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Can a Condorcet Rule
Have a Low Coalitional Manipulability?

Francois Durand' and Fabien Mathieu? and Ludovic Noirie?

Abstract. We investigate the possibility of designing a voting rule
that both meets the Condorcet criterion and has a low vulnerability to
coalitional manipulation. For this purpose, we examine the Condor-
cification of a voting rule, where the original rule is altered to elect
the Condorcet winner when one exists, and we study its impact on
coalitional manipulability. A recent result states that for a large class
of voting rules based on strict total orders, their Condorcification is
at most as coalitionally manipulable as the original rule. We show
that for most of them, the improvement is strict. We extend these re-
sults to a broader framework that includes weak orders and cardinal
voting rules. These results support the main message of this paper:
when searching for a “reasonable” voting rule with minimal coali-
tional manipulability, investigations can be restricted to Condorcet
rules. In other words, in a class of “reasonnable” voting rules, it is
possible to have both the Condorcet criterion and a minimal vulner-
ability to coalitional manipulation.

1 Introduction

Any non-dictatorial voting rule with three eligible candidates or
more® is vulnerable to manipulation by a single manipulator, who
may secure an outcome that she prefers to the result of sincere vot-
ing by misrepresenting her preferences [12, 32]. Although this result
is frequently cited under the form of Gibbard-Satterthwaite theorem,
which deals only with ordinal voting rules (i.e. whose ballots are or-
ders of preferences), Gibbard’s fundamental theorem applies to any
game form, where available strategies may be objects of any kind,
for example grades [12].

Once this negative result is known, a possible direction consists in
trying to mitigate the impact of manipulation. For example, one can
investigate to what extent classic voting rules are manipulable, and
try to identify ways of designing less manipulable voting rules.

In the case of manipulation by a single voter, assuming a “reason-
able” voting rule and a large electorate (like in most political elec-
tions), it is unlikely that a voter is pivotal, which is both supported
by theory [25, 24, 10, 11, 33] and analysis of real-life elections.

In this paper, we rather focus on coalitional manipulability, where
a coalition of voters, by misrepresenting their preferences, may se-
cure an outcome that they all prefer to the result of sincere voting.
The very existence of this type of manipulation can have a strong
practical impact on voting, even if all voters choose to vote sincerely.
Indeed, whereas implementing a full-scale manipulation can be dif-
ficult, sincere voters may find out a posteriori that a coalitional ma-
nipulation was possible. This happened during the 2002 Presidential

1 University Paris Dauphine (francois.durand @dauphine.fr).

2 Nokia Bell Labs (fabien.mathieu @nokia.com, ludovic.noirie@nokia.com).

3 Le. where at least three candidates are in the image of the voting rule. Some
candidates may exist but not be eligible [32].

election in France, where left-wing voters discovered only after the
election that a concerted ballot in favor of the main leftist candidate
would probably have avoided the election of the main rightist can-
didate [5]. Such a scenario may result in a feeling of regret about
the ballots cast, questions about the legitimacy of the outcome, and
doubts about the voting rule itself, since for some of the voters, sin-
cere ballots did not defend best their opinions.

To quantify the degree of coalitional manipulability of a voting
rule, several indicators have been defined [19, 31, 21, 34, 8, 28, 36,
30]. One of the most studied is the coalitional manipulability rate,
which is the probability that the voting rule is coalitionally manipu-
lable (CM) in a random profile of preferences, under a given assump-
tion on the probabilistic structure of the population (called culture).

In this paper, we consider a more detailed indicator: the set of
profiles in which a given voting rule is CM [20]. It is closely related
to the coalitional manipulability rate: a voting rule f is less CM than
another rule g in this sense of set inclusion if and only if, in any
culture, f has a lower coalitional manipulability rate than g.

Several authors have used a theoretical approach [19, 20, 17, 21,
16,9, 22, 8, 29, 18], computer simulations [19, 29, 30, 13, 14, 15] or
experimental results [4, 36, 14, 15] to evaluate the coalitional manip-
ulability rates of several voting rules, according to various assump-
tions about the structure of the population.

Among the studies above, some authors mention the intuition that
Condorcet rules have a general trend to be less CM than others [4,
35,9, 22, 8, 36]. In contrast, some suggest that Single Transferable
Vote (STV) is one of the least CM among “reasonable” voting rules
ever studied [4, 20, 22, 13, 14], despite not being a Condorcet rule.

Recently, Durand et al. [7] gave theoretical insight on this issue.
They considered an alteration of any voting rule called its Condorci-
fication, by adding the provision that whenever a Condorcet winner
exists, she is elected; in other cases, the original rule is used. This
idea is a straightforward generalization of Black’s method [1], that
was proposed to get a Condorcet-consistent version of the Borda
count rule. Until recently, Condorcification was hardly studied in
general, as it was seen as an inelegant way to produce Condorcet
methods. However, Durand et al. [7] showed that for a large class of
voting rules, their Condorcification is at most as CM as the original
rule. In a recent paper, Green-Armytage et al. [15] proved also this
result independently. We will recall this result formally in Theorem 1.

Roadmap The rest of this paper is organized as follows.

Section 2 introduces some basic definitions of voting theory and
our notations. Section 3 states some previous work about the coali-
tional manipulability of Condorcet rules, with the purpose of clearing
up some possible misinterpretations of these results.

In Section 4, we give the result mentioned above [7]: for a large



class of voting rules, their Condorcification is at most as CM as the
original rule. We then introduce a new notion, the resistant Condorcet
winner, characterized by a form of immunity to coalitional manipu-
lation. We use this to show that for a large class of voting rules, their
Condorcification is strictly less CM than the original rule. Then, we
stress on an important consequence of these two results: among a
large class of voting rules that share a natural property, when search-
ing for a voting rule with minimal coalitional manipulability, investi-
gations can be restricted to Condorcet rules. In other words, in a class
of “reasonable” voting rules, it is possible to have both the Condorcet
criterion and a minimal vulnerability to coalitional manipulation.

Section 5 extends our framework by allowing voters to have weak
orders or even more general binary relations of preference over the
candidates. We show that all previous results still hold true, provided
that the notion of Condorcet winner is replaced by what we call ab-
solute Condorcet winner, instead of the usual definition.

Finally, in Section 6, we generalize the results to non-ordinal vot-
ing rules, especially cardinal ones, among which are Approval voting
and Range Voting.

2 Framework

Consider two non-empty finite sets V and C, whose elements are re-
spectively called voters and candidates. Some or all of the candi-
dates can also be voters themselves, without impact on our results.
Let V = card(V) and C' = card(C).

L denotes the set of strict total orders over C, i.e. transitive, ir-
reflexive and complete binary relations. We assume for the moment
that each voter v has a strict total order of preference over the candi-
dates, denoted P,, € L£; this assumption will be relaxed in Section 5.
An element P of £Y is called a profile: for each voter v, it gives her
relation of preference P,. A voting rule is a function f : £Y — C
that, to each profile, associates a winning candidate. We say that f
is coalitionally manipulable (CM) in profile P towards a profile P’ if
and only if:

f®) # f(P),
Yo €V, (P, #P, = f(P') P, f(P)).

Denoting ¢ = f(P’), we also say that P is CM in favor of c.

My C LV denotes the set of profiles where f is CM. In this pa-
per, our goal is to diminish coalitional manipulability in the sense of
inclusion: so, we will say that a voting rule g is at most as CM as f
if and only if (iff) My C Mjy.

Given a profile P and two distinct candidates ¢ and d, we use
|c P, d| as a short notation for the number of voters who prefer c
to d. We say that ¢ has a victory against d in P, or equivalently that
d has a defeat against c in P, iff ’c P, d‘ > % We say that a can-
didate c is Condorcet winner in a profile P iff c has a victory against
any other candidate in P. We say that P is a Condorcet profile iff
there is a Condorcet winner in P. We say that a voting rule f meets
the Condorcet criterion iff for any Condorcet profile P, the elected
candidate f(P) is the Condorcet winner; as a language convenience,
we also say that f is a Condorcet rule.

In this ordinal framework, we now recall some classic voting
rules*. The definitions below can lead to ties between several can-
didates; in all the following, we will consider that an arbitrary tie-
breaking rule is used.

Positional scoring rules (PSR) Let w = (w1,...,wc) be a non-
increasing and non-constant vector of real numbers. In the PSR

4 For more details, see for example [36].

of weight vector w, the score of a candidate c is defined as
> wey Wr(e,p,)» Where 7(c,P,) denotes the rank of candidate c
in the preference order P, of voter v. The candidate with highest
score is declared the winner. The most studied PSRs are the three
following voting rules.

Plurality PSR of weight vector (1,0, ...,0).
Antiplurality PSR of weight vector (0,...,0,—1).
Borda count PSR of weight vector (C' —1,C' — 2,...,0).

Two-round system® Computing the winner involves two steps or
rounds. Only the two candidates with highest Plurality scores are
selected for the second round, during which each voter grants one
point to the candidates she prefers among the two. The candidate
with highest score in second round is declared the winner.

Single Transferable Vote (STV) There are C' — 1 rounds. At each
round, the candidate with the lowest Plurality score is eliminated.
Plurality scores are updated each time, depending on the elimi-
nated candidates: each voter gives one point to the highest non-
eliminated candidate in her order of preference.

Coombs’ method Asin STV, there are C'—1 rounds. At each round,
the candidate with the lowest Antiplurality score is eliminated.
Bucklin’s method The median rank of a candidate c is the median
of the list (r(c, P”))vev‘ The candidate with the best (i.e. lowest)
median rank is elected. If several candidates have the same median
rank, the winner is the candidate to which a highest number of

voters assign this rank or better (i.e. lower).

3 Condorcet Rules and Coalitional Manipulability:
Facts and Traps

The following classic result relates Condorcet notions and coalitional
manipulability: in a Condorcet rule, a Condorcet profile cannot be
CM towards another Condorcet profile [23]. But, despite common
belief, a Condorcet profile is not necessarily immune to coalitional
manipulation, even in a Condorcet rule. Worse, in any Condorcet rule
with 3 candidates and 3 voters, there exists at least one CM Con-
dorcet profile. To prove this assertion, consider first the following
non-Condorcet profile P’.

We follow the usual convention to represent profiles: for example,
the first column above means that voter 1 has the order of preference
a>b>ec.

If f(P') = a, then consider the following profile P, where only the
first voter is different from P’.

a|b
P= ¢ a
b|lal|b

Then candidate ¢ is Condorcet winner in P. But the first voter can
manipulate towards profile P/, because she prefers a to c.

5 We consider an instantaneous version of the Two-round system: voters give
an order of preference, and the two rounds are computed automatically.
In most actual implementations, the voting rule is sligthly different since
voters go to the polls once for each round. It is easy to see that the instanta-
neous version is at most as manipulable (individually or coalitionally) as the
version with two actual rounds: in the latter, sincere voting leads to the same
outcome, but manipulators have a larger set of available strategies [23].



If f(P') = bor f(P') = ¢, we can exhibit a similar example by
using the symmetry of profile P’.

This statement still holds true for more than 3 candidates (by
adding candidates at the end of all preferences in P’ and on top of the
first voter’s preferences in P). It also extends to 5 voters or more, by
replacing the three voters by three groups of voters of approximately
equal size®. So, in general, it is not true that a Condorcet profile is
immune to coalitional manipulation, even in a Condorcet rule.

Another classic result deals with coalitional manipulability in
single-peaked contexts [23]. We say that a preference order P, is
single-peaked [1] relatively to an order Py € L (typically, a left-right
political axis) iff for any candidates c, d, e such that ¢ Py d Py e, it
is impossible to have simultaneously ¢ P, d and e P,, d. We say that
a profile is single-peaked relatively to Py iff it is the case for all indi-
vidual preferences. As made famous by Black [1], in a single-peaked
profile with an odd number of voters, there is always a Condorcet
winner. Moreover, with an odd number of voters, if a Condorcet rule
is restricted to the profiles that are single-peaked relatively to some
given order Py, then the rule is not CM [23].

Despite common belief, this does not mean that in all single-
peaked contexts, coalitional manipulation is not an issue, and that
Condorcet rules solve the problem. As discussed by Blin and Sat-
terthwaite [2] for Black’s rule, for the non-manipulability result to
hold, it is important to assume that sincere preferences and ballots
are both a priori restricted to be single-peaked relatively to a given
order. More recently, Penn et al. [27] considered a framework where
profiles are single-peaked, but relatively to an order that is not known
a priori when designing the voting rule: in particular, each voter is
allowed to use any strict total order as her ballot. They show that in
that case, for any non-trivial voting rule, at least one single-peaked
profile is manipulable (even by a single manipulator).

Thus, in single-peaked contexts, when the order Py is not known
in advance, it is not a priori obvious that Condorcet rules are less
prone to coalitional manipulation than the others.

Given these results, it is not clear that Condorcet rules are less CM
than others in general. Actually, as mentioned earlier, some studies
suggest that STV is generally less CM than most known Condorcet
rules [4, 20, 22, 13, 14]. In the following, we will not support this
too optimistic idea but a more nuanced one: in a large class of voting
rules, it is possible to combine the Condorcet criterion and a minimal
vulnerability to coalitional manipulation (even if the first does not
necessarily imply the second).

4 Condorcification

We first study Condorcification in the framework of strict total or-
ders, before expanding these results to arbitrary binary relations of
preference (Section 5) and to non-ordinal voting rules (Section 6).

4.1 Weak Theorem of Condorcification

We call Condorcification of f the voting rule f* defined as follows.

e If there is a Condorcet winner in profile P, then she is elected
by f*.
e Otherwise, f*(P) = f(P).

6 This example does not extend to 4 voters, because one of the three groups
would consist of half the voters. In fact, with V' = 4 and C' = 3, it is easy
to check that there exists a Condorcet rule where no Condorcet profile is
CM: for each non-Condorcet profile, elect an arbitrary candidate who has
no defeat (for example, a Plurality winner).

For example, Black’s method [1] is defined as the Condorcification
of the Borda count.

It is easy to check that Condorcification preserves anonymity
(symmetry of voters), neutrality (symmetry of candidates) and mono-
tonicity (if a candidate ¢ wins, then if one voter moves c up in her
ballot, then ¢ cannot become a loser). For the latter, it is sufficient
to remark that in a Condorcet rule, there cannot be a violation of
monotonicity involving a Condorcet profile; so, if there exists a non-
monotonicity paradox in f*, it is between two non-Condorcet pro-
files, so it also exists in f. Of course, f* meets the Condorcet crite-
rion and all criteria it implies, for example the majority criterion (if
a candidate is ranked first by a strict majority, then she is elected).

But our main focus in this paper is its effect on coalitional manip-
ulability: Durand et al. [7] and Green-Armytage et al. [15] showed
that for an important class of voting rules, their Condorcification is
at most as CM as the original rule. To state this result formally, we
call a coalition a subset of the voters and a majority coalition a coali-
tion whose cardinality is strictly greater that % We say that a voting
rule f meets the informed majority coalition criterion (InfMC) iff
for any candidate c, for any majority coalition M, for any profile P,
there exists a profile P’ such that:

Yv ¢ M,P, =P,,

f) =c.
In other words, any majority coalition may ensure the victory of
any candidate, provided they know in advance the other voters’ bal-
lots. This criterion appears under different names in several sources:
InfMC [7], Conditional Majority Determination [15] or without
explicit name [3]. It is closely related to Peleg’s notion of -
effectivity [26].

It is easy to check that most usual voting rules meet InfMC (except
some exotic positional scoring rules such as Antiplurality, rarely used
in actual settings): Plurality, Two-round system, STV, Borda count,
Bucklin’s and Coombs’ methods, and all Condorcet rules. Among
common voting rules, it is interesting to see that most meet InfMC,
even those whose usual rationale does not rely on the notion of ma-
jority (such as Approval voting, as we will see in Section 6). In prac-
tice, this gives a wide scope of application for the following theorem.
From a theoretical point of view, we can wonder whether there is a
deep reason why most common voting systems meet this criterion;
we think that this is an interesting question for future work.

If f meets InfMC, it is easy to prove this property: for any pro-
file P’ that is a strong Nash equilibrium for the game defined by f
and some profile P, the winner f(P’) has necessarily no defeat in P
(i.e.,if V is odd, she must be a Condorcet winner)’. This gives a first
intuition why choosing the Condorcet winner might be a good idea
to prevent coalitional manipulation.

The following theorem is mentioned without proof by Durand et
al. [7], and Green-Armytage et al. [15] provides a version of the proof
that is only valid for strict total orders of preference, as we will dis-
cuss in Section 5. We will give a more general proof in Section 6.

Theorem 1 (Weak Condorcification) If f meets InfMC, then its
Condorcification is at most as CM as f.

Mg« C My.

7 Actually, the converse is true: this property implies that f meets InfMC [6].



4.2 Strong Theorem of Condorcification

In this section, we give a second Condorcification theorem, stating
that for most usual voting rules that do not meet the Condorcet cri-
terion, their Condorcification is not only at most as CM, but strictly
less CM. In order to prove this, we introduce the notion of resis-
tant Condorcet winner (RCW), a candidate that possesses a form of
immunity to coalitional manipulation. We say that candidate c is an
RCW in profile P iff, for any pair of candidates d,e € C \ {c} (not
necessarily distinct from each other):

v

|c Py d and ¢ Py e| > 5
We use this notation: given an assertion .4(v) that depends on
voter v, we denote | A(v)| = card(v € Vs.t. A(v)).

Proposition 1 (Characterization of the RCW) Given a profile P
and a candidate c, the following conditions are equivalent.

1. Candidate c is RCW in P.
2. For any Condorcet rule f, c is elected by sincere voting, Le.
f(P) =c and f is not CM in P.

Proof: 1 =2. This part being the easiest, we give only a sketch of

proof. Assume that ¢ is RCW in P. Let f be a Condorcet rule. Since
c is clearly Condorcet winner in P, we have f(P) = c. Consider a
manipulation attempt in favor of a candidate d # c, i.e. a profile P’
where only voters preferring d to ¢ may change their ballot, whereas
those preferring ¢ to d cannot do so. In particular, for any candi-
date e # ¢, voters who simultaneously prefer ¢ to d and c to e in P
keep the same ballots in P’; since c is an RCW in P, they guarantee
that c still has a victory against e in P’. So, candidate c still appears
as a Condorcet winner in P’, she gets elected and the manipulation
fails. Hence, f is not CM in P.

Not 1 = not 2. Assume that condition 1 is false, i.e. ¢ is not an
RCW in P. We can assume however that c is Condorcet winner in P,
otherwise it is trivial that condition 2 is false (because we can choose
a Condorcet rule f such that f(P) # c).

Let (d,e) be a pair of candidates violating the definition of the
RCW. Necessarily, e # d, otherwise ¢ would not be a Condorcet
winner. We will exhibit a profile P’ without Condorcet winner and
differing from P only by voters preferring d to c. So, it will be possi-
ble to choose a Condorcet rule f such that f(P") = d. From this, we
will deduce that f is CM in profile P towards P’, in favor of d.

So, let us exhibit such a profile P’. Up to switching roles between d
and e, we can assume that e has no victory against d in profile P. Let p
be a strict total order of the form: (d > e > ¢ > other candidates).
For each voter v preferring d to ¢ in P (“manipulator”), let P}, = p.
For each other voter v (“sincere voter”), let P,, = P,,. In the new pro-
file P/, candidate c is not a Condorcet winner because she does not
have a victory against e: indeed, the only voters who claim preferring
cto e in P’ are those of the sincere voters who already preferred c to
e in P, which leads to |c P}, e| = |¢ P, dand ¢ P, e| < ¥ Candi-
date d is not a Condorcet winner (it is an easy and classic result that
her duel against ¢ cannot have been improved by manipulation [23]).
Neither can candidate e because she still has no victory against d.
And neither can other candidates, because the number of voters who
claim preferring c to them has not diminished from P to P’. d

We say that a voting rule meets the resistant-Condorcet criterion®
iff, whenever there is an RCW, she is elected. Clearly, this criterion is

8 We use a dash to stress on the fact that the adjective resistant applies to the
word Condorcet, not criterion.

weaker than the Condorcet criterion because it constrains the result
in a smaller set of profiles.

In practice, all the usual voting rules violating the Condorcet cri-
terion also violate the resistant-Condorcet criterion (for some values
of V and ). Indeed, consider a profile P of the following type, with
V' =100 voters and C' = 17 candidates.

17 13 14 14 14 14 14
a c di do dy d7 di1
ds ds ds d12
c ds dg di3
P= a c dio di4
c dis
a c
Others | Others | Others | Others | Others | Others | Others
c d do dy d7 di1 a

In the above notation, each column gathers identical voters and its
top cell indicates the corresponding number of voters. For each col-
umn, the respective positions of candidates denoted “others” is not
important for this example. We let the reader check the following.
Candidate ¢ is an RCW. However, in any PSR (including Plurality,
Borda count and Antiplurality), candidate a has a better score than c.
It is also true in Bucklin’s method. In the Two-round system, STV or
Coombs’ method, c is eliminated during the first round. Hence, none
of these voting rules meet the resistant-Condorcet criterion.

It is easy to define an artificial example of a voting rule that meets
the resistant-Condorcet criterion but not the Condorcet criterion: for
example, consider a rule electing the RCW when she exists, and
a constant candidate otherwise. But the observation above tends to
show that a voting rule that was not designed to elect all Condorcet
winners has no “natural” reason to elect the resistant ones.

Now, we have the necessary tools to state and prove the strong
theorem of Condorcification.

Theorem 2 (Strong Condorcification) If f meets InfMC but not
the resistant-Condorcet criterion, then its Condorcification f* is
strictly less CM than f:

Proof: The weak theorem of Condorcification (Th. 1) ensures the

inclusion. Since f does not meet the resistant-Condorcet criterion,
there exists a profile P, a candidate ¢ who is RCW in P, such that
f(P) # c. Since ¢ is a Condorcet winner, a strict majority of voters
prefer ¢ to f(P); by InfMC, it implies that f is CM in P in favor of c.
In contrast, Proposition 1 ensures that f* is not CM in P. Hence, the
inclusion is strict. O

In particular, Theorem 2 proves that for Plurality, Two-round sys-
tem, STV, Borda count, Bucklin’s and Coombs’ methods, their Con-
dorcification is strictly less CM than the original rule.

The reader may have noticed that the implication 2 = 1 in Propo-
sition 1 is not necessary to prove Theorem 2. We mentioned it to
show the deep connection between the property of being an RCW
and the immunity to coalitional manipulation in the Condorcet rules.

4.3 Optimality Corollary

Up to now, we have considered a given voting rule f and compared
the set of CM profiles for f and for its Condorcification f*. At first
look, these results may suggest to use voting rules such as the Con-
dorcification of Plurality, STV, etc. However, we think that it is not
the main consequence of the Condorcification theorems. Indeed, they
imply the following corollary. As a notational convenience, the set of
voting rules meeting InfMC is also denoted by InfMC.



Corollary 1 (Optimality) Let us consider the function:

InfMC —  P(LY)
= My

M :

returning, for each voting rule f meeting InfMC, the set My of its
CM profiles.

Let A € P(LV) be a minimal value of M, i.e. a set of profiles
such that at least one voting rule f € InfMC meets My = A, but no
rule f € InfMC meets My G A. Then:

o Any rule f € InfMC meeting My = A meets the resistant-
Condorecet criterion.
o There exists a Condorcet rule f such that My = A.

In order to understand the scope of this theorem, let us notice that
the function M may have several minima that are not comparable,
because the inclusion relation over P(£") is not a total order. In
other words, there may be different rules f and g such that no voting
rule is less CM than f or g, but whose sets of CM profiles, M and
M, respectively, are not comparable.

This corollary can be summed up this way: when looking for a
voting rule meeting InfMC with minimal coalitional manipulability,
then investigations must be restricted to rules meeting the resistant-
Condorecet criterion and can be restricted to Condorcet rules. In other
words, this corollary answers the main question of this paper: when
restricting to “reasonable” voting rules, in the sense that they meet
InfMC, it is possible to have both the Condorcet criterion and a min-
imal vulnerability to coalitional manipulation.

5 Arbitrary Binary Relations

Now, let P be a subset of the binary relations over the candidates. P
will represent the set of relations we assume possible for each voter.
The relation P,, € P of a voter v is interpreted in the following way:
for any pair of distinct candidates (¢, d), the assertion ¢ P, d means
that when d is the winner of sincere voting, v may be interested in
taking part in a coalitional manipulation in favor of c.

In most usual models, this relation is identified with the voter’s
binary relation of strict preference over the candidates. With this in-
terpretation, it is natural to assume that it is antisymmetric: v cannot
strictly prefer c to d and d to c in the same time. However, with the
general interpretation of P, as an inclination to manipulate, it is con-
ceivable to have a “crazy manipulator” who wants to manipulate for
¢ when d would win by sincere voting, and vice-versa. Moreover, the
antisymmetry assumption is not needed for the proofs of our results.
So, for the sake of generality, we will not make this assumption in
the rest of this paper. That being said, should the reader be confused
with the absence of antisymmetry assumption, she can read all the
following with this additional assumption in mind and the usual in-
terpretation of P, as a strict preference.

Since it is common to identify the inclination to manipulate with
strict preferences, we will use the following language shortcut: when
¢ P, d, we will go on saying that voter v prefers c to d.

Typically, P can be the set of strict total orders like in previous
sections, or the set of strict weak orders (negatively transitive, ir-
reflexive and antisymmetric relations), or the set of preferences that
are single-peaked relatively to a given order, etc. But in the general
case, absolutely no assumption is made about P. A relation P, € P
may not be complete (e.g. strict weak orders). It may not be transitive
either: voter v may prefer candidate a to b, b to c and c to a.

In this first extension of the framework, a voting rule is a function
f: PV — C.In this case, there are at least two natural generaliza-
tions of the Condorcet winner.

1. We say that a candidate c is an absolute Condorcet winner iff for
any other candidate d, she has an absolute victory against d, in
the sense that |c P, d| > % and ‘d P, c} < % The main
motivation for the second condition is to ensure the uniqueness of
the absolute Condorcet winner in the unusual models where non-
antisymmetric relations are allowed. For antisymmetric relations,
it can safely be omitted, because it becomes redundant with the
first condition.

2. We say that candidate c is a relative Condorcet winner iff for any
other candidate d, she has a relative victory against d, in the sense
that [c P, d| > |d P, c|.

When preferences are strict total orders, these two notions are ob-
viously equivalent, and both amount to the notion of the Condorcet
winner that we have used up to now.

Similarly, there are also two natural notions that generalize Con-
dorcification: absolute Condorcification and relative Condorcifica-
tion, which respectively add a preliminary test about the existence of
an absolute or a relative Condorcet winner and elect her if she exists.

In Section 6, we will prove that the weak theorem of Condorci-
fication (Th. 1) still holds in the general case when considering the
absolute Condorcification. For this reason, in the following, we will
use the terms Condorcet winner and Condorcification for the abso-
lute version of these notions.

In contrast, we will now show that the weak theorem of Condorci-
fication (Th. 1) is not true when replacing f™* by the relative Condor-
cification of £, denoted by f™. In other words, some profiles may be
CM in f™ whereas they are not CM in f.

Let us start with a voting rule that is a bit artificial but makes it
possible to prove this concisely. Assume that preferences are strict
weak orders. Let f be the voting rule that we call Condorcet-dean:

1. If there is an absolute Condorcet winner, then she is elected.
2. Otherwise, a constant candidate called the dean (say, candidate a)
is elected.

Obviously, this rule meets InfMC.
Consider V' = 5, C' = 3 and the following profile P.

a
a |a,c| b b 3 )
P= b b a,c 2 1
¢ a b # c

The above notation on the left means for example that the second
voter is indifferent between candidates a and c, which she prefers
to b. On the right is the weighted majority graph: nodes are the can-
didates, and for each pair of distinct candidates (x, y), there is a di-
rected edge from x to y whose weight is |x P, y}. It is easy to check
that f(P) = f™(P) = a and that f is not CM in P. Now, consider the
following profile P’, where only the fourth voter changes her ballot.

a
/ a,c| b c 3 5
P= b |a,c a 21
c b 3
b%c



Since candidate c is the relative Condorcet winner, we have
f*'(P") = c. In conclusion of this example, f™ is CM in P to-
wards P’ in favor of candidate c (it is even individually manipulable),
whereas f is not CM in P. Hence, Theorem 1 does not generalize
when considering relative Condorcification.

While the voting rule used above is exotic, we can produce a
similar counter-example with f being the Single Transferable Vote
(STV), with weak orders allowed. If a voter has two candidates
or more tied on top of her ballot, her vote is equally shared be-
tween these candidates. Let us consider the following profile P with
V =100 voters.

In f, candidates c, then d, then b are successively eliminated hence
f(P) = a. First, let us show that f is not manipulable in P.

e In favor of candidate b: even if she reached the last round, she
would lose against any other candidate (by 63 or 51 votes).

e In favor of candidate c: the fourth and fifth groups of voters are
interested (12 + 12 voters). For candidate ¢ not being eliminated
during the first round, it is necessary that 23 or 24 manipulators
put her on top of her ballot and that candidate a is eliminated (it
is not possible to eliminate candidate b or d). In the second round,
since candidates b and d have more that one third of the votes each
(37 and 39, respectively), candidate c is eliminated.

e In favor of candidate d: only the sixth group (28 voters) is in-
terested. During the first round, they cannot simultaneously save
candidates c and d from elimination: indeed, since candidate a re-
ceives 23 votes, manipulators and voters sincerely casting a ballot
for candidates ¢ or d would need to have at least 2 X 23 = 46
votes, but they have only 12 + 28 = 40. Hence, since candidate d
must stay, candidate ¢ must be eliminated in the first round. In the
second round, candidates a and b have more than one third of the
votes each (35 and 37 respectively), so candidate d is eliminated.

Since candidate c¢ is the relative Condorcet winner, we have
' (P) = c. Let us consider the following profile P’, an attempt of
manipulation in favor of candidate a.

P =

For the point of view of STV, the counting resolve the same way
and we have f(P') = a. And since there is no relative Condorcet
winner, we also have f*(P’) = a. In conclusion, f™ is CM in P
towards P’ in favor of a, whereas f is not CM in P.

Remark that the two examples are not constructed in the same
way. In Condorcet-dean, f and f™ give the same output in the initial
profile but different outcomes in the manipulated profile. In constrast,
in the example of STV, f and f™ return different outputs in the initial
profile but the same output in the manipulated profile. Both types of
problems can occur with the relative Condorcification.

We insist again on the importance of distinguishing the notions
of relative and absolute Condorcet winner when dealing with more

general preferences than strict total orders. For example, the proof of
the weak Condorcification Theorem presented by Green-Armytage
et al. [15] relies on relative Condorcification, so it cannot be adapted
to weak orders. In details, at the end of point 2 of their proof, it is
established that no candidate B is preferred by a strict majority to
some candidate A. In point 3 of the proof, it is deduced from this that
no candidate B can be a (relative) Condorcet winner. This implica-
tion fails with weak orders: indeed, a candidate B can be a relative
Condorcet winner and be preferred to A by only 45% of the voters,
whereas A is preferred to B by 40% of the voters.

6 Generalization

Up to now, we considered only ordinal voting rules: we use this term
in an extended sense, meaning that the winner depends only on the
binary relations of preference (whether they are orders or not, strictly
speaking). In this section, we generalize the previous results to non-
ordinal voting rules, where the ballot of a voter may contain infor-
mation that is not included in her order of preference, for example
Range Voting (where each voter assigns a grade to each candidate
in a set of authorized values, and the candidate with highest average
grade is elected).
An electoral space is defined by:

e Two non-empty finite sets V and C;

e For each voter v € V, a non-empty set €2, of her possible states;

e For each voter v € V, a function P, : Q, — R, where R denote
the set of binary relations over the candidates.

Denote Q =[],y Q. An element w € € is called a configura-
tion: for each voter v, it gives her state w,. Such an electoral space
is denoted by (V,C, 2, P), or just 2 in short. A voting rule (over an
electoral space 2) is a function f : Q — C.

As an example, for Range Voting, we can consider the following
model: for each voter v, her state w, is a vector of grades, one for
each candidate. Her order of preference P, (w,) is the one induced
by ws, in the sense that she prefers a candidate c to a candidate d iff
she assigns a strictly higher grade to c than d. This model is espe-
cially relevant if there is a great number of authorized grades: in that
case, it is reasonable to consider that if a voter sincerely assigns the
same grade to two candidates, then she is indifferent between them.

But this assumption is not reasonable when there is a small num-
ber of authorized grades (the extreme case being Approval Voting,
which can be seen as Range Voting with only grades 0 and 1). In any
case, the following model can also be considered. For each voter v,
her state w, is a pair (pv, gv), where p, is a strict weak order of
preference over the candidates and g, is a vector of C' grades that is
coherent with p,, in the sense that for any two candidates ¢ and d,
if ¢ py d, then g,(c) > guv(d). The function P, is then defined by
Py (pv, go) = po.

The framework of electoral spaces is a generalization of the ordi-
nal framework. Indeed, consider the model of Section 5, where P is
the set of binary relations that are possible for any voter. This can be
modeled by an electoral space where for each voter v, 2, = P and
P, is the identity function.

We say that f is coalitionally manipulable (CM) in configura-
tion w towards a configuration v iff:

fQ) # f(w),
Yv eV, (wv # wy = f(¥) P’U(wv) f(w))
The notions of InfMC, Condorcet winner and Condorcification ex-

tend easily to this new framework. We denote by My C € the set of
configurations where f is CM.



6.1 Weak Theorem of Condorcification

Theorem 3 (Weak Condorcification) If f meets InfMC, then its
Condorcification is at most as CM as f.

My C Mj.

Remark that if ¢ is a Condorcet configuration, then changing its
result to the Condorcet winner cannot worsen manipulability in )
(i.e. make it manipulable if it was not in the original rule). Indeed,
if f(1) is not the Condorcet winner, then f is CM in v anyway, be-
cause f meets InfMC; so, the modified voting rule cannot do worse.
However, this simple remark is not sufficient to prove the theorem:
it does not exclude the possibility that changing the result in ¢ make
another configuration w manipulable towards ).

Proof: Suppose that f* is CM in a configuration w towards a con-
figuration ¢, but f is not CM in w.

Let ¢ = f(w). Forany d € C\ {c}, we have |d Py (wy) c| < 4
otherwise, since f meets InfMC, f would be CM in w in favor of d.

As a consequence, no other candidate than c is an absolute Con-
dorcet winner in w. By definition of the Condorcification f*, this
leads to f*(w) = c.

Now, let d = f*(¢). We already know that ’d Py (wy) c| < 4.
Voters who do not prefer d to ¢ do not modify their ballots from w
to ¢, hence |d P, (1) ¢| < |d Py(wy) ¢| < . As a consequence,
d is not an absolute Condorcet winner in . So, by definition of the
Condorcification f*, there is no absolute Condorcet winner in ¢ and
we have f(¢) = d.

Hence, f(w) = f*(w) and f(¢p) = f*(¢) so f is CM in w to-

wards : this is a contradiction. (]

6.2 Strong Theorem of Condorcification

For the strong theorem of Condorcification (Th. 2), the key point is to
generalize correctly the central notion of RCW. In the most general
case, we say that candidate ¢ is an RCW in configuration w iff, for
any pair of candidates d,e € C \ {c} (not necessarily distinct from
each other):

’not(d P, (wy) ¢) and ¢ Py (wy) e‘ > 14 (1)

; @

’not(d P, (wy) ¢) and not(e Py (wy) c)’ > %

With the (usual) assumption that preferences are antisymmetric,
Eq. (2) becomes redundant and the definition amounts only to:

‘not(d Py (wy) c) and ¢ Py (wy) e‘ > %

Proposition 1, characterizing the RCW, generalizes as follows.

Proposition 2 (Characterization of the RCW) Given a configura-
tion w and a candidate c, consider the following conditions.

1. Candidate c is RCW in w.
2. For any Condorcet rule f, c is elected by sincere voting, i.e.
f(w) =c and f is not CM in w.

We have: 1 = 2. If all strict total orders are authorized for any
voter; i.e. if Yv € V, L C Py (), then the converse 2 = 1 is true.

This theorem states that the converse implication 2 = 1 is true, for
example, if for each voter v, her set P, (£2,,) of possible binary rela-
tions of preferences is the set of strict weak orders, since it includes
the set of strict total orders.

In order to have the converse implication 2 = 1, it is not possi-
ble to omit, in condition 2, the assumption that c is elected in any
Condorcet rule (or, equivalently, that ¢ is a Condorcet winner). Oth-
erwise, one may consider a configuration w where all voters are indif-
ferent between all candidates, i.e. all their binary relations of prefer-
ence are empty. In that case, obviously, no voting rule is manipulable
in w, but no candidate is RCW.

Proof: 1=-2.The proofis essentially the same as in proposition 1.
Not 1 = not 2. Assume that condition 1 is false, i.e. ¢ is not an
RCW. As in the proof of proposition 1, we can assume however that
cis a Condorcet winner, otherwise it is trivial that condition 2 is false.
We will prove that there exists a Condorcet rule f that is CM in w.

Since c is not RCW, at least one of equations (1) or (2) from the
definition is not met. We distinguish three cases: A. Eq. (2) is not
met; B. Eq. (1) is not met for some e = d; or C. Eq. (1) is not met
with e # d.

In each case, the principle is the same as in the proof of proposi-
tion 1: exhibit a configuration ¢ with no Condorcet winner, differing
from w only for some voters who prefer d to c. As a consequence, it
is possible to choose a Condorcet rule f such that f(¢)) = d. Finally,
f is CM in w towards %) in favor of d.

Case A. If there exists some candidates d and e such that Eq. (2) is
not met, it means that |not(d P, (wy) c) and not(e P, (wy) )| < ¥
Remark that e # d, otherwise we would have {d Py (wy) c‘ > %,
implying that c is not Condorcet winner. Up to switching roles be-
tween d and e, we can assume that e does not have an absolute
victory against d in w. Let p be a strict total order of the form:
(d > e > c > other candidates). For each voter v preferring d
to ¢ in w (“manipulator”), we can choose v, such that P, (¢,)= p,
thanks to the assumption that all strict total orders are authorized. For
each other voter v (“sincere voter”), let ¢, = w,. In the new con-
figuration ), candidate c is not a Condorcet winner, because she is
defeated by e: indeed, the only voters that claim not preferring e to ¢
in 1) are those of the sincere voters who already did so in w; formally,
[not(e Py (1hy) )| = |not(d Py(wy) c) and not(e Py (wy) ¢)| < 4.
which translates to |e Py (¢0) c‘ > % Candidate d cannot appear as
a Condorcet winner (because her duel against ¢ cannot have been im-
proved by manipulation [23]). Neither can candidate e because she
still has no absolute victory against d. And neither can other candi-
dates, because the number of voters who claim preferring c to them
has not decreased.

Case B. If Eq. (1) is not met for some e = d, it means that
|not(d P, (wy) ¢) and ¢ Py (w,) d| < 4. Let p be a strict total order
of the form: (d > ¢ > other candidates). For each voter v preferring
d to ¢ in w (“manipulator”), we can choose 1, such that P, (1, )= p,
thanks to the assumption that all strict total orders are authorized. For
each other voter v (“sincere voter”), let ¢, = w,. In the new configu-
ration v, candidate c is not a Condorcet winner, because she does not
have a victory against d: indeed, the only voters that claim preferring
c to d in 1) are those of the sincere voters who already did so in w;
formally, |c Py (1) d| = |not(d Py (wy) ¢) and ¢ Py (wy) d| < 4.
Candidate d cannot appear as a Condorcet winner (because her duel
against c cannot have been improved by manipulation [23]). And nei-




ther can other candidates, because the number of voters who claim
preferring c to them has not decreased.

Case C. Remains the case where Eq. (1) is not met, with e # d.
For any real number X, we will denote by | X | (resp. [ X ]) the floor
(resp. ceiling) function applied to X.

For any pair of candidates = and y, we will write:

e z I, (wy) yiff not z P, (wy) y and not y Py (w,) z (indifference).

e 1 PPy(w,) yiff x Py(wy) y and not y Py (w,) x (antisymmetric
part of preferences: this is equivalent to z P, y when the usual
assumption is made that preferences are antisymmetric).

e © MP,(wy) y iff x Py(wy) y and y Py(wy) x (mutual prefer-
ence: this cannot happen when the usual assumption is made that
preferences are antisymmetric).

As a notational convenience, we will omit the configuration when it
is w (and not when it is ): for example, = P, y means = P, (wy) .

We denote Acq(w) = |c Py(wy) d |: it is the number of voter who
prefer c to d in w.

In this third case, Eq. (1) is not met, with e # d. Denoting B =
[not(d Py, c) and c P, el, it means that B < 4. Using case A, we
can assume, however, that Eq. (2) is met.

We will see that in the final configuration 1, we can ensure that
there is a victory neither for ¢ against e, nor for e against c.

Let p be a strict total order of the form: (d > e > c¢ > other
candidates).

Let p’ be a strict total order of the form: (d = ¢ = e = other
candidates).

Since ¢ is Condorcet winner, we have A¢.(w) > %, s0:

dP,candcP, e >%—B20.

As a consequence, we can choose L%j — B voters among the manip-
ulators (voters preferring d to ¢ in w); for each of them, denoted v,
choose ), such that P, (3, )= p’. For each other manipulator v,
choose v, such that P, (¢, )= p. Finally, for each voter who prefers
cto din w (“sincere voter”), let 1, = wsy.

Then, we have:

A(®) =B+ Q%J - B) = H , )

so ¢ has no victory against e.

By the way, Eq. (1) is not met for this pair (d,e) but Eq. (2) is
met, which respectively translate to the first and second following
equations:

‘not(de ¢) and ¢ PP, e’+‘not(de ¢) and ¢ MP,, e‘ < g ,
v
‘not(d P, ¢) and c PP, e’ + ‘not(d P, ¢) and c L, e‘ > 5|
hence, by subtraction:
\% (V]
‘not(dPU ¢) and cMPUe‘ — ‘not(de ¢) and clve‘ < i

Thanks to our assumptions on the manipulators’ ballots in v, the only
voters who claim preferring mutually c to e or be indifferent between
these two candidates in ) are those of the sincere voters who did so
in w. Formally:

’c MP,, (¢y) e. = .not(d P, ¢) and ¢ MP, e‘,

’clv(wu) e’ = ‘not(d P, ¢) and c I, e).

By substitution in the previous equation, this leads to:

|4 Vv

eMpu(i) o - [ertwa o < | 5| - [5] @

As a general remark, it is easy to prove that:

Aec(h) + Ace() = V + ]cMPU(wU) el — ‘c I () e‘. (5)

Substituting equations (3) and (4) in equation (5), we deduce:

iz 3] [2)- 5]

so e has no victory against c.

To sum up, neither ¢ nor e can be Condorcet winner. For the same
reasons as in previous cases, neither can d nor any other candidate.
O

As a corollary, the strong theorem of Condorcification (Th. 2) still
holds true in the general case (remind that f* designates the absolute
Condorcification). This also implies the optimality corollary (Cor. 1)
in this more general framework.

Consequently, even in a broader framework when non-ordinal vot-
ing are authorized, our main message still holds. In the class InfMC,
when searching for a voting rule with minimal coalitional manipu-
lability, investigations can be restricted to Condorcet rules. In other
words, it is possible to have both the Condorcet criterion and a mini-
mal vulnerability to coalitional manipulation.

7 Conclusion

We recalled the weak theorem of Condorcification, initially stated
by Durand et al. [7] and Grenn-Armytage et al. [15]: for all voting
rules that meet the informed majority coalition criterion, their Con-
dorcification is at most as CM as the original rule (Th. 1). Then we
introduced the notion of resistant Condorcet winner and we used it to
prove the strong theorem of Condorcification (Th. 2): for a large class
of voting systems, the improvement provided by Condorcification is
strict. We think that the most important consequence of these results
is the optimality corollary (Cor. 1): when searching for a “reason-
able” voting rule (i.e. meeting InfMC) with minimal manipulability,
investigations must be restricted to voting rules meeting the resistant-
Condorecet criterion and can be restricted to Condorcet rules.

When preferences are not limited to strict total orders, and in par-
ticular when they are strict weak orders, we showed that all previous
results hold, provided that the notions of Condorcet winner and resis-
tant Condorcet winner are generalized adequately. In particular, we
showed that the weak theorem of Condorcification (and, as a con-
sequence, the strong theorem) becomes false when considering the
usual notion of relative Condorcet winner, but holds true when using
the absolute Condorcet winner.

Finally, we showed that all our results extend to non-ordinal vot-
ing rules, and in particular cardinal voting rules such as Approval
voting and Range voting. In particular, we presented a new proof of
the weak theorem of Condorcification (Th. 3) that covers this most
general model.

For future work, it would be interesting to evaluate quantitatively
the difference of manipulability between a voting rule and its Con-
dorcification: that could be done using a theoretical approach or com-
puter simulations.
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