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Abstract

This work proposes the Cultural Greedy Ant (CGrAnt) protocol to solve the
problem of data delivery in opportunistic and intermittently connected net-
works referred to as Delay Tolerant Networks (DTNs). CGrAnt is a hybrid
Swarm Intelligence-based forwarding protocol designed to address the dy-
namic and complex environment of DTNs. CGrAnt is based on: (1) Cultural
Algorithms (CA) and Ant Colony Optimization (ACO) and (2) operational
metrics that characterize the opportunistic social connectivity between wire-
less users. The most promising message forwarders are selected via a greedy
transition rule based on local and global information captured from the DTN
environment. Using simulations, we first analyze the influence of the ACO
operators and CA knowledge on the CGrAnt performance. We then compare
the performance of CGrAnt with the PROPHET and Epidemic protocols un-
der varying networking parameters. The results show that CGrAnt achieves
the highest delivery ratio (gains of 99.12% compared with PROPHET and
40.21% compared with Epidemic) and the lowest message replication (63.60%
lower than PROPHET and 60.84% lower than Epidemic).
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1. Introduction1

The pervasiveness of computing devices and the emergence of new ap-2

plications and cloud services are factors emphasizing the increasing need3

for adaptive networking solutions. In most cases, this adaptation requires4

the design of interdisciplinary approaches as those inspired by nature, so-5

cial structures, games, and control systems. The approach presented in this6

paper brings together solutions from different, yet complementary domains,7

i.e., networking, artificial intelligence, and complex networks, and is aimed at8

addressing the problem of efficient data delivery in intermittently connected9

networks.10

As mobile devices become increasingly powerful in terms of communi-11

cation capabilities, the appearance of opportunistic and intermittently con-12

nected networks referred to as Delay Tolerant Networks (DTNs) is becoming13

a reality (Khabbaz et al., 2012; Chaintreau et al., 2007; Tournoux et al.,14

2011). In such networks, contacts occur opportunistically in corporate en-15

vironments such as conferences sites, urban areas, or university campuses.16

Understanding node mobility is of fundamental importance in DTNs when17

designing new communication protocols that consider opportunistic encoun-18

ters among nodes. In fact, it is well known in the literature that the move-19

ment of nodes in such networks is not random and is a manifestation of20

their routine behavior and intentions (Gonzalez et al., 2008). Together with21

contact-based interactions among nodes, this movement generates a mobile22

social network. The analysis of such mobility patterns and the understanding23

of how mobile nodes interact (i.e., wirelessly encounter) play a critical role24

in the design of solutions for DTNs.25

On the other hand, given that adaptation in nature is a permanent and26

continuous process, we note that the dynamic and complex environment of27

DTNs favors the application of Swarm Intelligence (SI) methods, including28

approaches based on Ant Colony Optimization (ACO) (Dorigo et al., 1996)29

and Cultural Algorithms (CAs) (Reynolds, 1994). In fact, the environment30

of opportunistic DTNs presents certain features in the mobility patterns of31

the network nodes that can be sufficiently explored by joining CA and ACO32

(e.g., knowledge stored in the belief space can guide the swarms through new33

or already constructed paths depending on the node behavior).34

Motivated by those issues, this paper proposes the use of a Cultural35
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Greedy Ant routing protocol, known as CGrAnt, to identify the most promis-36

ing social-aware forwarders in DTNs, while profiting from SI-based paradigms.37

For this approach, the opportunistic and complex information (such as fre-38

quency and duration, centrality metrics, or mobility features) with respect39

to physical encounters between mobile nodes is gathered and favorable paths40

along which to forward each message are determined, while limiting data41

redundancy. Hence, the forwarding approach implemented by CGrAnt is42

adaptive and designed to match forwarding decisions to different mobility43

and operating conditions. Using a simulation environment, we evaluate the44

performance of CGrAnt under varying parameters, i.e., movement models,45

buffer sizes, message TTLs, simulation times, communication ranges, and46

transmission rates. The results confirm the satisfactory behavior of our rout-47

ing protocol in key performance metrics, such as: message delivery ratio,48

message redundancy ratio, and message delivery delay.49

The remainder of this paper is structured as follows. Section 2 provides50

an overview of the principles that drive our approach and its application51

environment. Section 3 describes the CGrAnt routing protocol in detail,52

and Section 4 presents the simulation environment. Sections 5 and 6 in-53

vestigate how the proposed operational metrics and components affect the54

CGrAnt’s performance. Section 7 compares the performance of CGrAnt with55

two known DTN forwarding protocols under varying networking parameters,56

and finally, Section 8 summarizes the concluding remarks and future direc-57

tions.58

2. Rationale and Background59

This section begins with an overview of the addressed problem. The main60

innovations and contributions are further discussed, and the state-of-the-art61

of forwarding in DTN environment is described, with particular attention62

given to approaches based on SI.63

2.1. Problem overview64

In DTNs, a fully connected multi-hop path may not exist between a65

sender and a receiver due to either mobility issues or varying conditions66

of wireless communications, thus requiring the use of specific mechanisms to67

ensure robustness in the data communication among nodes. The information68

exchange must be performed in an opportunistic fashion through so-called69

carry-and-forward routing techniques (Cerf et al., 2007). The nodes may70
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need to store messages from other nodes in their buffers for long periods of71

time and carry these messages until a forwarding opportunity arises (Cerf72

et al., 2007). Additionally, message replication may be necessary to increase73

the probability of successfully delivered messages. However, certain problems74

exist in a limited resource scenario: replications are undesirable because they75

compete with valid data messages in the paths toward a destination, and the76

storage of neighbors’ data messages can be a problem due to limited buffer77

sizes.78

The problem of routing in DTNs can thus, be modeled as a multimodal79

optimization problem attempting to find not just one solution but a set of80

solutions (i.e., multiple paths between two nodes). The finite set of possible81

solutions (i.e., paths formed by a sequence of nodes in which each node82

permutation generates a new solution) characterizes the routing in DTNs as83

a combinatorial problem. The problem can be also modeled as a dynamic84

state because the search space characteristics and the location and value of85

the solutions will change over time. The problem of routing in DTNs presents,86

therefore, a complex challenge, with several aspects still unexplored by most87

approaches described in the literature. Therefore, an updated consideration88

of the DTN dynamics is necessary and can be accomplished by periodically89

analyzing the neighbor information and selecting more than one path along90

which to forward each message while limiting message redundancy. The91

dynamicity and complex premises of DTNs characterize it as an environment92

favorable for the application of SI algorithms, including ACO and CA (Dorigo93

et al., 1996; Reynolds, 1994).94

2.2. CGrAnt in a Nutshell95

In view of the problem discussed in the previous session, we propose the96

CGrAnt protocol as a solution to the problem of identifying a set of good97

nodes along which to route each message in DTNs. To increase the reliability98

in such dynamic networks, choosing the best path for routing of messages99

should not be the main goal of a routing protocol. Indeed, it is equally100

important to maintain a diversity of paths and avoid convergence to only101

one or a few solutions.102

CGrAnt can be defined as a hybrid SI system based on (1) CA and ACO103

and (2) operational metrics that characterize the opportunistic social connec-104

tivity between nodes. To adapt to the large topology variations encountered105

by a DTN and to reduce latency in message delivery, the following modifi-106

cations are incorporated into CGrAnt that differentiate it from traditional107
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SI-based protocols. (1) The SI control messages named Forward Ants (FAs),108

responsible for the path construction, are encapsulated into the data mes-109

sages. (2) The number of FAs created and forwarded is dynamically defined110

according to the knowledge stored in the nodes. (3) CGrAnt adopts a greedy111

ACO transition rule that is similar to the deterministic transition rule pro-112

posed in the Ant Colony System (ACS) (Dorigo and Gambardella, 1997).113

Nevertheless, instead of using both probabilistic and deterministic rules as114

in ACS, CGrAnt uses only the greedy transition rule, which considers the115

heuristic function and/or pheromone concentration, to forward messages to116

the most promising node(s), and/or to exploit previously found good solu-117

tions. The search space exploration is still provided by the DTNs dynamics.118

(4) Instead of using time-based pheromone evaporation, CGrAnt performs119

an event-driven evaporation, which only occurs if a node detects that a new120

path toward a destination has been found. Thus, allowing redundant paths121

becomes more important than converging to the best path. (5) Because122

there is no central element in DTNs, the knowledge stored in the CA belief123

space is distributed among network nodes. (6) The information exchanged124

between the belief and population spaces always occurs in a distributed man-125

ner intermediated by the CGrAnt operational metrics. The ACO and CA126

modifications seem more adapted to intermittently connected networks such127

as DTNs, yet a subset may allow CGrAnt to operate in different dynamic128

scenarios.129

2.3. Related work130

We go through the related work in the area, discussing the most repre-131

sentative results on both DTN forwarding protocol and swarm intelligence132

methods.133

2.3.1. DTN Forwarding protocols134

The most common solutions in the literature take a controlled flooding ap-135

proach. For instance, epidemic routing provides an optimal solution in terms136

of message delivery and latency, when no buffer constraint is present (Vahdat137

and Becker, 2000). In Epidemic routing, a node buffers a message and passes138

it on to all encountered nodes that have not received it before. No good139

message forwarders prediction is performed. To limit resource utilization, a140

hop-count field can be set in each message. Epidemic routing is simple and141

provides high reliability and adaptability, but it might generate too many142

5



redundant messages, wasting communication and battery resources. To re-143

duce this overhead, the Spray and Wait approach (Spyropoulos et al., 2005)144

sprays messages over different contacts and then wait for these contacts to145

eventually deliver the message to the destination.146

Predicted-based approaches try to reduce the message overhead by se-147

lecting a few good relays. In this context and more related to CGrAnt,148

several approaches estimate a delivery likelihood based on the frequency or149

similarities of meeting with contacts like PROPHET (Lindgren et al., 2003),150

Delegation Forwarding (Erramilli et al., 2008), and Spray and Focus (Spy-151

ropoulos et al., 2007). In particular, in PROPHET, vectors are exchanged152

that indicate the predictability of each node in delivering their messages. This153

predictability increases every time two nodes come into contact and reduces154

if they fail to meet frequently. When a node A establishes a contact with155

a node B, a message will be sent to B if its message delivery’s prediction156

is higher as compared to A. The delivery predictability also has a transi-157

tive property. All these approaches, however, might be too conservative and158

lose good forwarding opportunities in environments with scarce connectivity.159

Most importantly, the majority of the approaches assume infinite buffers and160

bandwidth.161

Other approaches study the effect of social networking on data forward-162

ing. BubbleRap (Hui et al., 2008) and SimBet (Daly and Haahr, 2007) use163

information about social community structures and popularity within a com-164

munity to choose good relays. (Zhang et al., 2012) introduce four social-aware165

data diffusion schemes based on the social relationship and data similarity166

of the contacts.167

Differing from such protocols, CGrAnt conducts local and global searches168

and gathers relevant information from the DTN nodes. CGrAnt can thus169

analyze the utility of each node as a message forwarder and limit message170

replications.171

2.3.2. Swarm intelligence methods172

Though ACO has been extensively used in network environments, espe-173

cially in MANETs (Liu and Feng, 2005; Rosati et al., 2008), routing in DTNs174

is challenging and few ACO protocols have been proposed. DAR (Rosati175

et al., 2008) does not consider local information from neighboring nodes and176

uses only the pheromone global information, which is not always available177

in DTNs. ABMF (La and Ranjan, 2009) only aims to estimate the extra178

capacity of each node as a message forwarder depending on its buffer dy-179
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namics. ACRP (Zhang et al., 2010b) uses the Epidemic protocol to flood180

the network with control messages associated with Forward Ants (FAs) and181

Backward Ants (BAs). None of the mentioned approaches consider the fol-182

lowing important aspects of sparse and opportunistic networks: (i) analyzing183

social metrics of nodes, including their degree and betweenness centralities184

to aid select message forwarders; (ii) preventing the loss of previously found185

good paths caused by pheromone evaporation processes that are periodically186

performed (i.e., based on time, as in ABMF and ACRP) or the overuse of187

those paths due to the absence of an evaporation process (as in DAR); and188

(iii) dynamically limiting the number of control and data messages forwarded189

in the network.190

(Ma et al., 2008; Zhang et al., 2010a) use CA for performing routing in191

a static topology with service quality constraints. They, however, operate in192

a static environment and do not analyze the dynamics of the contacts in a193

social network to determine opportunities. Moreover, they search for a single194

optimal path with a set of constraints and use Situational and Normative195

knowledge only to increase the convergence speed. Finally, they use a single196

and centralized belief space.197

Considering these issues, we proposed a first version of the SI-based198

routing protocol for DTNs that used only ACO (Vendramin et al., 2012b).199

Guided by pheromone concentration, heuristic functions, and social metrics,200

the Greedy Ant (GrAnt) protocol performed better than the well-known201

DTN routing protocols (Vendramin et al., 2012b).202

CGrAnt encompasses CA and ACO metaheuristics and can be considered203

as an extension of our previous method (Vendramin et al., 2012b). CGrAnt204

improves the learning process and the gathering, during evolution, of high-205

level information to be stored in the CA belief space.206

3. The CGrAnt Routing Protocol207

As previously mentioned, the CGrAnt routing protocol is based on CA208

and ACO meta-heuristics. CA is comprised of two spaces: (1) Belief Space,209

which represents the knowledge (i.e., set of information) gathered during the210

search for a set of paths and (2) Population Space, which is composed211

of individuals (i.e., ants) looking for solutions (i.e., forwarding paths) in an212

ACO framework.213

In DTN, due to the lack of central element capable of storing and publish-214

ing all gathered information, the CGrAnt components are distributed among215
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Figure 1: Operation Modes of the CGrAnt Protocol.

different belief spaces, each stored in a network node; each node knows only216

a subset of the population space.The exchange of information between the217

belief and population spaces always occurs in a distributed manner.218

CGrAnt operates in two modes: unsolicited and on-demand (Fig-219

ure 1). In the unsolicited mode (Figure 1(a)), control messages (Ctrl Msg)220

are always exchanged among neighboring nodes to update the information221

stored in each belief space. If it is necessary to establish a data session be-222

tween the source of a data message m (sm) and its destination (dm), CGrAnt223

switches to the on-demand mode (Figures 1(b)- 1(d)). In each node that224

contains a data message m to be forwarded, one or more Forward Ants (FA)225

k, are forwarded toward dm along with m via one or more neighboring nodes.226

During the path construction, an ant k collects information (Info) on each227

node n that composes the path toward dm. The node n can be either a228

node i that contains a buffered message m to be forwarded or a neighboring229

node j. A subset of this information is used by CGrAnt for the belief space230

update of each node. The other part is carried by the FA until it reaches231

dm (Figure 1(b)). In dm, the quality of the constructed path is calculated232

based on the information gathered by the FA. A Backward Ant (BA) is sub-233
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sequently created with the information obtained by the corresponding FA234

(Figure 1(c)), the FA is deleted, and the BA is sent back through the reverse235

path followed by the FA. In its path toward the source (sm) of the FA, the236

BA updates the ACO pheromone concentration operator (τ) in each link be-237

tween the nodes that compose the reverse path (Figure 1(d)) according to the238

constructed path quality. At each visited node, its identification is removed239

from the BA’s record. In subsequent message forwarding, the ACO operators240

(Pheromone Concentration and Heuristic Function) and the CA belief space241

(along with other CGrAnt components) dictate the routing decision in each242

node and infer the best forwarders for each message.243

The next sections describe the CGrAnt routing protocol in detail. Sec-244

tions 3.1 to 3.3 describe the components used by CGrAnt that influence the245

search for paths. Sections 3.4 and 3.5 describe the routing phases of CGrAnt,246

which determine the route(s) a message must follow to reach its destination.247

3.1. Metrics and Indicators248

The communication between the belief and population spaces is mediated249

by specific metrics and indicators. The metrics incorporated into CGrAnt are250

classified as basic (obtained directly from the population space or nodes) or251

composite (obtained from manipulating basic metrics). The basic metrics252

are classified into local (associated with each node and its neighboring nodes)253

and global (associated with complete paths constructed by ants) categories.254

Figure 2 illustrates the metrics and their relationships with the belief space255

stored in each node. The Situational and History knowledge influence the256

population space and the population space update the global metrics.257

Table 1 provides a brief description of the metrics and variables used258

throughout this paper.259

The Local Basic Metrics used by CGrAnt include the following:260

• Frequency of Encounters (FEn,d) between a pair of nodes n and d;261

• Duration of an Encounter (DEn,d) between n and d;262

• Average Pause Time (PTn) in the places visited by n;263

• Average Movement Speed (MSn) of a node n;264

• Degree Centrality (DCn) of a node n (Freeman, 1979). As n encoun-265

ters more nodes in the network and increments its degree centrality, it266

has more opportunities to choose the best message forwarders;267
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• Relationship Degree (RDi,m) of a node i with respect to each of its268

data messages m. RDi,m defines i as the source (sm) or an intermediate269

node of m.270

The Global Basic Metrics of CGrAnt include:271

• Number of Hops (|p|) in a complete path p. If there are few hops in a272

path, fewer resources are consumed, and less interference is generated;273

• Betweenness Utility of a node (BUn,d) n relative to a destination274

node d. To obtain a high betweenness utility relative to d, a node275

n must appear with a high frequency in paths between any source276

node and d. Each time a node n receives a BA indicating that n is a277

component of a complete path (global solution) to d, its betweenness278

utility is updated, BUn,d(t) = BUn,d(t− 1) + 1.279

The Composite Metrics of CGrAnt include the following:280

• Social Proximity (SPn,d) between n and d is directly associated with281

the ACO local operator Heuristic Function (η) and is defined as282

SPn,d = FEn,d ×DEn,d;283
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• Path Quality (Qpksm,dm
), which measures the quality of a path p con-284

structed by an FA k between nodes sm and dm. It encompasses the285

number of hops (|p|) and the average degree centrality of nodes n (DCn)286

that compose a path to dm:287

Qpksm,dm
(t) =

∑
∀n∈pksm,dm

DCn(t)

|p|ksm,dm
+

1

|p|ksm,dm
(1)

The Path Quality metric is directly associated with the ACO global288

operator Pheromone Concentration (τ);289

• Utility of a node n in relation to d (Un,d), which describes how well290

n can perform as a message forwarder to d. The Un,d is subsequently291

determined according to the basic metric RDi,m:292

Un,d(t) =

{
ηn,d(t) if RDi,m = sm
ηn,d(t) + τ(i,y),d(t) otherwise,

(2)

The Un,d(t) can thus consider only local or both local and global in-293

formation. The local information ηn,d(t) is the heuristic function of294

ACO measured by SPn,d, and the global information τ(i,y),d(t) is the295

pheromone concentration on each link (i, y) belonging to a path to d,296

and y is defined as:297

y =

{
dm if n = i
j if n = j,

(3)

• Stagnation Degree (SDn) of a node n, which allows the identifica-298

tion of the most mobile nodes in a dynamic scenario (e.g., buses or299

vehicles) and consequently, adapts CGrAnt to heterogeneous network-300

ing encounters on the fly. For this, SDn considers the node average301

pause time (PT n) and average movement speed (MSn):302

SDn(t) =

(
PT n

MSn

)
(4)

• Stagnation Degree of the social network (SDi
J) of a node i, which303

is based on the SDn metric:304

SDi
J(t) =

1

|J |
∑
j∈J

SDj(t), (5)
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where J is the set of nodes encountered by node i;305

• Betweenness Utility of the social network (BU i
J,d) of a node i306

in relation to d, which considers the basic metric BUn,d. The BU i
J,d is307

initialized differently depending on the origin of the BA that announces308

to i that a complete path to d has been constructed:309

BU i
J,d(0) =

{
BUi,d(t) if BA came from d
BUj,d(t) if BA came from j

(6)

The BU i
J,d metric is updated with BUi,d whenever i receives a BA.310

When the BA comes from a neighboring node j (not from d), BU i
J,d is311

also updated with BUj,d:312

BU i
J,d(t) =


Z
if BA came from d

1
2

(Z +BUj,d(t))
if BA came from j,

(7)

where Z = 1
2

(
BU i

J,d(t− 1) +BUi,d(t)
)
.313

More details on the metrics definitions are discussed in [23].314

In addition to the basic and composite metrics, CGrAnt uses two indica-315

tors: (1) best fwdm, which stores the current best forwarder for a specific316

message m and (2) search status, which decides whether FAs must explore317

or exploit the network while seeking solutions for the DTN forwarding prob-318

lem.319

3.2. Population Space320

The population space is composed of FAs and BAs messages. The FAs321

look for sets of possible paths, i.e., one set Pm for each pair (sm, dm). As-322

suming a total of M messages to be forwarded in the entire network, there323

will be several paths sets {P1, · · · , Pm, · · · , PM} constructed simultaneously.324

Every paths set Pm represents a group of solutions generated whenever a325

message m originated in sm must be sent to dm. Each complete path p in Pm326

composed of a sequence of nodes is established when ant k reaches dm and327

can be defined as:328
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pksm,dm = {sm, · · · , n, · · · , dm}, k = 1, · · · , Km.

For each node i with a message m, each time a better forwarder j for m329

appears, a new FA k is generated to begin its path construction, and a copy330

of m is sent to j. The partially constructed path from sm to j remains the331

same. However, from j, the FA k is free to find dm passing through different332

nodes n and can provide a different path into the population space. The333

Km defines the number of FAs generated to find solutions for m. In general,334

| Pm |� Km because a subset of ants cannot find dm. The parameter Km335

is dynamically defined according to the belief space knowledge and message336

delivery success. Ant generation is thus auto-adaptive, as is the number of337

constructed paths, and both depend on the DTN dynamics.338

3.3. Belief Space339

In CGrAnt protocol, there is no element to centralize and share the gath-340

ered knowledge. The belief spaces are thus distributed over the network.341

Each belief space in a node encompasses three types of knowledge: Domain,342

History, and Situational, as detailed hereafter.343

3.3.1. Domain Knowledge344

introduced to support the analysis of local and specific DTN dynamics.345

Domain knowledge keeps CGrAnt updated on the relative local dynamics346

of each node i, which is evaluated in this paper based on the relationship347

between SDi and SDi
J . The knowledge is distributed among nodes, Domi,348

for i = 1, ..., N , where N is the number of nodes available in the network349

and Domi assists CGrAnt in characterizing i into three classes: a node with350

high, medium or low stagnation degree.351

Based on this information and the specific heuristics of a DTN forwarding352

problem, the Domain knowledge can set the status of the path search (i.e.,353

exploration or exploitation). The Acceptance and Update functions of the354

Domain knowledge occur more frequently than its Influence Function because355

they are called during the node encounters. The Influence Function acts only356

during the message forwarding phase.357

The Acceptance Function accepts information on the local dynamic of358

each neighboring node j, only if SDj ∈ (0,∞). After accepting a new so-359

lution, the Update Function is called. It considers the event window W (t)360

13



containing a list of local events of i, such as an encounter between i and a361

non-stationary node j.362

The Update Function adds the pair (SDj(t), j) to the list and updates363

SDi
J according to Eq. 5.364

The Influence Function evaluates the stagnation degree of i with respect365

to its social network:366

• High stagnation degree: A node i is characterized as a highly stagnated367

node when the following relations apply: SDi > SDi
J + Vs and SDi

J ∈368

(0,∞). In this case, its improvement stagnation direction dri is set to369

dri = +1;370

• Low stagnation degree: A node i has a low stagnation degree when the371

following relations apply: SDi < SDi
J − Vi and SDi

J ∈ (0,∞) hold. In372

this case, dri = −1;373

• Medium stagnation degree: A node i is characterized as a medium stag-374

nation node when the previously described relations do not apply. In375

this case, dri = 0.376

The Vi and Vs respectively define the decrement and increment in SDi
J377

used to define the range of nodes with medium stagnation degree.378

Based on dri, the Influence Function changes the value of the search status379

indicator, which aids in defining whether an FA in node i must be sent to380

exploit or explore during the search for a solution of the DTN forwarding381

problem.382

3.3.2. History Knowledge383

introduced to adapt CGrAnt to changes in the network, thus increasing384

the ability to reflect the global network dynamics. This knowledge stores a385

history of important past events (in this case, the information that complete386

paths to d have been found). Due to the lack of a central component, the387

complete paths cannot be stored in the History knowledge. The betweenness388

utility metric (representing the partial information of a complete solution)389

is subsequently used and may subsequently influence the path search. The390

History Knowledge is distributed among the network, Hisi, for i = 1, ..., N .391

In each node i, this knowledge is divided in a total of Di sub-knowledge:392

Hisi(t) = {Hisi,1(t), Hisi,2(t), ..., Hisi,Di
(t)}, where Di ≤ N represents393

the number of destination nodes for which node i originated or intermediated394

a path.395
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The Acceptance and Update Functions of the History knowledge are called396

in the backward phase, and its Influence Function acts in the message for-397

warding phase.398

The Acceptance Function is called after node i receives a BA from a399

neighboring node (j or d), indicating that a complete path to d has just400

been found. The betweenness utility of i with respect to d (BUi,d) is always401

accepted to update the belief space of i. The betweenness utility of the402

neighboring node j (BUj,d) is also accepted to update the belief space of i403

if and only if the BA did not come from d. After the acceptance phase, the404

Update Function is called to calculate BU i
J,d.405

The BUj,d and BU i
J,d dynamics are considered by the Influence Function406

when evaluating the improvement directions of each neighboring node j as407

a candidate forwarder for message m to d: drj = +1, if BUj,d > BU i
J,d;408

drj = −1, if BUj,d < BU i
J,d; or drj = 0, if BUj,d = BU i

J,d. Based on these409

directions and the search status indicator, the history knowledge influences410

the message forwarding by deciding whether an FA should be sent through411

a previously found path and thus exploit the path search.412

3.3.3. Situational Knowledge413

introduced in CGrAnt to provide a memory of the best solutions, and414

to influence the search process for a set of paths through these solutions.415

Its memory is partial instead of complete and is represented by the best416

forwarder of each message. The Situational Knowledge is distributed among417

the network nodes: Siti, for i = 1, ..., N . In each node i, the Situational418

knowledge is divided in a total of Mi sub-knowledge:419

Siti(t) = {Siti,1(t), ..., Siti,m(t), ..., Siti,Mi
(t)},420

where Mi represents the number of data message m stored in node i’s buffer.421

The Acceptance, Update, and Influence functions of the Situational knowl-422

edge are called during the message forwarding phase.423

The Acceptance Function operates with the understanding that if a new424

neighboring node j (partial solution) is found, it is accepted to update the425

belief space of i only if Uj,d > Ubest fwdm,d, where Ubest fwdm,d is the current426

best forwarder utility for m stored in the sub-knowledge Siti,m. The accep-427

tance condition can be relaxed to accept nodes with the same utility of the428

best forwarder if the corresponding search status exploration is true. Only429

one solution is accepted in each update. After accepting a new solution, the430

Update and Influence functions are called. The new solution thus replaces431

the previous solution (best fwdm = j), and the new solution quality (Uj,d)432
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updates Ubest fwdm,d (i.e., Ubest fwdm,d = Uj,d). The Influence Function creates433

a new FA and forwards it along with m to the new solution j. The Influence434

function thus dictates the future of each path built for a pair sm − dm and435

the number of generated ants.436

In the following sections, we describe in more detail the two phases that437

dictate the main functioning of the GrAnt routing protocol: (1) Message438

Forwarding or Path Search, which is represented by FAs looking for a set439

of paths and the updating of selected knowledge and metrics. In this phase440

occurs the data message forwarding; and (2) Backward, which is represented441

by BAs updating the knowledge and metrics stored in the nodes.442

3.4. Message Forwarding Phase443

The message forwarding phase in CGrAnt is initialized on-demand when444

a message m stored in a node i must be delivered to dm, as described by445

Algorithm 1. The FAs are subsequently created, encapsulated into m, and446

sent toward dm via one or more neighboring nodes j.447

During message forwarding, an FA at a node i decides whether to for-448

ward m to a new neighbor j according to the influence of the three types of449

knowledge stored in its belief space: Domain, History, and Situational.450

Because node i is the first candidate solution for forwarding message m,451

its identification and utility initialize the Situational knowledge (lines 9 and452

10). The decision on forwarding m to j may be to explore (i.e., it is not453

required that j has previously participated in a path to dm) or exploit (i.e., j454

has previously participated in a path toward dm). The decision is guided by455

the information on i in terms of RDi,m and SDi stored in Domi. The status456

is initialized, enabling both exploitation and exploration of the path search457

space (lines 12 and 13). These conditions can change in two situations: (i)458

i is an intermediate node with a medium stagnation degree (in this case,459

the exploration stops (line 16)), or (ii) i is an intermediate node with a low460

stagnation degree (because i is a highly mobile node, it does not forward m,461

thus, both exploration and exploitation are stopped (lines 19 and 20)).462

Aside from Domain knowledge, the History and Situational knowledge463

also influence the CGrAnt message forwarding. The History knowledge in-464

fluences the forwarding (line 33) when the decision is to exploit the solutions465

already found: i forwards m to a solution j if node j’s betweenness util-466

ity (BUj,d) is higher than the betweenness utility of node i’s social network467

(BU i
J,d stored in Hisi,d, as observed in line 47). The Situational knowledge in-468

fluences CGrAnt (line 44) when the decision is to explore the network or when469
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better solutions appear. Node i only forwards m to a new solution j if one of470

the following two conditions is satisfied: (i) The utility of j (Uj,d) is higher471

than the utility of the best forwarder previously found for m (Ubest fwdm,d,472

which is stored in Siti,m, as observed in lines 53 and 54). This condition at-473

tempts to locate a new best forwarder for m among the current neighboring474

nodes of i; (ii) At the beginning of the exploration (i.e., m was not forwarded475

to any other node and best fwdm = i and Uj,d = Ui,d, as in lines 26-27, 36-476

38). The Situational and History knowledge are important contributions of477

CGrAnt because they dynamically control the number of created ants and478

the data message redundancy by setting each new best message forwarder479

or forwarding m to already known good nodes, thus differing from the pure480

ACO algorithms proposed for DTNs.481

After analyzing the utility of every current neighbor j and inferring the482

best choice, CGrAnt sends m to the designated forwarder (lines 33 and/or483

44).484

In addition to the data message forwarding, control messages are period-485

ically and locally exchanged between i and its neighboring nodes j to update486

Domi.487

The search for new paths toward dm continues until i performs one of488

the following actions: (1) encounters dm, (2) becomes aware of the successful489

delivery of the corresponding data message to dm, or (3) detects that the490

Time to Live (TTL) field of the data message has expired.491

Throughout its path search, an FA carries the following information: the492

ID of sm, the ID of dm, the node IDs through which it passes (between sm and493

dm), and the degree centrality of each visited node j (DCj). The individual494

qualities update the partial quality of the path under construction by the FA.495

When an FA (along with m) reaches dm, the final quality of the constructed496

path (Qpksm,dm
) is calculated as in Eq. 1. After calculating the quality of each497

new and complete path p, a new control message, the BA, is created from498

the information obtained by the FA, and the FA is deleted.499

3.5. Backward Phase500

During the backward phase, the BA returns to the node that originated501

the message m through the reverse path selected by the FA. The concept502

of using a reverse path in DTNs is motivated by wireless social networks in503

which (i) individuals are often linked by a short chain of acquaintances, (ii)504

certain encounters show repetitive behavior, and (iii) nodes have routines505

that result in frequently visited locations and encounters.506
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In the reverse path, receiving a BA sent from node y to each neighboring507

node i produces three effects: (1) increasing the BUi,d value by one; (2)508

initializing or updating the BU i
J,d value according to Eq. 6 and 7, an effect509

that corresponds to the Update Function of the History Knowledge; and (3)510

updating the pheromone concentration toward d according to:511

τ(i,y),d(t) = (1− ρ)× τ(i,y),d(t− 1) +Qpksm,dm
(t), (8)

where τ(i,y),d(t− 1) is the pheromone on link (i, y) that was last updated512

at time (t− 1). The evaporation process (1− ρ) is necessary for the ants ”to513

forget” the previous pheromone values deposited on a link to a specific d.514

This evaporation reduces the influence of the path search history. When the515

pheromone is updated, all concentrations that belong to d are evaporated in516

i.517

Even if the BA does not reach the node that originated the message518

(due to connection partitions), the message forwarding phase of the CGrAnt519

protocol is guided by a local path search provided by the heuristic function520

information. Differing from other protocols that use only global (pheromone521

concentration) or local (heuristic function) information, CGrAnt contains ad-522

ditional flexibility, because the decision is based on all available information523

(both ACO operators and knowledge stored in the CA belief space).524

Additionally, the BA serves as an acknowledgment that m has achieved525

dm, allowing the nodes that still maintain m to delete it and its associated526

variables. A node that encounters another node that has already received a527

BA for a given data message also deletes the corresponding message and its528

associated variables. When the source node receives it, the BA is deleted.529

Full paths are thus constructed for each destination using the information530

gathered by the ants during the path search phase.531

4. Evaluation Methodology532

This section describes the numerical analysis we conducted using the533

Opportunistic Network Environment (ONE) Simulator (Keränen et al., 2010)534

to investigate the benefits of the metrics and components incorporated into535

our proposal. Using ONE we can also assess both performance and accuracy536

of the CGrAnt protocol in simulation scenarios that consider two different537

movement models: Working Day (WD) (Ekman et al., 2008) and Points of538

Interest (PoI) (Keränen et al., 2010), both proposed by default in the ONE539
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simulator. The ONE default parameters were kept unchanged (whenever540

possible) in order to confirm the results when compared with the others two541

evaluated protocols (Epidemic and Prophet). Moreover, using the default542

parameters, we intend to facilitate the dissemination of our proposal in the543

simulation platform.544

The WD movement model represents an activity-based environment that545

simulates the daily lives (activities) of people who go to work in the morning,546

spend the day working, may go to a public place for leisure activities with547

friends at the end of day, and return to their houses at night. In WD, the548

total area (10, 000 × 8, 000 m2) encompasses meeting points, buses, houses,549

offices, and roads. The area is divided into four regions denoted by RA to550

RD. Eight groups of nodes, denoted by A to H, are created to represent the551

node movements into specific regions. Groups A to D simulate only intra-552

region movements (e.g., group A simulates the node movements into region553

RA). Groups E, F , and G simulate node movements between RA and other554

regions, and H simulates movements among all regions. The assignment of555

nodes per group is as follows: A has 258 nodes, B has 119, C has 154, D has556

154, E has 102 (i.e., E = A ∩ B), F has 122 (i.e., F = A ∩ C), G has 122557

(i.e., G = A ∩D), and H has 70 (i.e., H = A ∩B ∩ C ∩D).558

The WD movement model represents an activity-based environment that559

simulates the daily lives (activities) of people who go to work in the morning,560

spend the day working, may go to a public place for leisure activities with561

friends at the end of day, and return to their houses at night. In WD, the562

total area (10, 000 × 8, 000 m2) encompasses meeting points, buses, houses,563

offices, and roads. The area is divided into four regions denoted by RA to564

RD. Eight groups of nodes, denoted by A to H, are created to represent the565

node movements into specific regions. Groups A to D simulate only intra-566

region movements (e.g., group A simulates the node movements into region567

RA). Groups E, F , and G simulate node movements between RA and other568

regions, and H simulates movements among all regions. The assignment of569

nodes per group is as follows: A has 258 nodes, B has 119, C has 154, D has570

154, E has 102 (i.e., E = A ∩ B), F has 122 (i.e., F = A ∩ C), G has 122571

(i.e., G = A ∩D), and H has 70 (i.e., H = A ∩B ∩ C ∩D).572

In the PoI movement model, the total area (8, 800× 7, 800 m2) is divided573

into five points of interest that simulate several communities of people who574

eventually meet each other and exchange data. There are eight groups of575

nodes (W1, X1, Y1, Z1, W2, X2, Y2, and Z2), each with different desti-576

nation selection probabilities. The POIs movement model is similar to the577
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community model used by A. Lindgren et al.(Lindgren et al., 2003).578

Groups W1, X1, Y1, and Z1 contain 30 nodes each. Groups W2, X2, Y2,579

and Z2 have five nodes. Every node has one home PoI that is more likely580

to be visited than the other PoIs; there is a high probability that nodes581

meet each other within their same home community and a low probability582

that they go to PoIs outside their home community. The nodes select a583

destination, move in this direction (with MS ∈ [0.5, 1.5] m/s), wait during584

a pause time (PT ) ranging from 100 to 200 seconds (for groups W1-Z1) or585

4,000 to 5,000 seconds (for W2-Z2), and select the next destination, among586

other actions. Table 2 shows the settings and communication parameters587

applied in all experiments for the three protocols under comparison. Unless588

otherwise described, the parameters used in both scenarios are emphasized589

in Table 2.590

In Section 5, we evaluate the CGrAnt performance with variations in591

the setting parameters. We analyze the CGrAnt performance in the PoI592

scenario in terms of the percentage of messages delivered to destinations.593

The setting parameters emphasized represent those that provide the best594

results for the CGrAnt protocol. Next, in Section 6, we investigate a subset595

of the CGrAnt components by evaluating the protocol performance for both596

scenarios (WD and PoI). Section 7 compares CGrAnt with the Epidemic597

and PROPHET protocols in both scenarios and considers different aspects598

of the communication network context. In all experiments, each message has599

a size of 500 KB representing its payload and includes an FA with 8 bytes600

representing its path quality. The BA size is 100 bytes on average (including601

the header, path quality, and path hops).602

The results discussed in Sections 5, 6 and 7 are presented in terms of mean603

values and confidence intervals (at a 95% confidence level) for 30 runs in each604

scenario. Due to the normality characteristics of the data under consider-605

ation, we apply the ANOVA (ANalysis Of VAriance) parametric statistical606

test together with its post hoc follow-up analysis over the independent groups607

considered. The ANOVA statistical test returns a p-value > 0.05 indicating608

(with 95% of confidence) that there are no statistical differences among the609

groups and a p-value < 0.05 if there is at least one pair of groups with a610

statistically significant difference. The intervals shown in the graphs for the611

post hoc analysis are computed in such a way that (to a close approximation)612

the two configurations compared are significantly different if their intervals613

are disjoint and are not significantly different if their intervals overlap. In our614

case, the delivery ratio interval associated with each group is represented by615
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a horizontal line (with a circle representing its mean value). For each graph,616

we choose one group for emphasis (represented by a black horizontal line and617

delimited by two vertical dashed lines).618

5. Setting the Metrics of CGrAnt619

This section investigates how selected metrics and ACO operators can620

improve the communication among swarms in the population space and thus,621

assist in obtaining better solutions. Sections 5.1 and 5.2 analyze the influence622

of certain metrics associated with the ACO operators of CGrAnt. Section 5.3623

analyzes the influence of selected metrics in characterizing the utility of each624

node (solution) as a message forwarder.625

5.1. Heuristic Function626

We first analyze different sources of information in the ACO local operator627

or Heuristic Function (ηn,d(t)). Recall that a node n is selected from a set628

of candidates to forward a message m to its destination d. In this section,629

the CGrAnt performance is evaluated by considering each of the following630

metrics associated with ηn,d(t): (1) SPn,d, (2) DCn, (3) BUn,d, and (4) FBn,631

which represents the free space available in the buffer of a node n.632

The experimental results show that when CGrAnt uses the SPn,d metric,633

it delivers more messages (58.93±0.19%) than the DCn (47.21±0.17%), the634

BUn,d (53.92± 0.17%), or the FBn (49.72± 0.28%).635

Figure 3 presents the post hoc analysis of ANOVA highlighting the SPn,d636

metric. The SPn,d metric guarantees the highest message delivery ratio.637

This associated to the fact that there are no overlaps among the intervals638

resulted from other metrics, lead us to conclude that SPn,d provides better639

performance than the other metrics.640

The main reasons for the better performance of the SPn,d metric are641

listed as follows: (1) SPn,d indicates the proximity of n relative to d because642

it provides an estimation of the probability of future encounters between n643

and d. Moreover, SPn,d contains information available along all of the search644

process. (2) DCn indicates the popularity of n relative to all other nodes in645

the network instead of specific information for the candidate forwarder and646

d, as in SPn,d. (3) BUn,d provides important information for the nodes that647

successfully intermediated a communication to d; however, it is only available648

for n after a complete path has been found (which includes n), and n has649

received the visit of a BA (as seen in Section 3.5). (4) In highly connected650
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Figure 3: ANOVA results to Heuristic Function.

scenarios where the set of global solutions is always available and the same651

solution can be frequently selected, the percentage of available resources (e.g.,652

the buffer) may be an important metric to consider; nevertheless, in an en-653

vironment where the contacts are sparse (as in the DTNs), information on654

the social proximity between two nodes seems more important.655

5.2. Pheromone Concentration656

In this work, the pheromone concentration in the ACO global operator657

is associated with the quality of a complete path constructed by an ant k658

between the sm and dm nodes (i.e., τ k(i,y),d(t) = Qpksm,dm
(t)). Next, after659

defining the Heuristic function, we evaluate which type of information have660

more influence on Qpksm,dm
(t). The CGrAnt performance is evaluated using661

different metrics to predict the path quality: (1) the average Degree Central-662

ity (DC) of nodes n belonging to the path along with the reciprocal of the663

existing number of hops (|p|) in the constructed path, i.e., as in Eq. 1; (2) only664

the second term of Eq. 1; (3) only the first term of Eq. 1; and (4) the average665

Betweenness Utility of node n relative to d (i.e., Qpksm,dm
(t) =

∑
nBUn,d

|p| ).666

The simulation results show that when using a composite metric encom-667

passing DC and |p|, CGrAnt delivers more messages (58.93 ± 0, 19%) than668

when it uses only the basic metrics |p| (51.11± 0.22%), DC (51.10± 0.21%),669

and BU (49.89± 0.22%).670
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Figure 4 presents the post hoc analysis of ANOVA highlighting the com-671

posite metric (DC and |p|). As shown, the composite metric provides the672

best message delivery ratio. In addition, because there are no overlaps among673

the intervals of other metrics, we conclude that the composite metric pro-674

vides better performance than the basic metrics. This result indicates that675

the node popularity is a good indicator of the node’s ability to forward mes-676

sages. This is particularly true in scenarios with intermittent connections, as677

in DTNs. Moreover, the importance of |p| is due to the fact that the smaller678

is the path, the fewer are the network resources consumed and the less is the679

communication interference that occurs.680

Figure 4: ANOVA results to Pheromone Concentration.

5.3. Node Utility681

Finally, we analyze the utility (Un,d) of each node n as a forwarder of a682

message m to d. The CGrAnt performance is evaluated using four different683

metrics to describe the utility of n related to a reference node i, which con-684

tains a message m to be delivered to d. The investigated metrics are the685

following: (1) only local information represented by the Heuristic Function686

(Un,d = ηn,d(t)); (2) only global information represented by the Pheromone687

Concentration (Un,d = τ(i,y),d(t); (3) the Heuristic Function and Pheromone688

Concentration (Un,d = ηn,d(t) + τ(i,y),d(t)); and (4) the Heuristic Function,689

23



Pheromone Concentration, and the Relationship Degree (RDi,m) metric (ac-690

cording to Eq. 2).691

The results show that when both ACO operators (heuristic function and692

pheromone concentration) and the RDi,m metric are considered (composition693

4), the CGrAnt protocol delivers more messages (58.93 ± 0.19%) compared694

with composition (1) in which it uses only the heuristic function (55.95 ±695

0.23%), composition (2) in which it uses only the pheromone concentration696

(49.29± 0.18%), and composition (3) in which it uses the heuristic function697

and the pheromone concentration without the RDi,m metric (58.02±0.20%).698

Figure 5 presents the post hoc analysis of ANOVA highlighting the best699

composition (4). As depicted, there is no overlap among the intervals. This700

behavior verifies that the use of both local and global information (heuristic701

function and pheromone concentration) along with the RDi,m metric achieves702

higher performance.703

Figure 5: ANOVA results to Node’s Utility Analysis.

6. CGrAnt Component Analysis704

The influence of the CGrAnt’s components on the message delivery ratio705

and message redundancy ratio are evaluated for the PoI and WD scenarios.706

The message redundancy ratio is expressed as Redundancy = (Btransm −707

Bdelivery)/Bdelivery, in which Btransm represents the number of bytes trans-708
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mitted to nodes, and Bdelivery, which is the number of bytes delivered to709

their destination.710

Initially, an additive methodology is adopted in which components are711

added one by one to the previous protocol configuration until its final ver-712

sion (configuration 6) is reached (see Table 3). The first two configurations713

represent the CGrAnt protocol that considers only the ACO metaheuris-714

tic. The pheromone concentration slightly increases the delivery ratio and715

reduces the number of replicated messages. The influence of the new com-716

ponents incorporated into CGrAnt (i.e., CA’s belief space) is analyzed for717

configurations 3 to 6.718

When comparing the results obtained from the pure ACO metaheuristic719

(configuration 2) with the final performance of CGrAnt (configuration 6),720

the following gains are achieved:721

• in the POI scenario, the configuration 2 obtains 48.61% against 58.93%722

of message delivery in the configuration 6. This represents a percentage723

increase of message delivery in 21.23%;724

• in the WD scenario, the configuration 2 obtains 54.97% against 63.19%725

of message delivery in the configuration 6. This represents a percentage726

increase of message delivery in 14.95%;727

• in the POI scenario, the configuration 2 obtains 15.97% against 10.37%728

of message redundancy in the configuration 6. This represents a per-729

centage decrease of message redundancy in 35.07%;730

• in the WD scenario, the configuration 2 obtains 68.62% against 12.43%731

of message delivery in the configuration 6. This represents a percentage732

decrease of message redundancy in 81.86%.733

The Situational knowledge (configuration 4) aims to dynamically restrict734

the number of FAs (and, consequently, the number of messages replicated) to735

only the most promising forwarders. The History knowledge (configuration 5)736

provides the exploitation of already known good solutions and consequently737

increases the message delivery ratio. The Domain knowledge 1 (configuration738

3) privileges the exploration of the search space and the Domain knowledge739

2 (configuration 6) favors the exploitation. According to the analysis of740

configurations 3 and 6, the Domain knowledge aims to increase the message741

delivery and reduce the redundancy ratio.742
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GrAnt, our previous ACO-based protocol presented in (Vendramin et al.,743

2012b), performs better than CGrAnt in PoI (i.e., GrAnt provides 62.10 ±744

0.2% of message delivery and 7.05±0.1 of message redundancy). However, for745

the WD scenario, CGrAnt outperforms GrAnt (the latter achieved 60.25 ±746

0.75% for delivery and 13.65±0.14 for redundancy). CGrAnt presents better747

performance in WD rather than in POI scenario because of the Domain748

Knowledge. The Domain Knowledge considers the node mobility in order749

to determinate if a node is a good message forwarder and, consequently,750

if that node must exploit or explore the search space. In WD there are751

several mobility patterns, i.e., buses and vagabonds nodes with high mobility.752

Otherwise, in POI, the mobility of nodes is very similar and the information753

of the Domain knowledge is less relevant.754

Additionally, CGrAnt has the advantage of modeling at a higher abstrac-755

tion level that enables the elimination of any knowledge of the CA belief756

space in a simple way (e.g., the history knowledge can be eliminated when757

the environment is more connected and fewer messages need to be forwarded).758

Table 4 represents the eliminatory analysis of the CA’s belief space pro-759

posed by CGrAnt. The first configuration in Table 4 represents the CGrAnt760

protocol including all components. In analyzing this table we conclude the761

following:762

• Domain Knowledge aims to increase the message delivery ratio and763

reduces the message replication. This is particularly true in the WD764

scenario in which the nodes generally have a stagnation degree (SDn)765

lower than the average stagnation of its social network (SDJ), and766

consequently, the Domain knowledge has greater influence. Without767

this knowledge, the message delivery ratio is reduced by 1.77% (PoI)768

and 1.40% (WD) and the message redundancy ratio increased by 0.77%769

(PoI) and 92.27% (WD);770

• Situational Knowledge aims to dynamically restrict the FAs to only771

good forwarders, and its influence on the message redundancy ratio772

is therefore greater. Without this knowledge influence, we observe an773

increase of 51.78% (PoI) and 248.51% (WD) in the message redundancy774

ratio and a reduction in the message delivery ratio of 9.15% (PoI). In775

the WD scenario we have an increase of message delivery ratio of 1.65%;776

• History Knowledge aims to enhance already known good solutions777

and thus increases the message delivery ratio. Without the influence of778
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this knowledge, there is a reduction of 3.78% (PoI) and 3.4% (WD) in779

the message delivery ratio with a lowest cost incurred in the replication780

of messages -33.85% (PoI) and -12.55% (WD).781

It may be noted that the use of the multiple knowledge incorporated in782

CGrAnt improves its final performance. As the use of multiple techniques in783

ensemble systems, the combination of a set of techniques on an suitable con-784

sensus function provides better performance than each individual technique.785

7. The CGrAnt Overall Performance786

This section investigates how CGrAnt performs as a forwarding protocol787

when compared with the Epidemic and PROPHET protocols under varying788

networking parameters. We performed 30 runs, and the reported results rep-789

resent the mean and confidence intervals (at a 95% confidence level) values.790

To evaluate the reliability and the cost of the three protocols, we consid-791

ered the following three performance metrics: (1) message delivery ratio, (2)792

message redundancy ratio, and (3) average message delivery delay.793

7.1. Analysis of Different Buffer Sizes794

Figure 6 depicts the performance of the three protocols with variation of795

the buffer sizes (from 4 MB to 16 MB) for the PoI scenario. The dashed796

curves with empty points denotes the results for nodes that operate at a797

communication range of 10 m and a transmission rate of 2 Mbps (repre-798

senting bluetooth devices). The solid curves with black points show the799

results for nodes that operate at a 100 m range and a transmission rate of800

10 Mbps (representing WiFi devices). Figures 6(a) and 6(b) show that with801

the use of CGrAnt, more messages are delivered and less buffer space is de-802

voted to message replications. For instance, for a buffer size of 8MB and a803

communication range of 100 m, CGrAnt delivers 93.27± 0.10% of messages804

(versus 66.52± 0.16% for Epidemic and 46.84± 0.15% for PROPHET) with805

a message replication of only 15.23± 0.06% (38.90± 0.13% for Epidemic and806

41.85± 0.19% for PROPHET). Figure 6(c) shows that CGrAnt provides the807

lowest delivery delay when using a higher buffer size (i.e., 10 MB to 16 MB).808

Note that for buffer sizes lower than 8MB, PROPHET presents better809

results in terms of delivery delay. This is due to its lowest Message Delivery810

ratio, almost −50% than CGrAnt, only short route with short delivery delay811

is used.812
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7.2. Analysis of Different Message TTLs813

Figure 7 shows the performance of the CGrAnt, Epidemic, and PROPHET814

protocols with variation of the message TTL (Time-To-Live, i.e., how long815

the message lives in the network in minutes) for the PoI scenario. Figures 7(a)816

and 7(b) show that CGrAnt provides the best results in terms of message817

delivery and redundancy ratios for all message TTLs and both communica-818

tion ranges. For instance, with a 10 m range and a TTL of 2,100 minutes,819

CGrAnt delivers 61.09 ± 0.23% of messages (versus 35.39 ± 0.17% for Epi-820

demic, 30.50 ± 0.14% for PROPHET), with a message redundancy of only821

10.21± 0.05% (30.47± 0.18% for Epidemic, 32.82± 0.17% for PROPHET).822

These results show that a node with an efficient routing protocol such as823

CGrAnt, with guidance from the CA knowledge and the ACO operators is824

able to efficiently manage message forwarding and dynamically limit message825

redundancy. Figure 7(c) shows that PROPHET provided the best results in826

terms of delivery delay; this is the only metric for which CGrAnt cannot pro-827

vide the best results, a lack that is justified by its lowest Message Delivery828

ratio, almost −40% than CGrAnt, only short route with short delivery delay829

is used.830

The performance of the three DTN protocols with variations in the buffer831

sizes and message TTLs in the WD scenario is presented in (Vendramin et al.,832

2012a). The results in (Vendramin et al., 2012a) show that CGrAnt achieves833

a higher message delivery ratio and a lower redundancy ratio than those of834

Epidemic and PROPHET.835

7.3. Analysis of Different Simulation Times836

We also perform an experiment to evaluate the number of messages de-837

livered by the three protocols along the simulation time in the PoI (4MB of838

buffer size and message TTL of 600) and the WD scenarios (10MB of buffer839

size and message TTL of 1, 800), both with a communication range of 10m.840

The aim in this section is to demonstrate that a better delivery ratio can be841

achieved as the time increases.842

Figure 8 shows the message delivery ratio obtained by the three protocols843

over time in the PoI and WD scenarios with a 10 m range. In CGrAnt, the844

performance gain is greater mainly in the WD scenario. When the simulation845

time is increased from 400,000 to 2,800,000 seconds, CGrAnt delivers slightly846

better performance via an increase of 7.37% (PoI) and 17.45% (WD) in the847

message delivery ratio. This gain is justified by the fact that the more is the848

gathered information by CGrAnt over time, the better are the choices it can849
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make concerning message forwarding candidates. In contrast, PROPHET850

and Epidemic did not exhibit any significant variation of performance when851

the simulation time was increased.852

7.4. Analysis of Operation Costs853

Another important consideration in protocol performance is the cost of854

initializing/updating and storing the state of the network and nodes. This855

cost covers the amount of the following types of information: (1) locally856

exchanged between every two nodes i and j during any contact opportunity,857

and (2) locally stored in each node i of the network. For this analysis, we858

considered the PoI scenario with the emphasized parameters presented in859

Table 2.860

For the storage cost in terms of the total number of bytes exchanged be-861

tween nodes i and j during every contact opportunity, PROPHET displays a862

higher cost due to the exchange of its delivery predictability list. Due to the863

transitive property of PROPHET, the number of records in the predictabil-864

ity list of a node rapidly reaches the total number of network nodes (139,865

excluding itself). Thus, the number of bytes exchanged in both directions866

of the contact is 2,224 bytes (139 × 16 bytes), as it is shown in Table 5.867

For the CGrAnt protocol, during the message forwarding phase, 16 bytes868

are sent by i to its neighboring node j, identifying a data message m to be869

sent and the stagnation degree of i. At the same time, 29 bytes are sent870

by j to i representing node j on how well it can perform as a forwarder for871

m: including its stagnation degree, its degree centrality, its social proximity872

with the destination d of the message m stored in node i, its betweenness873

utility relative to d, and an indication (true or false) that it knows that m874

was already received by d.875

For the cost in terms of the total number of bytes stored in each node i,876

because Epidemic relies on the message replications to eventually deliver its877

messages, its storage cost is null (i.e., it is a stateless protocol). Although878

CGrAnt generates a higher storage cost compared with PROPHET and Epi-879

demic, in the worst case, that cost (11.28 KB) represents only 0.28% of the880

total capacity of a node buffer, if considering a limiting buffer size of 4 MB881

per node.882

Finally, we investigate the operational cost provided by CGrAnt when883

considering only its control messages related to the ACO ants (FAs and884

BAs) in both PoI (buffer of 4 MB and message TTL of 600 minutes) and WD885

(buffer of 10 MB and message TTL of 1, 800 minutes) scenarios. In the PoI886
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scenario, the control bytes corresponding to the FAs and BAs represent only887

0.0131±0, 0009% (communication range of 10 m) and 0.0186±0, 0002% (100888

m range) of the total bytes generated by CGrAnt (counting the bytes related889

to data messages, FAs, and BAs). In the WD scenario, the FAs and BAs890

bytes represent, respectively, 0.0194± 0, 0003% (10 m) and 0.079± 0, 0022%891

(100 m) of the total bytes generated. Nevertheless, even if accounting for the892

extra cost of these control bytes (for the FAs and BAs) in the total amount (in893

bytes) of replicated messages in the network, CGrAnt propagates fewer bytes894

in the network compared with Epidemic and PROPHET due to the high895

number of data messages replicated by the latter protocols. When compared896

with Epidemic, CGrAnt provides a reduction of 39.99± 0, 16% (in PoI with897

a 10 m range), 59.60 ± 0, 11% (PoI with a 100 m range), 83.60 ± 0, 19%898

(WD with a 10 m range), and 89.49 ± 0, 26% (WD with a 100 m range)899

in the total number of bytes generated in the network. Similarly, when900

compared with PROPHET, these reductions are 34.86± 0, 18% (PoI with 10901

m), 43.37 ± 0, 15% (PoI with 100 m), 74.59 ± 0, 34% (WD with 10 m), and902

78.57 ± 0, 56% (WD with 100 m) in total bytes generated in the network.903

Therefore, we conclude that with the smallest generated overhead, CGrAnt904

is able to choose the best message forwarders and reduce the total number905

of data bytes replicated in the network.906

It is important to highlight that the algorithmic complexity for the CGrAnt907

protocol is linear [O(n)] in the number of network nodes, as shown in Algo-908

rithm 1.909

8. Conclusions910

The importance of inferring the social behavior of nodes to efficiently911

deliver data in mobile and intermittently connected networks has motivated912

the development of the hybrid swarm intelligence-based CGrAnt protocol.913

Using a greedy version of ACO and CA, CGrAnt characterizes the utility of914

each node as a message forwarder by considering a set of social-aware met-915

rics. We performed a set of experiments to analyze the influence of selected916

metrics associated with the ACO operators and the use of different metrics to917

characterize the utility of each node as a message forwarder. Once the group918

of metrics was set, we analyzed the influence of the ACO operators and CA919

knowledge on the CGrAnt performance. Finally, we compared the perfor-920

mance of CGrAnt with the Epidemic and PROPHET protocols under varying921

networking parameters. The simulation results showed that CGrAnt outper-922
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formed PROPHET and Epidemic forwarding protocols in terms of message923

delivery (gains of 99.12% compared with PROPHET and 40.21% compared924

with Epidemic) and message replication (63.60% lower than PROPHET and925

60.84% lower than Epidemic). In addition, despite a higher storage cost com-926

pared to PROPHET and Epidemic (11.28 KB in the worst case), CGrAnt927

propagates fewer bytes in the network due to the high number of data mes-928

sages replicated by the latter protocols (a reduction of 43.37% when compared929

to PROPHET and 59.60% when compared to Epidemic). In future work, we930

intend to study in more details the adaptive capabilities of CGrAnt, when931

operating in a scenario with varying mobility conditions, i.e., from an almost932

static to a completely mobile and disconnected networking environment. For933

this work, we will investigate the self-adaptation of social-aware metrics,934

which can be combined with and applied to each CGrAnt component. Fi-935

nally, the comparison of CGrAnt performance with other related social-based936

forwarding protocols as well as the use of real data sets is such analysis will937

be also let for future works.938
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Table 1: Summary of the metrics and variables used to describe the network and CGrAnt
Network Variables

m A specific data message
s A general source node (sm: refers to the source of m)
d A general destination node (dm: the destination node of m)
i Node with a data message to be forwarded
j Neighboring node of i
n A generic node, i or j
y A generic node, j or d in a link toward d
N The total number of nodes available in the network
M The total number of data messages to be forwarded
J Set of nodes j encountered by the node i (social network of i)
Di The total number of destination nodes for which i

originated or intermediated a path
CGrAnt Variables

FA/BA A general Forward/Backward Ant
k A specific FA/BA
Km The total number of FAs generated for a message m
p A complete path with a total of |p| hops
Pm Group of paths p constructed by ants for a message m
W Event window
drn Improvement direction of a node n
Vi/Vs Inferior/Superior limits which define the

range of medium stagnation degree
CGrAnt Local Metrics

FEn,d Frequency of Encounters between n and d
DEn,d Duration of an Encounter between n and d

PTn Average Pause Time in the places visited by a node n

MSn Average Movement Speed of a node n
DCn Degree Centrality of a node n
RDi,m Relationship Degree of a node i with respect to a

specific buffered data message m
CGrAnt Global Metrics

|p| Number of hops in a complete path p
BUn,d Betweenness Utility of a node n in relation to d

CGrAnt Composite Metrics

BU i
J,d Betweenness Utility of the social network of i

in relation to a destination d
SPn,d Social Proximity between nodes n and d
Un,d Utility of a node n as a message forwarder to d
ηn,d Heuristic Function measured by SPn,d

τ(i,y),d Pheromone concentration on each link (i, y)
belonging to a path to node d

SDn Stagnation Degree of a node n

SDi
J Stagnation Degree of the social network of node i

Qpk
sm,dm

Quality of a path p (from sm to dm) constructed by FA k

CGrAnt Knowledge
Domi Domain Knowledge of node i
His i,d History Knowledge of i with respect to d
Siti,m Situational Knowledge of i with respect to m
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Algorithm 1 Pseudo-code of the CGrAnt Message Forwarding.
1: Algorithm Initialization
2: for each message m in the buffer of node i do
3: best fwdm ← ∅; {No forwarder is assigned to m}
4: end for
5: {BU , Pheromone concentration, and History knowledge are updated during the backward phase}
6: for each message m in the buffer of node i do
7: Ui,d ← Un,d; {Updating node i utility, as in Eq. 2}
8: if (best fwdm = ∅) then
9: best fwdm, d← i {Initializing the Situational Knowledge};
10: Ubest fwdm,d

← Ui,d; {Utility of the best forwarder for m}
11: end if
12: search status exploration← true;
13: search status exploitation← true;
14: {Domain Knowledge Influence}
15: if ((RDi,m 6= sm) AND (dri = 0)) {Domi = medium SDi} then
16: search status exploration← false;
17: end if
18: if ((RDi,m 6= sm) AND (dri = −1)) {Domi = low SDi} then
19: search status exploration← false;
20: search status exploitation← false;
21: end if
22: —————————————————————————
23: Message Forwarding
24: for all connections j do
25: Uj,d ← Un,d {Updating node j utility, as in Eq. 2}
26: if ((search status exploration) AND (best fwdm = i) AND (Ui,d = Uj,d)) then
27: initial exploration← true;
28: else
29: initial exploration← false;
30: end if
31: {Influence of History and Situational Knowledge}
32: if ((search status exploitation) AND (History Influence Function())) then
33: Forward m to j {History Knowledge Influence}
34: else
35: if ((initial exploration) OR (Situational Acceptance Function())) then
36: {Situational Knowledge Update}
37: best fwdm ← j;
38: Ubest fwdm,d ← Uj,d;
39: end if
40: end if
41: end for
42: end for
43: if (best fwdm 6= i) then
44: Forward m to j {Situational Knowledge Influence}
45: end if
46: History Influence Function()
47: if (BUj,d > Hisi,d) then
48: Return TRUE {drj = +1}
49: else
50: Return FALSE {drj = −1 or drj = 0}
51: end if
52: Situational Acceptance Function()
53: if (Uj,d > Siti,m) then
54: Return TRUE{Accept the solution j}
55: else
56: Return FALSE
57: end if
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Table 2: Simulation parameters.

Protocol Setting Parameters Both scenarios

Pheromone evaporation rate 0.1
CGrAnt Heuristic function {SPn,d, DCn, BUn,d, FBn}

Pheromone concentration {|p|, DCn, BUn, DCn + |p|}
Utility of a node {Heuristic, Pheromone, Heuristic+Pheromone, Heuristic + Pheromone + RDi,m}

Hop-count field (hops) 11
PInic 0.75

PROPHET γ 0.98
One time unit Unit (s) 30

ϕ 0.25
Epidemic Hop-count field (hops) 11

Protocol Communication Parameters PoI WD
Number of nodes (N) 140 339

Area (m2) 8,800 x 7,800 10,000 x 8,000
Nodes speed (m/s) [0.5,1.5] [0.8,1.4] (pedestrian), [7.0,10.0] (car and bus)
Waiting time (s) 100-200 (W1-Z1), 4000-5000 (W2-Z2) 300-500 (H), 10-30 (bus)

Traffic generation rate (s) 50-90 100-150
All Message TTL (min) {300, 600, 900, 1200, 1500, 1800, 2100} {300, 600, 900, 1200, 1500, 1800, 2100}

Nodes buffer (MB) {4, 6, 8, 10, 12, 14, 16} {4, 6, 8, 10, 12, 14, 16}
Simulation time (s) 800,000
Warm up period (s) 5,000

Communication range (m) 10 (Bluetooth Devices), 100 (WiFi Devices)
Transmission rate (Mbps) 2 (Bluetooth Devices), 10 (WiFi Devices)

Number of simulations 30

Table 3: Additive Analysis of the CGrAnt’s Components

Configuration (PoI ‖ WD) Message Delivery % (PoI ‖ WD) Message Redundancy

1. Heuristic Function 46.26± 0.18 ‖ 53.38± 0.60 18.36± 0.08 ‖ 85.87± 0.94
2. Pheromone Concentration + RD 48.61± 0.20 ‖ 54.97± 0.61 15.97± 0.08 ‖ 68.62± 0.96
3. Domain Knowledge 1 49.40± 0.21 ‖ 64.26± 0.63 15.11± 0.09 ‖ 43.18± 0.41
4. Situational Knowledge 56.70± 0.27 ‖ 61.04± 0.68 6.86± 0.04 ‖ 10.87± 0.11
5. History Knowledge 58.93± 0.19 ‖ 63.70± 0.69 10.37± 0.05 ‖ 19.04± 0.16
6. Domain Knowledge 2 58.93± 0.19 ‖ 63.19± 0.72 10.37± 0.05 ‖ 12.43± 0.12

Table 4: Eliminatory Analysis of the CGrAnt’s Components

CGrAnt (PoI ‖ WD) Message Delivery % (PoI ‖ WD) Message Redundancy

All components 58.93± 0.19 ‖ 63.19± 0.72 10.37± 0.05 ‖ 12.43± 0.12
Without Domain Knowledge 57.90± 0.22 ‖ 62.30± 0.67 10.45± 0.04 ‖ 23.90± 0, 28
Without Situational Knowledge 53.54± 0.22 ‖ 64.23± 0.64 15.74± 0.07 ‖ 43.32± 0, 43
Without History Knowledge 56.70± 0.27 ‖ 61.04± 0.68 6.86± 0.04 ‖ 10.87± 0.11
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Figure 6: Protocols’ performance over different buffer sizes - PoI scenario.
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Figure 7: Protocols’ performance over different message TTLs - PoI scenario.
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Figure 8: Message Delivery Ratio over Different Simulation Time.
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Table 5: Storage cost over different simulation time

Protocols/ Registers/Bytes Registers/Bytes Registers/Bytes Registers/Bytes Registers/Bytes Registers/Bytes Registers/Bytes
Simulation Time

(100k sec.) (200k sec.) (300k sec.) (400k sec.) (500k sec.) (600k sec.) (700k sec.)

CGrAnt
FEi,d 93.97/1,127.65 116.01/1,392.17 126.73/1,520.74 131.67/1,580.06 134.79/1,617.43 136.51/1,638.17 137.54/1,650.51
DEi,d 93.97/2,255.31 116.01/2,784 126.73/3,041.49 131.67/3,160.11 134.79/3,234.86 136.51/3,276.34 137.54/3,301.03
DCi 2/16 2/16 2/16 2/16 2/16 2/16 2/16

PTi and MSi 2/16 2/16 2/16 2/16 2/16 2/16 2/16
SDj 90.82/1,453.14 116.01/1,856.23 126.73/2,027.66 131.67/2,106.74 134.79/2,156.57 136.51/2,184.23 137.54/2,200.69
Ubest fwdm

22.55/360.8 43.64/698.29 62.99/1,007.89 81.72/1,307.54 98.99/1,583.77 115.63/1,850.06 131.94/2,111.09
Pheromone Table 9.56/229.54 17.76/426.34 23.94/574.63 28.76/690.17 32.56/781.54 35.96/862.97 38.74/929.66
BUi,d 8.58/102.94 16.1/193.2 22.04/264.43 26.76/321.09 30.54/366.51 33.88/406.54 36.74/440.91
BU i

J,d 9.56/153.03 17.76/284.23 23.94/383.09 28.76/460.11 32.56/521.03 35.96/575.31 38.74/619.77

PROPHET
Delivery Predictability 139/2,224 139/2,224 139/2,224 139/2,224 139/2,224 139/2,224 139/2,224
List
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