obtain

ẋB = ẋO +h(γ̇ cosγ sinθ + θ̇ sinγ cosθ)

ẋR = ẋO +(h+ l)(γ̇ cosγ sinθ + θ̇ sinγ cosθ)− pθ̇ sinθ

ẏB = ẏO −h(γ̇ cosγ cosθ + θ̇ sinγ sinθ)

ẏR = ẏO − (h+ l)(γ̇ cosγ cosθ + θ̇ sinγ sinθ)+ pθ̇ cosθ

żB =−hγ̇ sinγ , żR =−(h+ l)γ̇ sinγ

(14)

Then we replace (14) and (13) in (11) and (12) At this point the

first-order differential system (9) was derived with the Symbolic

Math Toolbox of MATLAB R©. The resulting matrices are omit-

ted for brevity.

FIGURE 4: FRONT VIEW OF MODEL 2

TABLE 1: AVERAGE SKATEBOARD-RIDER DATA

Skateboard - Rider Parameters

mB 3 kg mR 75 kg

a 0.6 m l 0.7 m

λ f 45 ◦ λr 45 ◦

h 0.07 m p 0 m

IBx
0.025 kgm2 IBx

12 kgm2

m f 3 kg I f x 0.45 kgm2

kγ 250 Nmrad−1 µ 1

Model 2
The same procedure is followed for Model 2. The outline

of the model is shown in Fig.4. Concerning the human control,
the latter is exerted through an ankles torque TB, assumed to act
around the board x-axis.
The generalized coordinate vector is q = [xO,yO,θ ,γ,φ ].
Since in this model the rider is assumed to move independently
of the board, some considerations have to be made on the inertia
terms. In particular it’s important to pay attention to the feet
inertia. In fact, even if the skater body moves independently of
the board, the feet are fixed to the board and their rotation is
equal to the board tilt angle γ and not the skater COM angle
φ . Therefore, the feet inertia around the x-axis I f x has to be
considered with the board inertia and not with the rider inertia.
In the same way also the mass of the feet has to be considered
with the board so that:

m′
B = mB +m f , m′

R = mR −m f (15)

While the new inertia terms becomes then:

I′Bx
= IBx

+ I f x , I′Rx
= IRx

− I f x (16)

The expression of the kinetic energy is:

T =
1

2
mB(ẋ

2
B + ẏ2

B + ż2
B)+

1

2
mR(ẋ

2
R + ẏ2

R + ż2
R)

+
1

2
I′Bx

γ̇2 +
1

2
I′Rx

φ̇ 2 +
1

2
Izθ̇

2

(17)

while the potential energy is:

U =
1

2
kγ γ2 +

1

2
kφ (γ −φ)2 +mBgz

B
+mRgz

R
(18)

Concerning the generalized forces, the only active force is the
ankle torque exerted by the skater, so that the vector of general-
ized forces becomes Q2 = [0,0,0,−TB,TB]

T .
Concerning the geometric constraints, for the point B they re-
main the same as for Model 1, while for point R they become:

xR = xO +(hsinγ + l sinφ)sinθ + pcosθ

yR = yO − (hsinγ + l sinφ)cosθ + psinθ

zR = hcosγ + l cosφ

(19)
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while their derivatives become:

ẋR = ẋO +(hγ̇ cosγ + lφ̇ cosφ − pθ̇)sinθ + θ̇(hsinγ + l sinφ)cosθ

ẏR = ẏO − (hγ̇ cosγ + lφ̇ cosφ − pθ̇)cosθ + θ̇(hsinγ + l sinφ)sinθ

żR =−hγ̇ sinγ − lφ̇ sinφ

(20)

Linearized Equations
To linearize the equations of motion several assumptions are

made. The longitudinal speed ẋO is assumed to have a constant
value u so that ẍO = 0.
From [3] is demonstrated that

θ̇ =−
usin(δ f +δr)

acosδ f cosδr
(21)

and that, solving the two nonholonomic constraints (6) is possi-
ble to find

ẏO =−
aθ̇

2sin(δ f +δr)
[cosδ f sin(θ +δr)+ cosδr sin(θ −δ f )] (22)

Furthermore, small angles assumption is made for the angles γ ,θ
and φ , so that cosγ = cosθ = cosφ ≃ 1, sinγ ≃ γ , sinθ ≃ θ ,
sinφ ≃ φ .
Taking into account the assumption made and replacing (21),(22)
and their time derivatives in system (9), we obtain the linearized
equation for Model 1:

(

Ix +mRL2 +mBh2
)

γ̈ +
[

mRL
(

ε +η
p

a

)

+mBhε
]

uγ̇

+

[

kγ −mRgL−mBgh+
ηu2

a
(mRL+mBh)

]

γ = 0

(23)

where L = h+ l,while

ε =
µ +1

4µ
(c f − crµ) , η =

µ +1

2µ
(c f + crµ) (24)

are the coefficients that take into account the eventuality of dif-
ferent trucks pivot angles and degrees of stiffness. They act as
damping parameters but they don’t involve any viscoelastic be-
havior of the trucks bushings.
The linearized system of equations for Model 2 is

(

I′Bx
+mh2

)

γ̈ +m′
Rhlφ̈ +

(

mε +m′
Bη

p

a

)

huγ̇

+

(

kγ −mgh+mh
ηu2

a

)

γ =−TB

(

I′Rx
+mrl2

)

φ̈ +m′
Rhlγ̈ +

[

m′
Rl
(

ε +η
p

a

)]

uγ̇

−m′
Rglφ +m′

R

lηu2

a
γ = TB

(25)

where m = mR +mB.

FIGURE 5: HUMAN CONTROL MODEL OF THE SKATEBOARD

Human Control of the Skateboard

In order to design a human control for the skateboard, re-

searches were carried out on the Biomechanics topic of human

postural control, i.e. the ability of maintaining the balance. The

latter is based on the pieces of information coming from three

systems: visual, vestibular and somatosensory (see [13]). The

visual system provides information from the eyes in the abso-

lute frame of reference. The vestibular system provides informa-

tion about head position and acceleration in the absolute frame of

reference through the inner ear vestibulum. The somatosensory

system provides information about the position of the center of

pressure under the feet.

In [12] David Peterka studied the postural control on subjects

standing on an oscillating platform. He experimentally demon-

strated that the postural control can be modeled through a sen-

sory reweighting system. This means that the relevance of every

sensory system changes with the external perturbation, account-

ing in this way for the nonlinearity of the human control. For

low disturbance amplitudes the balance task relies more on the

somatosensory system, while for higher disturbances the rele-

vance of the vestibular system becomes greater. The control of

the human balance consists of a torque exerted at the ankles level,

which is made of two contributions: an Active Torque, based on

the neuromuscular control, and a Passive Torque, result of the

leg muscles intrinsic features.

The control model designed for the skateboard is shown in Fig.5.

The core of the model is the skateboard-rider mechanical sys-

tem, which contains the equations of motion (25) and takes as

input the ankles torque TB and gives as output the angle φ and

γ . The outputs are elaborated by the sensory systems: the vi-

sual and vestibular systems act on the same angle φ , which is

the skater COM angle in the absolute frame of reference, while

5
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FIGURE 6: STIFFNESS kγ , PIVOT ANGLE λ AND WHEELBASE a

INFLUENCE ON CRITICAL SPEED

the somatosensory system acts on the skater angle relative to the

board φ − γ . The red boxes contains the weighting factor Wv

and Ws, representing the sensory reweighting system, such that

Wv +Ws = 1. The error from the equilibrium position elaborated

by the sensory reweighting system enters then in a PD controller,

with Kp as the proportional term and Kd as the derivative term,

and determines the active torque Ta. The latter is summed to the

passive torque Tp, which depends on the muscular ankles stiff-

ness K and damping C, in order to give the total ankles torque

TB = Ta +Tp. The total ankle torque can then be written as:

TB = Kp(φ −Wsγ)+Kd(φ̇ −Wsγ̇)+K(φ − γ)+C(φ̇ − γ̇) (26)

The values of the PD controller terms were taken from Peterka’s

paper [12] as Kp = 1000 Nmrad−1 and Kd = 100 Nmsrad−1.

Concerning the passive torque, the value of the ankle passive

stiffness was determined by Peterka to be K = 94 Nmrad−1. Pe-

terka also determined the value of C. However, its entity sug-

gested him that the passive damping C may contribute more to

overall damping when the surface is fixed than when it is mov-

ing. Therefore, considering the mobility of the skateboard, we

will use the value found by Maura Casadio in her study [14]

on the ankles impedance. The value is then assumed to be

c = 5.8Nmsrad−1.

STABILITY ANALYSIS
A parametric stability analysis with the poles location

method was carried out to investigate the influence of different

skateboard setups. The Laplace transformation is applied to the

linearized equations (23) and (25) to obtain the system charac-

teristic polynomial, whose solutions determine its poles, thus its

stability.

All the figures show the poles going from a blue color to a red

color as the chosen parameter value increases.

The data of the chosen skateboard - rider configuration are shown

in Table 1 and they represent an average skateboard set-up and an

average human body in a standing position and were taken from

previous studies and anthropometry sources (see [3, 10, 11]).

Model 1 - Results

The stability of the skateboard-rider model is studied by

varying different parameters, while maintaining fixed all the oth-

ers.

The first considered parameter is the longitudinal speed u.

Figure 7 shows the eigenvalues position for a symmetric

skateboard-rider configuration (λ f = λr , µ = 1 , p = 0 m): at

low speeds the system has a couple of real symmetric eigen-

values, thus it’s unstable. With higher speeds the system has a

couple of purely imaginary eigenvalues and shows a marginally

stable oscillatory behavior, with increasing frequency. The latter

aspect is due to the fact that the centripetal restoring torque, rep-

resented by the γ-term of equation (23), increases with the square

of the speed, increasing the overall stiffness of the system.Thus

the speed has a stabilizing effect,as it happens in bikes and mo-

torbikes (see [8]). The characteristic equation of the model is

of the form A0s2 + B0s+C0 = 0 and the critical speed, above

which the motion becomes stable, corresponds to the value of u

for which its discriminant ∆ = B2
0 −4A0C0 = 0

In Fig.6 are shown the changes in critical speed due to the

spring torsional stiffness kγ , the wheelbase a and the pivot an-

gles λ . The critical speed ucr becomes lower as kγ become

higher, until ucr = 0. This happens when, C0 = 0 for u = 0, thus

when kγcr = g(mRL+mBh). Over this value, the skateboard is
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FIGURE 7: POLES LOCATION FOR SPEED

0 < u < 72km/h
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FIGURE 9: TRUCKS TIGHTENING INFLUENCE ON STABILITY

0.5 < µ < 2, u = 18km/h
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FIGURE 10: RIDER INFLUENCE ON STABILITY

−0.1m < p < 0.1m, u = 18km/h

marginally stable at every speed.

If now we consider an asymmetric skateboard-rider configura-

tion, i.e. λ f 6= λr or µ 6= 1 or p 6= 0, we can study the influence

of these parameters. Concerning the trucks pivot angles, usually

they are the same for the front and rear truck.

If we consider that the front and rear trucks are different we can

fix the value of one of the two and let the other vary. This situ-

ation is represented in Fig.8: it shows that if λ f > λr the system

is stable while if λ f < λr the system becomes unstable. How-

ever, using different pivot angles is not very widespread among

skaters.

A simpler way of acting on the trucks is to adjust the kingpin bolt

tightening level. The latter aspect was modeled through the coef-

ficient µ = kγ f
/kγr . Fig.9 shows how the stability is affected by

this parameter: the skateboard-rider system is stable for µ < 1,

while it becomes unstable for µ > 1.

As far as the position of the rider on the board p is concerned, the

latter is shown to be a key parameter for the skateboard stability.

Figure 10 shows that, if the rider shifts his weight in the front of

the vehicle, the system is stable, otherwise the system becomes

unstable.

Except for these three parameters which can lead to an asymmet-

ric configuration, the other skateboard and rider parameters, such

as the wheelbase a, the trucks overall stiffness kγ and the COM

height on the board l have no effects on the system stability. In

fact their effect is only to increase or decrease the oscillation fre-

quency, as it happens for the speed in Fig.7. Further investigation

of these parameters will be offered in the human controlled skate-

board of Model 2.

The results obtained from the stability study of the linearized

system were then verified by solving the nonlinear full system

(9) by imposing a small initial board tilt angle perturbation γ0

and a an initial longitudinal speed u0. The results are shown in

Fig.11: Fig.11a shows the system time response of a marginally

stable skateboard-rider configuration, while Fig.11b shows the

system response for an unstable skateboard-rider configuration

at the same speed u0 = 18km/h.

Model 2 - Results

To analyze the system of equations (25), the ankles torque

shown in Eq.(26) was replaced in the system and the Laplace

transform was applied, obtaining:

[

A1s2 +B1s+C1 A2s2 +B2s+C2

A2s2 +B3s+C3 A3s2 +B4s+C4

]

L

[

γ
φ

]

=

[

0

0

]

(27)

The characteristic equation is then a quartic equation. The main

task is to analyze the stability of the human control and in par-

ticular of the sensory reweighting system. In [12], David Peterka

demonstrated that that, for low perturbations of his motion board

(0.5◦), the sensory weight distribution is the following: 50%

somatosensory and 50% visual+vestibular. Instead, for larger

amplitude perturbations (8◦), the sensory weight distribution is
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FIGURE 11: NONLINEAR SYSTEM RESPONSE

(γ0 = π/70,u0 = 18Km/h)

15% somatosensory and 85% visual+vestibular. Thus, consider-

ing this aspect, we analyzed several weighting factors situations.

Figure 12 shows two different situations of weighting factors dis-

tribution. Figure 12a shows that, for a somatosensory weighting

factor Ws = 0.5, the human control is stable at every speed. In-

stead, Fig.12b shows that, for Ws = 0.15, at a certain point, the

real part of a couple of eigenvalue becomes positive and the sys-

tem become unstable. The value of the speed for which the latter

happens is called critical wobble speed ucrW
. Figure 13 shows

the dependency between the somatosensory weighting factor Ws

and the critical wobble speed. It can be seen that, under a certain

value of Ws, the speed wobble becomes possible and the speed at

which it happens decreases with Ws. In particular it can be said

that, if the weight of the somatosensory system is larger than

30%, the speed wobble instability can’t take place.

At this point, assuming a symmetric skateboard-rider config-

uration, the parameters whose influence on the system stability

of Model 1 was uncertain will be analyzed in this context. Fig-

ure 14 shows the influence of several parameters on the critical

wobble speed. It can be said that the critical wobble speed ucrW

increases if the overall truck stiffness kγ or the wheelbase a in-

creases. On the other side, the critical wobble speed decreases
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FIGURE 14: SKATEBOARD-RIDER PARAMETERS INFLUENCE ON
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when the pivot angle λ f = λr or the feet inertia I f x increases.

The latter parameter has been considered because the position of

the feet on the board can be changed: in fact, if we consider a

professional skater position on the board at high speed, the feet

are positioned longitudinally on the board center line. In this way

the feet inertia around the x-axis I f x is reduced.

The effect of the different parameters on the critical wobble

speed are important because they show that, the same parameters

whose influence on Model 1 was not clear, are instead important

from a human postural control point of view.

The results obtained from the stability analysis of the human con-

trol of the skateboard were then verified on the nonlinear full sys-

tem by imposing an initial perturbation of the board tilt angle γ0

and an initial speed u0. Figure 15 shows the time response for

two different configurations with different wobble critical speed.

It can be seen that, higher the critical wobble speed, higher the

oscillation frequency of the wobble instability. The frequency

range of the instability is between 4 and 9 Hz.

DISCUSSION

The stability analysis on the two skateboard-rider models

show different results. Model 1 showed that the there is a crit-

ical speed above which the motion is marginally stable if the

skateboard-rider configuration is symmetric, i.e. when λ f = λr,

µ = 1, p = 0. If the configuration is not symmetric, the sys-

tem can become stable or unstable. By varying one parameter

at a time has been discovered that the skateboard is stable over

the critical speed when λ f > λr, i.e. the front truck pivot angle

is greater than the rear one; when µ < 1, i.e. the rear truck is

more tighten then the front one; and when p > 0, i.e. the rider

COM is shifted more in the front of the vehicle. In the opposite

cases, instead,the skateboard becomes unstable. Concerning the

wobble, we were expecting an instability arising with speed in-

crease, but in the obtained results there is no trace of such behav-

ior. Furthermore, considering that the skateboard parameters kγ ,

λ and µ can’t be changed during the motion, the skateboard will

always be either in a stable or unstable configuration.The only

aspects that can be changed during the motion are the position p

and the height l of the rider COM. The most important param-

eter between the two is the position p. Looking at professional

long-boarders, they try to shift their weight in the front as much

as possible and their COM as low as possible. In fact, as demon-

strated by a few wobble videos, if the weight is shifted in the back

even for a short moment, the wobble occurs and in most cases the
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rider loses the control of the vehicle. However, if the skateboard-

rider is in an unstable configurations, this doesn’t mean that the

rider can’t control the vehicle, it will only be more difficult as the

speed increases. For these reasons a human control was applied

on the skateboard in Model 2. The results demonstrate that the

speed wobble is due to the sensory reweighting system of the hu-

man postural control, and in particular to the loss of relevance of

the somatosensory system. In fact, under a certain value of the

somatosensory weigthing factor, it’s possible to have a critical

wobble speed, above which the human control becomes unsta-

ble. However, the evolution of the weighting factors can be very

different from person to person and even within the same person,

and it depends on many aspects, such as experience, training,

concentration, intrinsic abilities to maintain the balance and so

on. For example, a professional skater will be able to maintain

the somatosensory weighting factor higher than a beginner skater

for the same external perturbations. Therefore, the speed wobble

effect is due in part to the skateboard setup, but in a major part to

the rider skills in maintaining its balance.

Furthermore, the results of the parametric stability analysis have

pointed out that the human postural control is influenced by sev-

eral skateboard parameters such as the overall torsional truck

stiffness kγ , the wheelbase a and the trucks pivot angle λ . In

order to increase the wobble critical speed, the skater should

use longer wheelbase skateboards, tighten more the trucks and

use trucks with low pivot angles. Moreover, also the feet inertia

has been evaluated as a very influential parameter, and the rider

should put them in a longitudinal position instead of perpendic-

ularly. However, by doing this, the ability to turn is lowered and

the available base area in which the COM projection has to fall

in order to maintain the equilibrium is lower. Therefore the rider

should also lower its COM on the board.

CONCLUSION

The equations of motion of two models of skateboard

were obtained through Lagrange energy method and numerically

solved in MATLAB R©. A human postural control was imple-

mented on the second model and the stability of the two systems

evaluated through a parametric analysis in order to investigate

the so called speed wobble instability. Model 1 showed that there

are stable and unstable skateboard-rider configurations, but they

don’t show a clear dependency on the speed.

Model 2 demonstrates that the speed wobble instability depends

on the sensory reweighting system of the human postural control

and that the value of the critical wobble speed varies according

to skateboard and rider parameters. The results seem to confirm

skaters beliefs and opinions about the speed wobble. Therefore,

even if it was demonstrated that the speed wobble depends on the

rider skills, the factors that influence the instability were discov-

ered and theoretically demonstrated.

In order to validate the theoretical results obtained in this paper,

a series of experiments will be needed.
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