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Cooperative Localization of Vehicles sharing GNSS Pseudoranges
Corrections with no Base Station using Set Inversion

Khaoula Lassoued, Philippe Bonnifait and Isabelle Fantoni

Abstract— Fully distributed localization methods with no cen-
tral server are relevant for autonomous vehicles that need
real-time cooperation. In this paper, mobile vehicles share
estimates of GNSS pseudoranges common errors also known
as biases. The biases that affect the pseudoranges are mainly
due to signal propagation and inaccurate ephemeris data. By
describing the measurements models as geometric constraints
on intervals, cooperative localization turns into distributed set
inversion problem. The solution of this problem is guaranteed to
contain the true vehicles positions. We consider vehicles which
cooperate and exchange information in order to improve the
absolute and relative estimation by fusing pseudoranges correc-
tions shared between them. Results using real measurements
are presented to illustrate the performance of the proposed
approach in comparison with a standalone method.

I. INTRODUCTION

In intelligent vehicles systems, reliable position estimates
are crucial. Mutual cooperation aims to enhance positioning
and reduce uncertainty arising from low cost sensors. For
example, when using low cost Global Navigation Satellite
Systems (GNSS) receivers in complex environments, atmo-
spheric and ephemeris errors can have a great impact on
the estimated position. The effects of these errors can be
reduced by considering information exchange. Our target is
to eliminate the effects of the slowly varying pseudoranges
errors that bias the estimation and to improve the relative
and absolute localization performance.

Common approaches for localization are Bayesian methods
relying on Extended Kalman Filtering [1] or Least Square
Estimation [2]. These probabilistic methods estimate the
position but do not provide reliable confidence domains. Set
Inversion Via Interval Analysis (SIVIA) (a particular set-
membership or bounded-error estimation method) provides
an elegant solution to the data incest problem arising from
the repetitive fusion of identical information. The SIVIA
method is able to give sets that always contain the true
position of the vehicles without any over-convergence. A
set-membership approach is based on the hypothesis that
model and measurement errors are bounded. It has been
successfully applied for model parameters estimation [3] and
robots position estimation when reliable confidence domains
are required [4]. Meizel et al. [5] developed a set inversion
method based on bounded-error observers for single robot
localization. However, SIVIA is not suitable to be applied in
real time if the number of bisections is high. One solution
is to use SIVIA while simultaneously solving a Constraint
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Fig. 1: Experimental vehicles and shared data

Satisfaction Problem (CSP) to limit the computing time of
bisections [6]. Concerning multiple robots localization in real
time, several recent studies are based on set inversion under
CSP. Drevelle et al. [7] exploited a group of Automated
Underwater Vehicles (AUVs) to characterize a large explored
space for monitoring. In their application, they used range
sensors to measure the inter-distance between robots. More-
over, A. Bethencourt [8] used distributed set-membership
algorithms in a group of AUVs based on inter-temporal
measurements to accomplish a swarm cooperative mission.
In this work, the data fusion of Dead Reckoning (DR) and
exteroceptive sensors was used but biased measurements
were not considered.

In this paper, we propose a new formulation of multi-vehicles
cooperation using set inversion with CSP techniques on
intervals. We assume that they are able to cooperate and
exchange information such that each vehicle can compute
the partner position with a reliable domain. The main con-
tribution of this paper is to show the improvement of the ego-
positioning and of the mutual localization among networked
vehicles that share estimated biases (or corrections) of GNSS
pseudoranges. The cooperative scenario is illustrated in Fig.
1. The developed method allows the data fusion of estimated
biases in a distributed way with no central fusion node
and with no base station. Experimental validation with two
vehicles is then realized to evaluate the performance in real
conditions.

Section II introduces the system modeling and an observabil-
ity study of the cooperative system. Section III presents the
set inversion method using CSP on intervals. The proposed
distributed cooperative localization algorithm is described in
section IV. Experimental results are presented in section V.

II. STRUCTURAL PROPERTIES

The data fusion of GNSS measurements with DR measure-
ments is often adopted to enhance localization accuracy. In
this section, the mathematical models of the measurements
are described and an observability study of the cooperative
system is considered.



A. Models

The GNSS raw measurements considered here are L1 pseu-
doranges. The pseudorange ρji [9] is the measure of each
vehicle Ri (i = {1, . . . , nr}) located at coordinates pi =
[xi, yi, zi] to each satellite j (j = 1, . . . , ns) at position
pj = [xj , yj , zj ]. We model the common GNSS error bj

as an additive error. The model of ρji is given by Eq. (1).

ρji =
√

(xi−xj)2+(yi−yj)2+(zi−zj)2+bj+di + βj

(1)

where di represents the receiver clock offset and βj the
measurement noise. Please refer to [10] for further details.

Let iy ∈ Rns be the vector of ns pseudoranges measure-
ments and ix ∈ Rn be the state vector of vehicle i. The
observation model at discrete time k is defined as follows:

iyk = g(ixk) (2)
Suppose that each vehicle is equipped with a compass and
wheel encoders to measure the yaw angle and the speed.
These measurements are seen as an input vector iu(t) =
[ vi ψi ]T . A unicycle evolution model for the pose, a
linear drift assumption for the clock and an auto-regressive
(AR) model for the biases allow expressing the derivative of
the state by a non-linear function f in a local East North Up
frame:

f(ix, iu) =

{
ẋi = vi cos(ψi); ẏi = vi sin(ψi); żi = 0

ḋi = dri; ˙dri = 0; ḃj = a bj

(3)

ψi is the orientation angle of the vehicle assumed to be
measured. vi represents the measured linear velocity of the
vehicle. di and dri are respectively the receiver clock offset
and its drift to be estimated. a = e−Te/τ , Te being the
sampling time and τ the time constant of the auto-regressive
model of bias bj (a 6= 0). The indexes of the vehicles and
common satellites are respectively denoted by i ∈ {1 . . . nr}
and j ∈ {1 . . . ns}. For a practical implementation, the
evolution model can be written in a discrete vectorial form
ixk = fk(ixk−1,

iuk−1).

B. Observability analysis

Errors on pseudorange measurements are spatially correlated
and common for close users [9]. Therefore, it is essential
to study the observability to evaluate if the problem is
solvable with no base station. Rife and Xiao [11] have
shown that it is not possible to estimate biases simply by
sharing GNSS pseudorange measurements between vehicles
communicating in a Vehicle-to-Vehicle (V2V) network in a
snapshot way (Epoch by Epoch). They have highlighted the
limitation of distributing only GNSS data and proposed to
add georeferenced information by using camera-based lane
boundary sensor. A natural question that arises is whether
GNSS biases are observable when adding vehicles motion
information and errors evolution models.

In this section, we investigate the observability of the co-
operative localization problem of vehicles sharing biases
estimates when they are moving. The cooperative system
described in section II given DR and pseudorange mea-
surements is nonlinear. Therefore, we use the observability
rank criterion based on Lie-Derivatives [12] to determine
the conditions under which the system is locally weakly
observable. Recently, Zhou et al. [13] have used the Lie
derivatives to determine the conditions for the observability
of 2D relative pose of pairs of mobile robots using range
measurements. In the sequel, a test of Lie derivatives is
considered for vehicles sharing GNSS errors. This study
is inspired by the work of Zhou et al. [13]. Let consider
nr vehicles and ns common visible satellites. Let x̂ be the
estimated state of the cooperative system (S) as follows

x̂ = [p̂1, d̂1, . . . , p̂nr
, d̂nr

, b̂1, . . . , b̂ns ]T (4)

with dim(x̂) = 4nr + ns. p̂1···nr
are the 3D vehicles po-

sitions, d̂1···nr represent the receivers clock offsets. (b̂1···ns )
denote the biases on ns common pseudorange measurements
between vehicles.

The considered evolution model in this study consists in the
first four DR equations of the system (3) and the last equation
for the evolution of biases.

Let consider u = [v1 . . . vnr ]T the input of the system (S)
in (4). The nonlinear DR model of (S) can be written as
follows:

ẋ =

f0︷ ︸︸ ︷

0
0
0
dr1

...
0
0
0

drnr

a b1

...
a bns



+

f1︷ ︸︸ ︷

cos(ψ1)
sin(ψ1)

0
0
...
0
0
0
0
0
...
0



v1 + · · ·+

fnr︷ ︸︸ ︷

0
0
0
0
...

cos(ψnr )
sin(ψnr )

0
0
0
...
0



vnr (5)

The nonlinear observation equations are given by

y =

n
s
×
n
r





‖p1 − p1‖+ d1 + b1

...
‖p1 − pns‖+ d1 + bns

...
‖pnr

− p1‖+ dnr + b1

...
‖pnr

− pns‖+ dnr + bns


(6)

We compute hereafter the necessary Lie derivatives of y and
their gradients:
Zeroth-order Lie derivatives (L0y):

L0y = y

with gradient:



∇L0y = jacobian(y)

= G =

n
r
×
n
s



G 0 · · · 0 I
0 G · · · 0 I
...

...
. . .

...
...

0 0 · · · G I



4nr+ns︷ ︸︸ ︷
(7)

where I is the identity matrix with dim(I) = ns×ns and G
is the geometry matrix described in [11] where G is defined
as follows:

G =


(u1)T 1
(u2)T 1

...
...

(uns)T 1

 (8)

with dim(Gi) = ns × 4, the unit vector uj in G is the
estimated line of sight from the satellite j to each user
receiver i. This pointing vector is the same for all users
when they are assumed to be in close proximity (e.g. distance
between vehicles ≤ 10km):

uj = (pi − pj)/‖pi − pj‖. (9)

First-order Lie derivatives (L1
f0
y):

L1f0y = ∇L0y · f0 =

n
s
×
n
r





a b1 + dr1
...

a bns + dr1
...

a b1 + drnr

...
a bns + drnr


with gradient:

∇L1f0y =

n
s
×
n
r




4nr︷︸︸︷
0

ns︷︸︸︷
aI

...
...

4nr︷︸︸︷
0

ns︷︸︸︷
aI


The observability matrix is now:

O =

[
∇L0y
∇L1

f0
y

]
. (10)

The role of the observability matrix in the observability
analysis of a nonlinear system is given in [12], and recalled
below.
Definition 1: Observability Rank Condition: The observabil-
ity rank condition is satisfied when the observability matrix
is full rank.
Theorem 1: Observability Necessary Condition: If the ob-
servability rank condition is satisfied for all values of the
state x, then the system is locally weakly observable.

Below, we compute the rank of the observability matrix
(10) and determine the necessary conditions under which
the system (S) is locally weakly observable.

rank(O) = rank(∇L0y) + rank(∇L1
f0y) (11)

The rank of ∇L0y has been studied in [11]. It has been
proven that rank(∇L0y) = 4(nr−1)+ns. It is straightfor-
ward to determine the rank of ∇L1

f0
y. Since the number of

linearly independent equations in ∇L1
f0
y appears to be ns,

rank(∇L1
f0
y)=ns if we have a 6= 0 (i.e. the biases change

over time).

So, according to (11) we get:

rank(O) = 4(nr − 1) + 2ns (12)

The rank of O depends on the number ns of satellites in
common among the users. It is obvious that rank(O) can
not exceed the nI unknown states of (S) which is equal to
4nr + ns (i.e. rank(O) ≤ 4nr + ns). So to get a full rank
matrix, one must determine ns such that

rank(O) ≥ 4nr + ns. (13)

By replacing (12) in (13) we get: ns ≥ 4. According to
theorem 1, it can be concluded that the system is locally
weakly observable regardless the number of users (nr) if the
biases follow an auto-regressive model and if the vehicles
have at least 4 common satellites.

III. SET INVERSION WITH CSP

Set inversion is a particular method of bounded error state
estimation. This method avoids the data incest problem
when fusing redundant data and gives reliable confidence
domains of vehicles positions which is crucial for close
navigation. Hereafter, some backgrounds of set inversion and
CSP methods are recalled.

The objective of a set inversion method is to determine the
unknown state X ⊂ Rn such that f(X) ⊂ Y, where Y is
a given set of measurements. We have then to compute the
reciprocal image X = f−1(Y). A guaranteed approximation
of the solution set X can be done using 2 sub-pavings which
bracket the solution set as follows X ⊂ X ⊂ X (Fig. 2). A
box [x] of Rn is feasible if it is inside X and unfeasible if it
is outside X, otherwise [x] is indeterminate. SIVIA, used in
this work, is an algorithm for solving a set inversion problem
using interval analysis by testing feasibility of boxes [3],
[14]. It explores an arbitrarily large initial box by testing
its inclusion or not in Y using an inclusion function [f ]
and bisecting it otherwise. However, a bisection increases
exponentially the complexity of the computation, particularly
when treating box of a high dimension problem. In order to
solve this problem, CSP is used to reduce the box in an
optimal way before being bisected. A CSP aims at solving
a set of constraints denoted by H (Eq.14), in which a box
[x] should satisfy all the constraints of a vector F .

CSP H : {(F (x) = 0 | x ∈ [x])} (14)



Contracting H means replacing [x] by a smaller domain [x′]
such that the solution set remains unchanged. The used con-
tractor strategy consists in Forward-Backward Propagation
[15]. The CSP consists then in applying contractors using
Waltz’s algorithm [16]. CSP and SIVIA algorithm can be
mixed together to get the “SIVIAP” algorithm (please refer
to [6], [14]) in order to speed up the processing by reducing
the number of bisections through boxes contractions.

IV. COOPERATIVE LOCALIZATION WITH RELIABLE
CONFIDENCE DOMAINS

The cooperative localization strategy is similar to the one
presented in [10], where vehicles share their estimated GNSS
errors, DR measurements and positions in order to improve
the absolute and relative positioning. The main difference
consists in using the set-membership method, in particular
the set inversion method under CSP, instead of the Bayesian
one. The objective is to get reliable confidence domains that
contain the true positions of the vehicles.

A. Problem statement

Let us describe the variables, the domains and the constraints
of the considered CSP.

Variables. In each agent Ri, there is an ego state to be
estimated and tracked poses of the other vehicles Ro in the
group, where o ∈ {1, . . . , nr − 1} and o 6= 0.

Ego state: let ν = {xi, yi, zi, b1, . . . , bns , di, ḋi} be the
variables of the ego state ixego of Ri of dimension n =
5 + ns. Only these variables are considered in the CSP. We
denote the absolute pose by iq = {xi, yi, zi}, the biases of
all ns satellites in view by ib = {b1, . . . , bns} and the inner
variables of Ri by iξ = {di, ḋi} which contain respectively
the clock offset di and its drift ḋi.

Tracked pose: let iqo = {iq1, . . . , iqnr−1} be the pose of
the other vehicles.

The ego input of Ri is denoted by iuego = {vi, ψi}, where
vi and ψi are respectively the linear speed and the heading
angle measurements. iuo = {iu1, . . . ,

iunr−1} represents
the input of Ro composed of iuo = { vo, ψo }.
Domains. The domains of the variables are sets enclosing the
true value of the variables which are presented as intervals.
For example, the states of the vehicles are vectors of intervals
of Rn

[ixego] =
[

[iq]T [ib]T [iξ]T
]T

Constraints. Let us now describe the constraints which
link the variables at each time k as (i) ixego,k =
f(ixego,k−1,

iuego) and (ii) iyk = g(ixego,k). The con-
straint (i) corresponds to the evolution equation. The con-
straint (ii) defines the CSP which is used in SIVIAP. g is
replaced by its natural inclusion function, iyk corresponds
to measurements intervals to be inverted and ixego,k is a
prior feasible box.

Solver. SIVIAP approximates the vector state ixego,k such
that g(ixego,k) ⊆ [iyk] using the forward-backward contrac-

[ ]

Fig. 2: Bracketing of solution set X between two subpavings X
and X = X ∪ ∆X . [X] is the covering box of X.

tors. The set CSP to be characterized by SIVIAP is defined
below (Eq. 15)

CSP = {ixego,k ⊆ [ixego,k]\g(ixego,k) ⊆ [iyk]}
= g−1([iyk]) ∩ [ixego,k] (15)

B. Cooperative algorithm

We describe the distributed cooperative Algorithm 1 in any
vehicle Ri.
Agent Ri predicts its ego state ixego using the evolution
model in Eq. (3) and its DR inputs ( vi, ψi ) measured at
every 0.01s (line 1). Moreover, each vehicle i tracks the other
vehicles (line 2) using their last received DR inputs and the
discrete evolution function of the position which is presented
in its continuous form in Eq. (3).
Lines (4 · · · 14) of the algorithm consist in updating the
predicted state ixego with respect to the GNSS measurements
which are available every 0.2s. In order to reject the outliers
at each time k when the GNSS measurements are available,
a validation process on the measurements of every satellite is
performed. For every pseudorange measurement, we check
if the SNR (Signal to Noise Ratio) of the satellite is high
enough (e.g. 35 dB/Hz). Afterward, we apply the SIVIAP
algorithm presented in [14] with the following modifications.
The considered solution is the covering box of X, which is
the union of the inner X and indeterminate ∆X subpavings as
it is shown in Fig 2. In order to stop the bisections, we limit
the computational time at 0.1 s for each GNSS pseudorange
measurement epoch.
In our problem, the delays of communication (line 15) have
to be smaller than the processing period. If not, steps 16 and
17 of the algorithm can be extended with data buffers to do
the prediction on a horizon. The sent (dataS) and received
(dataR) information at each instant k by each vehicle are its
last ego pose, its last estimates of the biases, its current DR
input vector and its identifier id in the group. The amount
of the transmitted information is low, since vehicles only
exchange the lower and upper bounds of bounding boxes of
the subpavings.
In line 16 of the algorithm, each vehicle i updates the
tracked pose of the others Ro by the received estimated pose
[iqo] := [oqego]. Finally, Ri merges its estimated biases with
the received ones from the other vehicles Ro simply as the
intersection [ib] = [ib] ∩ [ob].

V. EXPERIMENTAL RESULTS

We present the results of two scenarios - Standalone (S)
and Cooperative (C) - to quantify the performance gain due
to the cooperation. The proposed approach has been tested
with two experimental vehicles (Fig. 1). The data-set is the



Algorithme 1 An iteration stage of the method in iR

Cooperation (in:[ixego], [iuego],
[
ρ11, . . . , ρ

ns
1

]
, [oq], [ouego], [

ob]
; out:[ixego], [iqo])

1: [iuego] = [vi, ψi]
T

=Get(DR measurements)
2: Prediction (in: [iuego] ; in out:[ixego] )
3: Track (in: [iqo], [

iuo] ; out: [iqo])
4: if New GNSS data is available then
5: ns= number of visible satellites
6:

[
ρ11, . . . , ρ

ns
1

]
=Get(GNSS measurements)

7: Good_Pr=∅
8: for j = 1, . . . , ns do
9: if (ρj is good) then

10: Add(ρj) to the Good_Pr list ([iygood])
11: end if
12: end for
13: SIVIAP (in: CSp , [iygood], ε; in out: [ixego])
14: end if
15: Communication(in: dataS; out: dataR)
16: Track_update(in: [oq]; out: [iqo])
17: Fusion(in out: [ib],[ob])

estimated boxes
reference

R2

R1

Fig. 3: Trajectories and position boxes of both vehicles.

same as the one used in [10]. A low-cost U-blox 4T GPS
receiver providing pseudoranges was used in every vehicle.
A Polarx Septentrio was used in RTK mode to obtain the
ground truth data and a CAN-bus gateway to get the DR
measured input uego =

[
v ψ

]T
. 10 satellites were in

view during the test and 5 of them were at least in common
which satisfies the necessary condition of the observability
discussed in section II-B. The GPS satellite visibility was
sometimes very constrained due to the buildings and trees
near the test area since the experiments were carried out in
the campus of the university. The reported test was around 4
minutes long. The algorithm has been implemented in C++
using the interval library IBEX [17]. Fig. 3 shows a top
view of the trajectories and the estimated position boxes of
both vehicles using the (C) method. The representation of
solution is the covering box [X] of the union of the inner
and indeterminate subpavings: X ∪∆X.

Fig. 4 and 5 show the bounds of position errors of the
vehicles respectively for the x and y dimensions using the (C)
and (S) methods. At a first glance, one can check the integrity
of both observers due to the fact that bounds contain always
the zero value. It means that the RTK reference position
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Fig. 4: Bounds of position errors of R1.
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Fig. 5: Bounds of position errors of R2.

is always included in the estimated boxes (i.e. guaranteed
results) which indicates a good tuning of the observers.

Fig. 6 shows the estimated bounds of the relative distance.
Thanks to the cooperation, there is gain of accuracy in the
order of several meters.

Table I gives some performance metrics for both methods in
term of absolute and relative HPE and Confidence Domain
Size (CDS) of the resulting boxes. The CDS is simply the
surface of the 2D boxes here. The Cumulative Distribution
Functions (CDFs) of the CDS of the vehicles boxes through-
out the trajectory are shown in Fig. 7. A net improvement is
obtained for vehicle R1 in terms of accuracy and uncertainty
reduction. For instance, the median of the HPE is reduced
from 2.41m to 1.67m and the CDS is 66% condensed
due to the cooperation since the 95th percentile of CDS is
less than 466.6m2 compared to 1390m2 when using the
S method. Concerning vehicle R2, the improvement of the
HPE is not as noticeable as for R1 . Indeed, R2 used more
satellites for the biases update than R1. This explains the
improvement of the positioning performance of R1 compared
to R2. Nevertheless, the uncertainty is reduced a lot as since
the 95th percentile of the CDS is less than 256m2 compared
to 501.4m2 when using the S method which is a 49%
improvement.

Regarding the relative HPE, the method has improved the
accuracy of the relative localization thanks to the fusion
of the biases estimates. Especially, if we look at the error
average and error standard deviation, there are reduced
respectively from 3.66m and 2.87m to 3.01m and 2.46m.
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Fig. 6: Bounds of the relative distance between the vehicles

HPE R1 HPE R2 Relative HPE

Std. dev. (m2)
C 1.69 1.41 2.46

S 2.28 1.33 2.87

Max (m)
C 6.02 4.30 8.87

S 5.77 4.28 8.27

Median (m)
C 1.67 1.95 3.01

S 2.41 1.76 3.66

TABLE I: HPE and CDS statistics

The bias on every pseudorange has been initialized with
the interval [−30, 30] giving no prior knowledge. For each
subplot of Fig. 8, the x axis expresses the number of
samples, the y axis gives every center and bounds of the
estimated bias interval [bj ] in meters where j = 1, . . . , ns.
Note that all subplots are truncated in order to observe the
convergence illustrated by the horizontal final asymptotes.
This convergence highlights the usefulness of the previous
observability analysis. The observed final values of the biases
are very common for a low cost GNSS receiver.
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Fig. 7: Cumulative Distribution of Confidence Domain Size (CDS)
VI. CONCLUSION

A cooperative localization method for intelligent vehicles
sharing GNSS common errors has been proposed, studied
and evaluated experimentally. Thanks to an observability
study, it has been found that at least 4 satellites and an
auto-regressive model of biases are needed to keep the
states observable. Afterward, a new distributed cooperative
approach using a set inversion method with CSP has been
proposed. This method has the advantage to guarantee that
there is no data incest and it handles rigorously the non-
linearity of the equations. This new cooperative method
provides a significant enhancement to absolute and relative
positioning in terms of accuracy and confidence domains
compared to usual standalone methods.
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Fig. 8: Estimates and bounds of pseudoranges correction (units are
samples and meters).
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