Franc ¸ois Durand
email: francois.durand@dauphine.fr

Fabien Mathieu
email: fabien.mathieu@alcatel-lucent.com

Ludovic Noirie
email: ludovic.noirie@alcatel-lucent.com

SVVAMP: Simulator of Various Voting Algorithms in Manipulating Populations

We present S V VAMP, a Python package dedicated to the study of voting systems with an emphasis on manipulation analysis.

Introduction

History of voting theory has been marked by the discovery of several paradoxes, such as Gibbard-Satterthwaite impossibility theorem on manipulation [START_REF] Gibbard | Manipulation of voting schemes: A general result[END_REF][START_REF] Satterthwaite | Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions[END_REF]. Since no reasonable voting system can avoid these paradoxes totally, their likeliness of occurrence under various probability assumptions or in real-life elections has been studied at length. However, there remain open questions in the domain, especially about the relative performance of various voting systems according to different criteria and under different sets of assumptions on the preferences of the voters.

Recently, interesting results were published about algorithmic issues linked to voting systems and their manipulation [START_REF] Bartholdi | Single transferable vote resists strategic voting[END_REF][START_REF] Xia | Complexity of unweighted coalitional manipulation under some common voting rules[END_REF][START_REF] Walsh | Manipulability of single transferable vote[END_REF][START_REF] Zuckerman | Algorithms for the coalitional manipulation problem[END_REF][START_REF] Zuckerman | An algorithm for the coalitional manipulation problem under Maximin[END_REF][START_REF] Gaspers | Coalitional manipulation for Schulze's rule[END_REF]. However, to the best of our knowledge, there was no publicly available software building on these existing techniques, in particular for the study of manipulability.

This observation led us to develop S V VAMP (Simulator of Various Voting Algorithms in Manipulating Populations), a Python package designed to study voting systems and their manipulability.

Voters' preferences can be imported from external files or generated by a variety of probabilistic models. S V VAMP currently implements more than 20 voting systems, and its object-oriented design facilitates the implementation of new voting systems. Special attention has been paid to Coalitional Manipulability (CM) and its variants. Algorithms for Condorcet efficiency, Individual Manipulability (IM) and Independence of Irrelevant Alternatives (IIA) are also implemented.

Functionalities

S V VAMP can investigate multiple manipulation-related criteria for a large set of populations and voting systems.

Copyright c 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Importing / Creating Populations

Populations in S V VAMP can be described through ordinal or cardinal preferences. Cardinal preferences are transparently converted to rankings whenever necessary. Importing a population from an external file is straightforward: S V VAMP can read simple CSV files containing the utilities of the population or files using the PrefLib format [START_REF] Mattei | Preflib: A library of preference data[END_REF]. To generate artificial random populations, S V VAMP implements a variety of probabilistic models (cultures):

Spheroid, Cubic Uniform and Ladder, three extensions of the Impartial Culture.

Gaussian Well and Euclidean Box, two geometric models, which can be for instance used to produce single-peaked populations.

Von Mises-Fisher, which is similar to Mallows' model [START_REF] Mallows | Non-null ranking models[END_REF]), but outputs cardinal preferences.

For any given population, S V VAMP can produce basic analysis: existence of a Condorcet winner, Borda and Plurality scores, . . .

Implemented Voting Systems

S V VAMP currently implements more than 20 voting systems: Approval, Range Voting, Majority Judgment, Plurality, Anti-Plurality, Borda Rule, Simplified Dodgson method, Kemeny method, Maximin, Baldwin method, Nanson method, Tideman's Ranked Pairs, Schulze method, IRVlike multi-rounds systems (Instant-Runoff Voting, Exhaustive Ballot, Instant-Condorcet Runoff Voting, . . .), Two-Round System, Coombs method, Bucklin method and Iterated Bucklin method. For more details, please refer to the documentation or [START_REF] Tideman | Collective Decisions And Voting: The Potential for Public Choice[END_REF].

Studying Manipulability

For any given election (combination of a population and a voting system), S V VAMP can decide, in addition to the sincere winner w of the election, the following issues:

Independence of Irrelevant Alternatives (IIA): is w still the winner when the election is held with any subset of the candidates including w? IIA is a central notion in Arrow's celebrated impossibility theorem [START_REF] Arrow | A difficulty in the concept of social welfare[END_REF].

Individual manipulation (IM): can a voter v, by casting an insincere ballot, secure an outcome c that she strictly prefers to w (while other voters still vote sincerely).

Coalitional manipulation (CM): can a subset of voters, by casting insincere ballots, secure an outcome c that they strictly prefer to w (while other voters still vote sincerely).

Ignorant-Coalition Manipulation (ICM), Unison-Manipulation (UM) and Trivial Manipulation (TM), three alternative types of coalitional manipulation.

Technical Details Algorithms

Determining manipulability, especially CM, can be computationally challenging (for example, it is NP-complete for Borda Rule, Maximin, Coombs method and IRV).

S V VAMP is the first publicly available software implementing state-of-the-art algorithms [START_REF] Xia | Complexity of unweighted coalitional manipulation under some common voting rules[END_REF][START_REF] Zuckerman | Algorithms for the coalitional manipulation problem[END_REF][START_REF] Zuckerman | An algorithm for the coalitional manipulation problem under Maximin[END_REF][START_REF] Gaspers | Coalitional manipulation for Schulze's rule[END_REF][START_REF] Walsh | Manipulability of single transferable vote[END_REF]) and original heuristics. By default, it tries its most precise algorithm among those running in polynomial time (exact computation can be specified). Approximations conventionally return nan if they cannot decide. S V VAMP also embeds brute force algorithms to provide exact computation for any voting system (only recommended for small instances).

Architecture S V VAMP is written in a modular way. For instance, testing CM is defined in class Election and calls a set of specific sub-functions. Each of these sub-functions can be overridden in the subclass implementing a specific voting system, while keeping the others. This facilitates the definition of new voting systems.

These generic methods defined in S V VAMP allow developers to quickly define a new voting system, only by its rule, and already benefit from generic manipulation algorithms, which makes S V VAMP easily extensible.

Voting systems also come with special attributes that represent a variety of properties that are used to avoid unnecessary computations. For instance, if a voting systems verifies the Condorcet criterion and if a population admits a Condorcet winner, then S V VAMP immediately concludes that the corresponding election meets the IIA criterion.

Also note that S V VAMP tries to be as lazy as possible. For example, if asked to determine if an election is CM, it will first perform some preliminary checks based on election's properties, then it will cycle through the candidate until it finds a manipulation. If later one wants to get the list of candidates for which a manipulation is possible, S V VAMP resumes the computation where it stopped.

Performance S V VAMP is designed to run large scale experiments on regular computers. To give an order of magnitude, a full study of all voting systems on 10 000 populations drawn with the Spheroid culture, with V = 33 voters and C = 5 candidates takes less than one half-hour on a 2.3 GHz personal laptop.

Available Code

S V VAMP is a free software, under GNU General Public License version 3. Its documentation includes installation procedure, tutorials, reference guide and instructions for new contributors. It is available at: https://svvamp.readthedocs.org. We hope that it will be useful to researchers, teachers and students interested in voting theory.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence

Acknowledgment

The work presented in this paper has been carried out at LINCS (http://www.lincs.fr).