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Design and Analysis of an Efficient
Friend-to-Friend Content Dissemination System

Kanchana Thilakarathna,∗ Aline Carneiro Viana,† Aruna Seneviratne,∗ Henrik Petander∗

Abstract—Opportunistic communication, off-loading and decentrlaized distribution have been proposed as a means of cost efficient
disseminating content when users are geographically clustered into communities. Despite its promise, none of the proposed systems
have not been widely adopted due to unbounded high content delivery latency, security and privacy concerns. This paper, presents a
novel hybrid content storage and distribution system addressing the trust and privacy concerns of users, lowering the cost of content
distribution and storage, and shows how they can be combined uniquely to develop mobile social networking services. The system
exploit the fact that users will trust their friends, and by replicating content on friends’ devices who are likely to consume that content it
will be possible to disseminate it to other friends when connected to low cost networks. The paper provides a formal definition of this
content replication problem, and show that it is NP hard. Then, it presents a community based greedy heuristic algorithm with novel
dynamic centrality metrics that replicates the content on a minimum number of friends’ devices, to maximize availability. Then using
both real world and synthetic datasets, the effectiveness of the proposed scheme is demonstrated. The practicality of the the proposed
system, is demonstrated through an implementation on Android smartphones.

Index Terms—Opportunistic Content Dissemination; User Generated Content Sharing; Mobile Social Networking; Dynamic Centrality
Metrics
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1 INTRODUCTION

The past few years have seen a rapid growth in the use
of free social networking applications such as Facebook,
Twitter and Google+. In addition, other centralized
content hosting services that support the distribution
of user generated content (UGC) such as YouTube and
Flickr are also becoming widely used. The UGC that
is shared through these services are increasingly being
generated and consumed by users using their mobile
devices, necessitating the transfer of content between
mobile devices and the content hosts [8]. This will impact
the users as well as the mobile operators as it will (a)
exacerbate congestion of the mobile networks [8] and
(b) make the problems associated with privacy and data
ownership even more acute. As the service providers
will not only have full control of the user data [5], but
have access to more private information that are available
through the mobile devices, such as location.

There have been numerous proposals for dealing with
increasing mobile data traffic by taking advantage of
ubiquitous availability of mobile devices and access to
different types networks [2], [13], [25], [40]. Majority of the
proposals for using mobile devices exploit the possibility
of using short-range communication to communicate
with each other when they are in close proximity, i.e.
opportunistic communication [2], [13]. The proposals that
exploit the availability of different type of networks,
transfer data through the least congested and/or cheapest
network whenever possible, i.e. offloading. In doing so,
both solutions attempt to lower the congestion in any
given network and minimize the cost.
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Despite offering additional advantages for mobile users,
such as providing connectivity when there is no direct
access to a network [23], opportunistic communication
solutions have not seen wide spread adoption, primarily
for two reasons. Firstly, due to the inherent reluctance
by users to interact with strangers or third parties,
despite security and privacy concerns are being partially
addressed by the use of encryption. Secondly, due to the
unbounded latencies of data transport.

In contrast, offloading offer a generic solution for
reducing congestion in a given network. Offloading
between cellular and WLANs have been adopted by
a number of operators. However, they still suffer from
the lack of universal availability of WLANs provided by
the same cellular network operator and the time taken
for authentication. Importantly, neither of these solutions
directly address loss of control of data and privacy.

There is a separate body of work that address the
issues of loss of control of data and privacy. These works
have led to the development of distributed decentralized
storage and delivery, especially for social networking
applications [10], [14], [32], [35]. In decentralized storage
and delivery systems, individual users or a community of
users host their data, thus providing the users full control
and preventing third parties mining private information.
However, these systems lead to increase in data traffic,
as they require the replication of user data on distributed
servers [40], and increases the cost and complexity for
the user as they have to manage the hosting of data.

In this paper, we propose a new hybrid content storage
and distribution system for user generated content (UGC).
Despite the obviousness of developing the a hybrid
scheme, that exploits the advantages of opportunistic net-
works, offloading and decentralized storage and delivery,
to date such a scheme has not yet been proposed again
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due to two primary reasons. First, because of the high
communication and energy cost of decentralized content
storage and distribution for mobile systems. Second,
due to the inability of guaranteeing delivery latencies
in opportunistic networks. In this paper, we address
these two fundamental limitations by 1) exploiting the
possibility of content replication, (2) considering initial
encounter time and duration of users’ encounters, and
(3) utilizing existing social networking services for oppor-
tunistic dissemination. The proposed solution creates a
distributed decentralized storage system with intelligent
content replication, which reduces mobile data traffic and
provides the users full control at minimal cost which can
be used to provide mobile social networking services.

The paper makes the following contributions;
• Presents a hybrid content dissemination system for

mobile social networks, which takes advantage of
trusted social networking friends.

• Provides a formal definition of content replication,
which maximizes content availability and minimizes
replication and shows this to be NP-hard.

• Presents a community based greedy algorithm for
efficient content replication by taking advantage of
routine behavioral patterns of mobile users.

• Proposes dynamic centrality metrics to identify
the most influential users within communities to
minimize the content replication and delivery delay.

• Shows that it is possible to provide delivery success
rates of 80% with less than 10% replication, through
extensive data driven simulations using both real
world and synthetic datasets.

• Demonstrates the practicality of the proposed hybrid
content dissemination through the implementation
of the system on Android smartphones.

The remainder of the paper is organized as follows:
Section 2 presents the related work. The formalization of
the problem of content replication is presented in Section
3 and the overview of the proposed system is presented in
Section 4. Section 6 presents the dynamic centrality met-
rics and community based content replication algorithm.
Section 7 evaluates the performance of proposed metrics
and content replication algorithm followed by details
of the implementation of the system on real devices in
Section 8. Finally, Section 9 concludes the paper.

2 RELATED WORK

There is a vast body of work in mobile content storage and
distribution. The work related to this paper can be broadly
categorized into three areas, namely social networks,
opportunistic content dissemination and hybrid content
dissemination using decentralized storage.

2.1 Social Networks using Decentralized Storage

These systems address the issue of user privacy and loss
of control of data, by enabling users to host their own
data. Diaspora [14] was one of the only widely used
social networking system using distributed storage. To

host data, Diaspora users need to set up their own server.
If a user’s mobile device is used to host the content, either
the availability of the content has to be compromized or
the user will incur increased communications costs [40]. If
a cloud based hosting solution is used, the users will incur
the costs of uploading/downloading, and will increase
the traffic on the network as well as the cost of hosting.
Safebook [10] is based on the concept of decentralization
and collaboration among friends to create a secure social
network. Similar to our system, friends are assumed to
be cooperative and their devices are used for storage to
increase availability. SuperNova [35] is another recently
proposed decentralized social networking system that
uses content/profile replication. The idea is to increase
the online availability of content, by using a super-peer
based network of volunteer agents. In both systems, to
increase the availability of content, the number of replicas
of data need to be increased, which leads to increased
communication costs and energy consumption when used
with mobile devices.

Tribler [32] is a peer-to-peer file sharing system, where
peers are clustered into social groups and replicate their
contextual information. Although there are similarities
to our solution, Tribler does not consider methods to
increase the availability of the content or minimize
communication costs. Sharma et al. [36], similar to the
proposed scheme, presents a friend-to-friend content
replication strategy to ensure minimal replication and
maximal availability. Again it leads to increased com-
munication costs and energy consumption when used
with mobile devices. A erasure coding based friend-to-
friend storage system is proposed in [12]. The coding
based redundancy techniques are generally not suitable
for social networking content due to their smaller size
and frequency of access as discussed in [35].

2.2 Opportunistic Content Dissemination and De-
centralized Storage
There has been considerable work on opportunistic
routing protocols [17]. However, this work is concerned
with the routing of information between the source and
destination. As the focus of this paper is efficient content
storage and distribution, opportunistic routing schemes
are not considered in this section.

There have been a number studies that investigate
the possibility of improving the content delivery latency
using social behavioral patterns of users. In [31], the
authors have analysed the effectiveness of temporal
communities in storage and dissemination of content
opportunistically. As expected, the results show that
the users in contact with a large number of users that
are mobile, are mostly effective in opportunistic content
dissemination. In [3], [29], the authors attempt to predict
users future contact patterns and use them as “content
transporters”. However, only using such users is likely to
increase delivery delays. Reich et al. [33] study the effects
of user impatience in content dissemination, when content
is disseminated only when two users meet other. In this
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paper, we investigate effectiveness of generic content
dissemination and show that it is inefficient when the
number of consumers is lower. Then, we propose how
these temporal communities can be leveraged to minimize
the delivery delays.

In [27], [37], the authors present a social community
based cooperative content caching and retrieval schemes.
It is aimed at minimising the cost of content distribution
to users with common interests that are physically co-
located by introducing the notion of ”familiar strangers”.
Yungki et al. [26] propose a continuity-aware cooperator
detection method for an ambient monitoring system
again based on the historical contact patterns of users.
All these cooperative content storage and dissemination
methods, do not address the trust, security and privacy
issues, requires users to interact with strangers. GameOn
[46] is another recently proposed solution for peer-to-
peer mobile gaming platform for the passengers in
public transport. Although the proposed concepts can
be applicable to other application scenarios, it is not
applicable to disseminating content to a group of user
who are not always in the vicinity of each other as
proposed in this paper.

2.3 Hybrid Content Dissemination and Decentral-
ized Storage

There have been many proposals of which make use of
the networking infrastructure to replicate content in a
selected set of users. Han et al. [13] proposed the use of a
target set users for content replication and opportunistic
communication for content propagation. The focus of
this work is on the dissemination of data to and from
a centralized data store. Thus, it does not address the
privacy and trust issues of users as they are again required
to interact with strangers.

Ioannidis et al. [18] proposed a distributed caching
mechanism for the purpose of social welfare where users
cache content downloaded through the networking infras-
tructure. However, the solution is not for sharing UGC.
Similarly, Whitebeck et al. [45] proposed a hybrid content
delivery system with a control loop through which users
send acknowledgements of delivery to a central service
provider. Even though this has been proposed for general
mobile users, the main focus and simulation results are
for a vehicular network. VIP delegation [2] replicates data
on a few “socially important” users in a mobile network.
Moreover, none of the proposals again consider the trust
and privacy of the users and consider the dynamic aspects
of contact time. Microcast [21] is another hybrid scheme
that allows group of users to reduce their cellular network
usage when downloading the same content at the same
time. Each phone in the vicinity downloads different
parts of the same content and then the pieces of content
will be shared locally. Microcast is designed for the case
where all users want the file at the same time and all
users are at the same location, which can not be used for
disseminating content among a group of users.

TABLE 1
Content creation and access model.

Content creation model

Amount per week 142MB [8]
File Size Gamma(scale=2,mean=4MB) [1]
Inter-arrival time Exponential (mean=3.5 hrs) [25]

Content access model

No. of consumers Pareto Type II (80-10 rule) [44]
Consumer location Random distribution
Transfer rate 2 Mbps [25]
Delivery deadline 3 days

MobiTribe [40], [41] presents a hybrid content sharing
overlay for existing centralized social networking services.
MobiTribe provides the user more control over their own
data leveraging distributed storage on social networking
friends rather than the centralized service providers. In
[41], it does not consider geographical proximity of the
friends to deliver content locally.

3 MOTIVATION

We investigate the effectiveness of opportunistic commu-
nication for sharing UGC, when only interactions among
a content creator and an interested set of consumers are
considered, assuming that there is only one content creator.
This highlights the benefits of initial content replication
and formally define the problem of content replication.

3.1 Evaluation setup
Real-world Dartmouth campus dataset [24] that consists
of two months of data from January to March 2004 with
contact patterns of 1146 users are used. We consider two
users to be in contact with each other when they are
connected to the same WiFi access point, as described
in [4]. As the dataset only describes mobility of users,
to simulate opportunistic dissemination, we assign the
users content creation and content access patterns which
are summarized in TABLE 1.

Content creation model: We assume that each user in
the dataset generates content over two months. Cisco
has predicted that an average smartphone will consume
2.6GB of data per month by 2016 [8]. Though the amount
of UGC is predicted to increase, the ratio between upload
and download is expected to be 25% to 75% [8]. Similarly,
we assume that the average smartphone user generates
142MB per week, considering 25% of 2.6GB is evenly
distributed among 30 days. The inter-content generation-
time, or the inter-arrival-time of content is reported to be
exponentially distributed [25] and therefore these 142MB
of content items are assumed to be distributed throughout
the week with a mean inter-arrival-time of 3.5 hours. The
size of generated content is characterized by a Gamma
distribution with 4MB mean as described in [1].

Content access model: The consumers are randomly
selected among the total user population of the dataset.
Hence, the locations of the consumers are also randomly
distributed according to their geographic coordinates.
As content popularity is reported to be follow a Pareto
distribution [1], and degree distribution in Facebook
follow power-law distribution [44], we assume that the
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Fig. 1. Effectiveness of opportunistic communication in content dissemination.

number of consumers can also be modelled by a Pareto
distribution. Therefore, the number of consumers are
selected using Pareto distribution where 80% of content
requests accounts for 10% of contents. If one of the friends
is allowed to re-share it will be considered as a newly
generated content.

Opportunistic dissemination model: Since WLANs is
the most pervasive network for opportunistic commu-
nication, we consider a practical data transfer rate of
2Mbps [25]. Further, we take content delivery deadline
to be 3 days, to evaluate the best case scenario in terms
of delivery success rate. In fact, 50% of Facebook users
login every day1 indicating that delivery delay should
be less than 1 day for at least 50% of the users. It is
further assumed that (1) no initial content replication is
performed and (2) the consumers are collaborative and
once content is downloaded, they unconditionally share
it with consumers nearby. We assume that the content is
disseminated when a user carrying content (an infected
user) meets a user who does not have the content (an
uninfected user), similar to epidemic dissemination, with
unlimited bandwidth and infinite buffers.

3.2 Effectiveness of opportunistic dissemination

If content can be opportunistically disseminated from a
creator to a consumer before 3 days, it is considered to be
a successful delivery otherwise a failure. The main factor
that affects the delivery rate is the number of consumers
as shown in Fig. 1a. For a large consumer population,
the delivery rate is almost 100% as there are enough
consumers. However, the number of consumers are often
low in social networking, e.g. mean number of friends per
user in Facebook is approximately 100 [44], which makes
the successful delivery rate very low. As can be seen in
Fig. 1b, the delivery rate is zero for approximately 84%
of content. Fig. 1c shows the content delivery delay from
the time of creation. The probability of mean delivery
delay being less than 1 day is ∼60%.

The results show that using opportunistic communi-
cation, without initial content replication, is ineffective
when the number of consumers is less than 150. Further-
more, due to the power-low distribution, majority of the
groups contain a very low number of consumers. In such
cases, it is possible to increase the number of seed nodes

1. http://blog.kissmetrics.com/facebook-statistics/
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Fig. 2. Overview of the proposed concept of hybrid content
replication and dissemination.

distributing the content to selected set of consumers using
pre-existing communication infrastructure. Thus, there
is an obvious trade-off between delivery performance
and content replication overhead, and the challenge is
to maximize the content delivery rate with limited content
replication.

4 THE SYSTEM ARCHITECTURE

The proposed system takes advantage of low-cost net-
work connectivity among wirelessly connected friends,
and the storage and processing power of mobile devices
to address the aforementioned problem of maximising
the content delivery rate with limited content replication.
The use of a lowest cost network is dependent on the
location of the source and destination devices. It has
been observed in the literature that people have strong
correlation between friendship and user mobility [6], [7].
If they are within the communication range of each other,
opportunistic dissemination could be used. If not, the
available lowest-cost infrastructure communication, e.g.
off-peak cellular, could be used. The system exploits the
availability of these hierarchical heterogenous networks
to disseminate content depending on their location as
shown in Fig. 2.

Consider the case where a creator wants to share
content with a set of users who have previously been
identified as friends through a social networking service
(e.g. Facebook). Assume that potential consumers among
these friends can be predicted based on their history of
content consumption patterns. Then, we can propagate
the content only to these consumers and let other friends to
fetch the content from the creator or one of the consumers.
If this predictive pushing and fetching can be scheduled
to use low-cost networks depending on the location of the
users (Fig. 2), it will help to minimize the communication



5

Existing Social 
Network Services

Content 

Management Management 

Available lowest cost  
networking path 

User 1 User 2 

Fig. 3. Rely on existing services for advertising content.

costs and energy usage. Moreover, predictive pushing
reduces the number of redundant transfers and reduces
the storage costs of the mobile devices. We contend that
despite it is difficult to predict the content consumption
of a user with a high degree of accuracy, a low prediction
accuracy will still generate a significant impact because
of the increase in content availability due to content
replication on the consumers.

If opportunistic communication are used for dissemi-
nating content, the main challenge is guaranteeing the
timeliness of delivery. The delivery time can be reduced
by replicating the content on carefully selected consumers,
namely helpers, as shown in Fig. 2. The viability of the
proposed system depends on the selection of helpers and
minimization of replication. We consider that a central
entity selects the helpers based on the users’ connectivity
information, as described in Section 6. Since helpers are
only selected from the friends, the privacy of the users
is better preserved. As shown in Fig. 2, initial content
replication is carried out by pre-existing networking
infrastructure and/or opportunistic communication.

For content dissemination among the users, a modified
version of BitTorrent peer-to-peer (P2P) protocol is used.
In particular, a consumer becomes a propagator only after
the consumer has completely downloaded the content.
This ensures a user can first download the full content
for its own use before helping others.

4.1 Leveraging on existing social network services

The idea is to decouple the distribution of shared notifi-
cation from the actual content transfer as shown in Fig. 3.
The proposed system will be developed to a mobile app
(application), namely Yalut, as an overlay service that
runs on top of the existing social networking services.
The app requires the read and write permissions to social
networking feeds of the particular service, e.g. Facebook,
if the user want to send shared notification through that
particular service, e.g. Facebook.
Content sharing. When a creator selects to share a content
item, the Yalut app advertises the shared notification on
the selected social networking service using the available
lowest-cost networking infrastructure and the friends of
the creator will be notified. The Yalut app will not upload
the actual content to the social networking service. At
each device, the Yalut app monitors the social networking
feeds in the background and identifies the content that
the user is likely to be consumed based on the history
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Fig. 4. Periodic weekly helper selection.

TABLE 2
Summary of symbols for content replication.

Symbol Description

c content creator
u, v users
V set of users
Gt dynamic contact graph at time t
Et set of edges at time t
e an edge in Et

∆ delivery deadline
Pt set of propagators at time t
α(u) minimum contact duration required for user u

to receive full content from content propagators
σ(c) consumers covered only by the creator c
H(c) set of selected helpers for the creator c
λ(c) limit of helpers for the creator c

of content access patterns. This allows the Yalut service
to identify the potential consumers.
Content downloading. Once the potential consumers are
identified, the content will be initially replicated on to
the helpers either a pre-existing networking infrastructure
or opportunistic communication as stated earlier. Then,
the Yalut app rely on helpers to disseminate the content
opportunistically to all other consumers.

We have successfully integrated the Yalut app with the
most popular existing services, e.g. Facebook, Google+
and Twitter, on Android devices. Section 8 provides
further details of the practical implementation and the
developed Yalut app is available on the Google Play Store.

4.2 User Privacy and Incentives
Content sharing with friends inherently reduces the
privacy of the user through direct and indirect channels
[9]. Thus, it is impossible to develop a system that fully
guarantees privacy and confidentiality of users. Our aim
is to minimize loss of privacy and confidentiality threats.

In general, content replication compromises privacy.
The aim is to minimize privacy leakage by using trusted
social networking friends, keeping data away from the
centralized hosts and not propagating content through
strangers. In addition to the privacy preservation, the
reduction of users cellular data usage can also be con-
sidered as an incentive to use the system. We believe
that this is sufficient for users to collaborate with their
friends for the benefit of the community of friends as a
whole. In addition, it is possible to incorporate a credit
scheme where helpers accumulates credits in return for
propagating others content, as proposed in [34].

5 PROBLEM FORMULATION

The effectiveness of the proposed system in terms of
content delivery latency and delivery success rate depend
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on the selection of helpers and the minimization of helpers.
Therefore, we first formally define the content replica-
tion problem and followed by the content replication
algorithms.

5.1 Formal Definition of Content Replication
Consider a dynamic contact graph Gt = (V,Et), where
V is a set of users and Et is an edge set at time slot
t ∈ (1, 2, · · · , n). An edge e ∈ Et exists among two users,
if they are within the communication range at time t.
Without loss of generality, the length of each time slot is
considered as one unit, which represents the minimum
duration in which there is no change in the topology.
Suppose a creator c ∈ V wants to share content via
a mobile social networking application, i.e. consumers,
in V \ c. A consumers is covered if it receives the full
content within the content delivery deadline of ∆ time
slots. Consumers are assumed to be collaborative and they
become content propagators only after being covered. Let
α(u) be the minimum total contact duration required by
a consumer u to receive the full content from propagators.
We denote Pt ∈ V as the set of propagators at time t. When
there is no initial replication, P1 = c. Then, if a user u
has to receive the full content, the aggregated contact
duration of u with propagators should be greater than
α(u),

i.e.
∆∑
t=1

I((u, v) ∈ Et for some v ∈ Pt) ≥ α(u), (1)

where the indicator function,

I(statement) =

{
1 if statement = true
0 otherwise (2)

Hence, the set of consumers covered by a creator c is:

σ(c) =

{
u ∈ V :

∆∑
t=1

I((u, v) ∈ Et for some v ∈ Pt) ≥ α(u)

}
(3)

Consider a set of helpers H(c) ∈ V for a creator c. Thus,
the creator and the helpers are the initial set of propagators,
P1 = H(c)∪c. The objective is to cover all consumers with
minimum number λ(c) of helpers. Then, our CONTENT
REPLICATION (CR) problem is to minimize the cardinality
of the set P1 such that it covers all consumers in V ,
formally;

Minimize |P1|
subject to σ(c) = V \ P1

(4)

Here, we show that the CR problem is computationally
NP-Hard even for a simple instance of a static social
graph, where Et = E ∀ t and α(u) = 1 ∀ u ∈ V , i.e. the
full content can be transferred in a single contact. This
is similar to best case scenario where there is unlimited
bandwidth and zero bit error rates.

Theorem 1. CR is NP-Hard even when Et = E ∀ t and
α(u) = 1 ∀ u ∈ V .

Proof: We show that minimum dominating set is poly-
nomial time reducible to CR problem. Let G′′ = (V ′′, E′′)

be an undirected graph. A dominating set of the graph G′′

is a D ⊆ V ′′ such that every vertex u′′ /∈ D is adjacent
to at least one member of D. The dominating number
γ(G′′) is the cardinality of the smallest dominating set.
For a given positive integer k, the decision problem of
whether there exist a γ(G′′) ≤ k is one of the well-known
NP-Complete problems [20].

Recall the dynamic contact graph Gt = (V,Et). Since
we assume that Et = E ∀ t, Gt becomes a static
undirected contact graph G = (V,E). In addition, α(u) =
1 ∀ u ∈ V makes that a vertex u can be covered if there
is at least one edge to the set of initial propagators in P1.
Then, the decision problem of CR is to find whether there
is a set of initial propagators P1 of size at most |P1| = k
which covers maximum number of consumers σ(c). The
coverage is maximized only when |σ(c)| = |V \ P1|, i.e
P1 has to be a minimum dominating set of size k.

This follows immediately that if there is a solution to
the decision problem of CR, there should be a solution to
the minimum dominating set problem. Since the decision
problem of the minimum dominating set is NP-Complete,
the hardness of the optimisation problem of CR becomes
NP-Hard.

6 REPLICATION ALGORITHMS

The probability of using users encounters is highly
dependent on their social behavior. Hence, there is a
diurnal correlation of opportunistic encounters among
users. These patterns have been extensively analyzed [2].
Usually, social behavior of the majority of users have
weekly routines. Further, there is higher probability that
a user meets the same people at the same day and time
in every week. This predictive regularity of encounter
patterns can be leveraged of efficient content replication.
In order to allow instant content dissemination, helpers
can be selected in advance: i.e., helpers for the week k+1
can to be selected during the week k, as shown in Fig. 4.

Consider the week (∆k) is divided into ∆ time slots,
where the ∆ is the content delivery deadline. Since
when a creator c is going to generate a content during
the week k + 1 is unknown, we select several sets of
helpers for week k + 1 during the week k as Hk+1(c) ={
Hj

k(c) : u ∈ V and j ∈ [1 : ∆k/∆]
}

. At the end of every
week, the central management entity performs helper
selection and informs all creators the prospective sets of
helpers. A creator will be assigned a new set of helpers only
if they change their behavioral patterns significantly.

6.1 Greedy Helper Selection Algorithm
We utilize a greedy algorithm GREEDY-HELPERS for
content replication (CR). The most influential user in the
network is the one who has contact with the maximum
number of consumers, i.e. has max|σ(·)|, which can be
intuitively used as a greedy choice property.

Algorithm 1 presents the naive greedy algorithm to
select a set of helpers H(c) for the creator c. D is the set of
consumers covered by the creator and the selected helpers.
After calculating σ(u) for all u ∈ V , i.e. line 3, D will
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TABLE 3
Summary of symbols for dynamic centrality metrics.

Symbol Description

D set of consumers covered by c and
the selected helpers H(c)

αt
u,v contact duration between u, v at time t
G aggregated weighted graph of Gt∀t with

αt
u,v as edge weights

E total set of edges ∀t
N(u) set of neighbours of u
CLD(u) local metric: |N(u)|
I(u, v) initial contact time for u, v for a given ∆
D(u, v) aggregated contact duration for u, v over ∆
w(u, v) weight of edge (u,v) equal to

I(u, v) + (1/D(u, v))

CLID(u) local improved metric: |N(u)| + |N(u)|∑
v∈N(u) wu,v

p(u, v) binary parameter for the existence of
path between u and v

G′(V ′, E′) directed aggregated contact graph
CGP (u) global metric:

∑
v∈V p(u, v)

sp(u, v) shortest path between u and v
in terms of w(u, v)

CGIP (u) global improved metric:∑
v∈V ′ p(u, v) +

∑
v∈V ′ p(u,v)∑
v∈V ′ sp(u,v)

com(u) set of users in u’s community

be equal to the set of consumers covered by the creator
σ(c) (i.e. line 4) and the helper set H(c) will be equaled to
the creator c (i.e. line 5). Then, we loop through until we
cover all devices or reach the threshold of replication λ(c)
while selecting the consumer with highest |σ(u)| from the
remaining consumers.

Algorithm 1 GREEDY-HELPERS(Gt,∆, λ, c)

1. D ← H(c)← ∅
2. for all u ∈ V do
3. Find σ(u)
4. D ← σ(c)
5. H(c)← c
6. while |H(c)| ≤ λ(c) or D 6= V do
7. Let u ∈ (V \ (H(c) ∪D)) maximizing |σ(u)|
8. H(c)← u
9. D ← D ∪ σ(u)

10. return H(c)

This set-covering flavoured solution has considerably
high level of approximation factor. Kempe et al. [22]
shows that this type of greedy algorithm is (1− 1/e) ap-
proximation, where e is the base of the natural algorithm.
Even though, this provides an acceptable approximation
algorithm for CR problem, finding σ(u) for all u ∈ V
is computationally too complex in a dynamic network
under resource constraints. In our previous work [42],
we proposed computationally simple dynamic centrality
metrics that exploit the temporal and spatial regularity of
social wireless connectivity patterns. This paper extend
this work and present a much deeper analysis.

6.2 Dynamic Centrality Metrics
As the first step, we aggregate every contact at a single
graph without loosing any temporal information. Let an
aggregated weighted graph G = (V,E) consists of all
edges in Gt, ∀t ∈ (1, 2, · · · , n) such that G = G1 ∪ G2 ∪

· · · ∪Gn and αt
u,v be the edge weights at time t of each

e ∈ Et. αt
u,v is the contact duration between the two users

u and v at time t. For instance, if ∃ (u, v, α1
u,v = 20) ∈ E1

and (u, v, α2
u,v = 30) ∈ E2, there are two edges in E

connecting u and v with the contact duration of 20 and
30 seconds at t = 1 and t = 2. Then, we focus on centrality
metrics in G, which provides better approximations for
σ(·), i.e. expected number of covered consumers.

Hereafter, we propose two types of centrality metrics:
local and global. Local metrics consider the information
available locally (i.e. one-hop away) to decide the in-
fluence of the user. In addition to its simplicity and
distributed calculation, the privacy of the users is well
preserved: The users only send aggregated values to the
central entity. In contrast, global metrics consider the
whole network topology to decide the centrality of the
user, which is more complex and needs to be carried out
in a central location.
6.2.1 Local metrics
One of the simplest centrality metric that implies the
capability of neighbourhood coverage is the degree
centrality CLD(u) = |N(u)| where N(u) is the set of
neighbours of u in the aggregated graph G. Degree
centrality identifies popular nodes in the network and
thus, has higher influence on content propagation.

Nevertheless, simple degree centrality does not guaran-
tee that all counted encounters are useful for propagations
of content due to the lack of consideration of temporal
information. Further, the contacts that happen early
are important in propagation than those that happen
later. Hence, a centrality metric which captures temporal
information could be more realistic to be considered in dy-
namic networks. To this end, we define the initial contact
time as I(u, v) = min{t} : αt

u,v > 0 for all t ≤ ∆ and the
total contact duration D(u, v) =

∑∆
t=1 α

t
u,v for an edge

(u, v). We calculate the weight wu,v = I(u, v)+(1/D(u, v))
for all (u, v) ∈ E. wu,v has the meaning of earliness and
solidity of the contact (u, v). In practice, each mobile
device can calculate w locally for all other devices it
encounters for a given period. To this end, we define an
improved dynamic degree centrality metric:

CLID(u) = |N(u)|+ |N(u)|∑
v∈N(u) wu,v

N(u) is the set of neighbours of u. CLID describes how
early and how independently the user makes other users
into content propagators. We aim to use CLID as a greedy
choice property for CR problem.

6.2.2 Global metrics
Even though centralized systems have disadvantages in
terms of privacy and scalability, we make use of the
global information to perform more accurate heuristics.
Here, we define two path-based centrality metrics for
node ranking. We first define a naive simple metric
CGP (u) =

∑
v∈V p(u, v) for all t ≤ ∆ where p(u, v) = 1

if there is a path between u and v and p(u, v) = 0
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otherwise. This can be viewed as an extended degree for
node u giving heuristics about the popularity and the
availability of the node. Simplicity of the metric is the
main advantage, which requires only information about
existence of a path. This metric is motivated by the fact
that nodes information beyond one-hop contacts, i.e., k-
vicinity knowledge, has been shown to be a key ingredient
to improve opportunistic network forwarding [30].

As simplicity does not provide accurate heuristics,
we define an improved dynamic centrality metric by
considering temporal information such as the contact
duration D(u, v) and the initial contact time I(u, v). We
construct a directed aggregated graph G′ = (V ′, E′) by
directing all edges in G for both directions with same
weights. Next, we prune all unrealizable edges in the
network, i.e. if a content is to be propagated via a node,
its outgoing contact has to take place after at least its first
incoming contact. At this point, we have an aggregated
graph and at each node there is a guarantee that content
will be propagated to other nodes if the content has
arrived at the node. We calculate shortest-path sp(u, v)
for all node pairs (u, v) ∈ V ′ in terms of edge weights
wu,v = I(u, v) + (1/D(u, v)). We define a path-based
dynamic centrality metric CGIP , similar to CLID, such
that it implies how early and how independently the
user makes other content propagators as,

CGIP (u) =
∑
v∈V ′

p(u, v) +

∑
v∈V ′ p(u, v)∑
v∈V ′ sp(u, v)

6.3 Community based Greedy Algorithm

This algorithm combines social sub-structural properties
such as communities with previously defined dynamic
centrality metrics.

Algorithm 2 COMMUNITY-GREEDY(G,G′,∆, λ, c)

1. D ← H(c)← ∅
2. for all u ∈ V do
3. Find centrality metric

CLD(u), CLID(u), CGP (u), CGIP (u)
4. communities ← k-clique-algorithm(G′, 3)
5. Let a community com(u) be the u’s community
6. D ← com(c)
7. H(c)← c
8. while |H(c)| ≤ λ(c) or D 6= V do
9. Let u ∈ (V \ (D ∪H(c)))

maximizing CLD(u), CLID(u), CGP (u), CGIP (u)
10. H(c)← u
11. D ← D ∪ com(u)

12. return H(c)

For this we detect communities using k-clique community
algorithm. Then, we distribute helpers among commu-
nities based on their ranking given by the proposed
dynamic centrality metrics as in Algorithm 2. First, the
consumer with highest centrality value is selected as a
helper and rely on that helper to propagate the content
within the community. Then, the next highest consumer
from a different community is selected, i.e. line 9 of
the Algorithm 2. If the threshold of replication λ(c) is
lower than the number of communities, initial content

propagators will not be selected from the creator’s com-
munity, assuming that the creator is capable to propagate
the content within its community. If the majority of the
consumers do not belong to communities, the selection is
purely based on the centrality value of consumers.

It is expected that the selected helpers will become
quasi-static over the time due to the regular behavior of
people [11]. Hence, the helper calculation will be carried
out only for users who have changed their behavioral
pattern. In practice, the number of users of the service
increases incrementally and as a result helpers will only
need to be calculated for newly added users. Therefore,
we believe that the helper selection algorithm will scale
with the increasing number of users.

7 PERFORMANCE EVALUATION
7.1 Datasets
Two real-world datasets and three synthetic datasets
that represent different user environments are used in
the evaluation. A summary of basic information of the
datasets used are presented in Table 4.

Dartmouth: The dataset [24] contains SNMP logs from
the WiFi access points within the Dartmouth College
campus during January to March 2004. When two users
are connected to the same WiFi access point, we consider
that the two users can exchange information as described
in [4]. There are 1138 users whom in contact with
approximately 12 other users per week.

USC: This dataset [19] contains connectivity patterns of
users in a campus environment at the University of South-
ern California during a 8 week period between April to
August 2005. Similar to Dartmouth, we create device-to-
device connectivity patterns using the connected access
point, which resulted in 61 contacts in average per week.

SWIM: This is a synthetic dataset that is generated
using the SWIM simulator [28], which considers both
human mobility behaviors and social interactions to
generate contact patterns among groups of users. SWIM
simulates 36 Bluetooth enabled iMotes, configured to
log all visible mobile devices for 11 days. When two
users are within the Bluetooth communication range of
each other, we consider those two devices are in contact.
SWIM dataset is further scaled up to generate 1500-
nodes to understand the performance variation of the
content replication in different environmental conditions
as follows. 1) D-SWIM: by keeping the density constant
to represent large geographical area with a moderate
number of users. 2) A-SWIM: by keeping the area constant
to represent an overpopulated small area.

7.2 Dynamics of the datasets
Fig. 5 shows different characteristics of the considered
datasets and underlying contact graphs. Fig. 5a shows the
aggregated duration of intermittent connectivity between
two users per day. More than 50% of users in USC dataset
have more than 3 hours of aggregated contact duration
per day. This can be considered as a very high value that
allows the transfer of any amount of data between two
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Fig. 5. (a) CCDF of aggregated contact duration. (b)-(d) Dynamics of datasets.
TABLE 4

Summary of mobility trace datasets

Dataset Length Devices Contacts Network
(weeks) (/device) type

/week)

Dartmouth 8 1138 12.456 WiFi
USC 8 1846 60.92 WiFi

SWIM 8 500 26.53 BT
D-SWIM 8 1500 29.85 BT
A-SWIM 8 1500 79.61 BT

users, if the allowed delivery latency is one day. Even in
Dartmouth dataset more than 80% of users have more
than 60 seconds contact duration per day. In contrast,
SWIM has much lower aggregated contact duration.

We create a contact graph for all datasets where there
exists an edge between two user nodes, if the two nodes
are connected at least once. The degree distributions of
the contact graphs are shown in Fig. 5b. SWIM users
have highly skewed degree, where majority of the users
have the similar number of contacts. D-SWIM also has
similar degree distribution due to the fact that D-SWIM
is generated keeping the SWIM density constant. Since
A-SWIM is generated to show an overpopulated small
area, its average degree is comparatively higher than the
other datasets. In contrast, USC users have a distributed
degree while the degree distribution of the Dartmouth
lies in between those two extremes.

To evaluate the performance of proposed content dis-
semination strategies, we need to select creator-consumer
groups. For this evaluation, consumers are selected ran-
domly to evaluate the worst case scenario where the
connectivity patterns of the users within the group have
a minimum level of correlation. If there are consumers
that never get in contact with any other friends of the
selected group, it is not possible to opportunistically
propagate content to those isolated consumers. Thus the
amount of isolated consumers will have direct impact on
the performance of the opportunistic dissemination. Fig.
5c illustrates that USC dataset contains a large number of
isolated users compared to the other datasets. For the case
of 100 consumers (Fig. 5d), nearly 15 of them are isolated
in USC and only 5 of them are isolated in Dartmouth. In
contrast, in all trials there are no isolated consumers in
SWIM, it is less than 5 in D-SWIM. To this end, the five
datasets are not similar and have properties that affect the
performance of content replication in different aspects,
representing a wide variety of social environments.
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Fig. 6. Comparison of different dynamic centrality metrics.
λ = 10%

7.3 Simulation Setup

The datasets are divided into weeks as shown in Fig. 4. We
select the set of helpers according to proposed algorithms
during week k and evaluate the performance in terms of
delivery success rate and delivery latency during week
k + 1. We consider that the number of consumers for a
creator to be 100 as it is the average size of a group of
friends in the popular social networking service Facebook
[44]. We select consumers randomly from the users in the
dataset to evaluate the worst case scenario. Each user in
a group is considered as a creator and we evaluate the
performance for each creator. Therefore, for a given week,
100 simulations are carried out to obtain the average
value for one particular performance metric. Further,
all simulations are carried out varying the monitoring
and evaluation periods through out the duration of the
datasets. Each creator will generate a content of size 8.4MB,
which is the median content size in YouTube [1] and the
transfer rate among consumers are considered as uniform
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Fig. 7. Delivery success rate against the threshold of replication (λ).

1h
6h

12h

1day

2day

3day

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

D
el

iv
er

y 
La

te
nc

y

Successfull Delivery

Greedy Rep
Random Rep

No Rep

(a) Dartmouth Dataset

1h
6h

12h

1day

2day

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

D
el

iv
er

y 
La

te
nc

y

Successfull Delivery

Greedy Rep
Random Rep

No Rep

(b) USC Dataset

1h
6h

12h

1day

2day

3day

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

D
el

iv
er

y 
La

te
nc

y

Successfull Delivery

Greedy Rep
Random Rep

No Rep

(c) SWIM-500 Dataset

Fig. 8. Delivery latency for specific delivery success rate when λ = 0.1.

and 2Mbps [25]. Hence, a consumer has to have aggregated
contact duration αT (u) of 33.6 seconds with the creator
or any of the helpers or the propagators to completely
download the content.

The content delivery deadline ∆ of 3 days is considered
to be the largest tolerable delay. The Delivery Success Rate
is calculated as the ratio between number of successful
deliveries and total number of consumers. The time lag
between the content sharing by the creator and the content
receiving time is considered as the Delivery Latency.

7.4 Evaluation of Dynamic Centrality Metrics

We compare the influence of different dynamic centrality
metrics in helper selection that are defined in the Section
6.2. Fig. 6 shows the content delivery success rate and
the mean content delivery latency, when the helpers are
selected based on different centrality metrics according
to the Algorithm 2. When we compared the two local
centrality metrics, and showed that CLID has a better
delivery success rate with lower standard deviation than
CLD in all three datasets. Similarly, the improved global
centrality metric CGIP has better performance in terms
of both delivery rate and latency compared to the naive
CGP . This is due to the fact that improved metrics, CLID

and CGIP , consider the time dependency in connectivity
patterns, which enhances the content propagation.

However, in some cases there is no significant dif-
ference between the performance of local and global
metrics. All these general similarities are related to
dynamics of the contact patterns among consumers in
these environments. For instance, when the degree of the
majority of the consumers are similar as shown in Fig.
5b for SWIM, the performance of a simple degree based
local centrality metric becomes significant as depicted in

Fig. 6e. In contrast, when the degree distribution is not
skewed, the intelligent path based selection will perform
better, similar to CGIP performance for Dartmouth and
USC. In particular, USC has the largest improvement
of approximately 20% in coverage for CGIP compared
to CGP because USC has the most distributed degree
distribution. On the other hand, due to the large number
of isolated consumers (Fig. 5c), USC does not have
much gain in delivery latency. In SWIM, CGIP has much
lower delivery latency because it has the lowest number
of isolated users. Hence, the selection of the appropriate
centrality metric to identify the most influential users is highly
environment dependent and the appropriate centrality metric
need to be identified by analysing the behavior of the users of
the particular community.

7.5 Evaluation of Delivery Performance

To evaluate the content delivery success rate and de-
livery latency of the proposed system independently
from the dynamic centrality metrics, we use GREEDY-
HELPER selection (Algorithm 1). We compare the delivery
performance of the proposed system against the cases
where (1) No replication is performed and (2) Random
replication, which is the simplest way of selecting helpers
without any knowledge about the contact patterns among
consumers.

For all datasets in Fig. 7, it is evident that there is
a significant gain in content delivery success rate and
delivery latency compared to no replication. In fact, the
greedy replication is always better than the random
replication. Due to random selection of consumers in this
evaluation, the consumers do not have high similarity in
their mobility patterns. In real environments, consumers
of the same content may also indicate that they belongs
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Fig. 9. The variation of CDF of delivery latency with λ values.

to the same community and therefore the performance
can be expected to improve. Therefore, the results of the
greedy replication can be considered as the worst case
scenario. In Dartmouth (Fig. 7a), the delivery success
rate is approximately 80% for 10% of content replication
(λ = 0.1), while USC has a comparatively lower success
rate of approximately 60%. After a certain level of
replication, i.e. approximately λ = 0.1, the delivery rate
shows linear improvement and further replication will not
deliver content to any other consumer via opportunistic
communication. This is because only isolated consumers
will be selected for content replication. This threshold
of replication can be considered as an effective upper
bound for λ.

Fig. 8 shows the delivery time when using greedy
replication, no replication, and random replication against
the percentage of successful delivery. In Dartmouth (Fig.
8a), content replication delivers content to 40% of the
consumers in less than 1 day, whereas the latency is
almost 3 days if there is no initial content replication. All
three datasets show similar behavior in terms of delivery
latency. However, in general, the delivery latency for
greedy replication is lower than the random replication.

Even though the proposed algorithms perform better
than random helper selection, the results of random
replication can not be ignored as it does produces
comparable results in some cases without any prior
knowledge of contact patterns. This behavior has also
been reported in [13], [45]. For some groups of friends,
we may not need an intelligent helper selection strategy,
mainly because the connectivity graph is either too dense
or too sparse. This can be addressed by considering
the dynamics of the contact patterns to select the most
suitable dynamic centrality metric.

The cumulative distribution function of the delivery
latency for successful deliveries is shown in Fig. 9. For
all datasets, the probability of the delivery latency being
less than 1 day is approximately 60% for λ = 10%. In
[43], it has been observed that 55% of Flickr content is
uploaded after a lag of more than 1 day. Thus, we believe
that the delivery latency resulting from the opportunistic
communication is practical in such content dissemination
applications. For applications/services that require a
lower delay, it is possible to increase the threshold of
content replication as shown in Fig. 9. The common

pattern is that the delivery latency reduces with increasing
λ. In Dartmouth and USC, there is a 20% improvement
in reducing the delivery latency to less than 1 day when
λ increases to 30%, and there is a 30% improvement
in SWIM. However, the difference of latency for two
consecutive λ values becomes smaller when λ increases.
Again, similar to the delivery success rate, there is an
effective upper bound for λ which does not increase the
delivery latency significantly after that.

7.6 Opportunistic Delivery Gain
If the content is not received by the delivery deadline
through low-cost networks, we assume that those con-
sumers will download the content through other means of
Internet connectivity such as via a cellular network. Thus,
the portion of Opportunistic Delivery is calculated out of
all content deliveries. Fig. 10a shows that the portion of
opportunistic deliveries when using greedy replication.
The portion of opportunistic deliveries increases with λ
only for low values of λ. In Dartmouth, it is possible to
deliver content for approximately 70% of the consumers
via opportunistic communication with 10% of replication,
compared to below 40% when there is no replication.

For the SWIM dataset, the results are closely related
to the degree distribution of the datasets as shown in
Fig. 5b. D-SWIM has the lowest performance because
the simulation was extended by increasing the area
and number of users while keeping the density of the
network constant and equal to SWIM. Consequently a
high level of replication is required to cover the same
number of consumers as in SWIM. In contrast, when
we increase the density in A-SWIM, it improves the
opportunistic delivery percentage. Similarly, in USC, there
is a large number of isolated users as shown in Fig. 5d,
which decreases the overall density. Hence, the density
of the contact graph has a considerable impact on the
opportunistic delivery performance.

Fig. 10b summarizes the Relative Opportunistic Gain
as the portion of opportunistic delivery with content
replication and with no replication for all datasets.
Even though D-SWIM has the lowest percentage of
opportunistic delivery, it has the highest relative gain
of 18.62 times because in D-SWIM, the percentage of
opportunistic delivery when there is no replication is
as low as 1.3%. Dartmouth dataset shows the lowest
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Fig. 10. (a). Variation in opportunistic delivery with
threshold of replication, (b). Achievable relative gain in
opportunistic delivery for each dataset.

gain of 3.27 times, since it consists of well connected
users compared to other environments. Thus, the results
show that it is possible to significantly increase the
one-hop opportunistic delivery with a low number of
initial content replication, i.e. approximately less than
10% of the consumers. In addition, improvement in
opportunistic transmission is proportional to the energy
and communication cost which are additional incentives
for mobile users.

8 IMPLEMENTATION

We extended our work described in [38], [39] to incorpo-
rate proposed system to show the practical feasibility. The
integrated system referred to as Yalut2 has been released
on the Google Play Store. It consists of two main entities,
(1) Yalut mobile application and (2) Yalut cloud service.

8.1 Yalut mobile application

The basic components of the mobile application and the
Android app interface are shown in Fig. 11. The Core
Service is the main component, which receives Intents
from Android, such as the action of sharing a photo or
accessing a link. It then orchestrates the appropriate flows
to call the proper modules. When sharing a photo, Core
Service calls Connection Manager, which manages peer-to-
peer communication using modified BitTorrent commu-
nication protocols, namely Ttorrent [15] and libTorrent
[16]. These were chosen to avoid license incompatibility
and Android support issues.

Connection Manager first creates a torrent file for the
content to be shared and then uploads the torrent file to
the Yalut cloud service requesting a link to that particular
torrent file. With the resulting link, Core Service requests
Social Network Manager to send the “shared notification”
through the selected social networking service, currently
either Facebook, Google+, and Twitter.

After uploading the link to Yalut cloud service, the
Connection Manager starts sending periodic messages to
the tracker updating the contact information of the device.
Access Prediction Engine monitors social networking feeds
in the background and predicts the content that is likely
to be consumed by the user based on the history of
content access patterns. In the current implementation,

2. http://www.yalut.com

the app periodically pre-fetches all content shared via
the Yalut service. The content pre-fetching interval is
set to 10 minutes by default and can also be set to any
value through settings menu. Once a shared notification
is identified by the Access Prediction Engine or by the user,
the Core Service initiates the content downloading process
first by fetching the related torrent file for that content
from the Yalut cloud service. The torrent file contains the
announce-URL of the tracker and the Connection Manager
triggers the peer-to-peer content downloading process
contacting the tracker. The creator or other online users
who have the same torrent file will take part in forming
the peer-to-peer network. The content sharing is set
to perform only when devices are connected via WiFi
networks to reduce the cost of usage. However, the
user is again given the ability to change that to any
network through the settings menu. We use the local
peer discovery mechanism provided by libTorrent to
give priority for friends who are connected to the same
network when uploading content.

Besides that, Context Info Collector records context
information such as connected networks and contact
patterns that is used as input to the content replication
algorithms described in Section 6. The collected data is
uploaded to the Yalut cloud server once per day when
connected to a WiFi networks to enable helper selection.

In real-life implementations, ultimately what matters
is the user experience. Therefore, extra effort was taken
to design the user interface of the app and the process
of content sharing and downloading, from the user’s
perspective. Fig. 11c shows the flow of views that the user
goes through when sharing content. When the sharing
icon is invoked, the app asks to select the type of content
that the user wishes to share. Then, the user is directed
to either the photo, video or audio gallery, or to the file
explorer based on the user input. After that, the app
shows Yalut content sharing page, where the user can
select the content expiry time and the service through
which to send the shared notification. Once a service is
selected, the user is directed to that service. For example,
if Facebook is selected, the user is directed to the Facebook
sharing page, in which the process will be similar to any
usual content sharing in Facebook.

8.2 Yalut cloud service
Yalut server is the central entity that manages the commu-
nication between Yalut enabled devices and determines
the helpers to be periodically used by Replication Manager
(Fig. 11b). This is done using the context information
collected by Yalut enabled devices as input to the
replication algorithms proposed in Section 6. Replication
Manager notifies all users when there is a change in the
set of helpers of a particular user. The Connection Manager
works as a torrent tracker and an indexer.

Thumbnail of the content or generic image that is stored
in the Yalut server depending on the creator’s preference,
is displayed in the social networking feeds. Yalut keeps
records of the owners of the shared content by storing
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Fig. 11. Components of Yalut cloud service and the workflow.

hashed social networking IDs, encrypted Yalut username
and password. In addition, MD5-Hash of each content
is also stored. This enables the prevention of sharing
inappropriate and copyright violated content.

8.3 Preliminary survey results
The willingness of users to download and use Yalut
type mobile app largely dependent on whether the user
care for his/her data privacy. However, it is technically
difficult to quantify the perception of privacy preservation
of real users. Therefore, with the initial experimental
trails of Yalut, we conducted a survey to get an idea
about the social networking life of a sample of users.
We had 32 female and 29 male respondents with di-
verse demographics. Almost everyone (98%) users use
Facebook and 90% of them share their own photos
with social media. However, 81% of respondents are
concerned about use of personal data by third-parties.
More importantly, if they could share content without big-
brother like companies having access to data, 44% of them
would be less concerned of their privacy, necessitating an
application like Yalut for privacy-aware social networking.
Further details of the survey results can be found at the
Yalut Webpage.

9 CONCLUSION

We proposed a novel distributed content storage and
dissemination architecture that uses intelligent content
replication to addresses the issues of lack of trust and
timeliness of delivery, and loss of privacy that has
hindered the adoption and deployment of friend-to-friend
content delivery. First, we showed that the content repli-
cation problem in opportunistic content dissemination ar-
chitectures is NP-hard. Then, we developed a community
based greedy algorithm for efficient content replication,
taking advantage of routine behavioral patterns of social
networking friends. Different dynamic centrality metrics
were proposed as the greedy choice property to identify
the most influential users within a community. Using both
real world and synthetic datasets, we showed that our
community based greedy algorithm results in delivery
success rates of up to 80% with less than 10% replication.
Furthermore, approximately 60% of the content can be
delivered in less than one day. However, the results
show that it is not possible to consistently identify most

influential users within a community to optimise delivery
as they are highly environment dependent.

Feasibility of the proposed system was demonstrated
by implementing it on Android smart mobile devices.
The system referred to as Yalut, which leverages of the
existing social networking infrastructures for connect-
ing and interacting users. It shows that is possible to
use the proposed friend-to-friend content distribution
architecture to provide improved user privacy, user
control, and minimize their communications cost without
compromising usability.
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