N
N

N

HAL

open science

Formal Proof of Dynamic Memory Isolation Based on
MMU

Narjes Jomaa, David Nowak, Gilles Grimaud, Samuel Hym

» To cite this version:

Narjes Jomaa, David Nowak, Gilles Grimaud, Samuel Hym. Formal Proof of Dynamic Memory Isola-
tion Based on MMU. 10th International Symposium on Theoretical Aspects of Software Engineering,

Jul 2016, Shanghai, China. pp.73-80, 10.1109/TASE.2016.28 . hal-01369769

HAL Id: hal-01369769
https://hal.science/hal-01369769v1
Submitted on 13 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01369769v1
https://hal.archives-ouvertes.fr

Formal Proof of Dynamic Memory Isolation Based on MMU

Narjes Jomaa, David Nowak, Gilles Grimaud and Samuel Hym
CRIStAL, CNRS & Lille 1 University, France

Abstract—For security and safety reasons, it is essential
to ensure memory isolation between processes. The memory
manager is thus a critical part of the kernel of an operating
system. It is common for kernels to ensure memory isolation
through a piece of hardware called memory management unit
(MMU). However an MMU by itself does not provide memory
isolation. It is only a tool the kernel can use to ensure this
property.

In this paper we show how a proof assistant such as
Coq can be used to model a hardware architecture with
an MMU, and an abstract model of microkernel supporting
preemptive scheduling and memory manager. We proceed by
making formally explicit the consistency properties that must
be preserved in order for memory isolation to be preserved.

Keywords-Formal proof; Memory isolation; Micro-kernel;
Cogq.

I. INTRODUCTION

Modern operating-system kernels allow to share computer
resources between untrusted processes, and to rapidly deal
with external events, e.g., arrival of a network packet that
would be lost if not dealt with immediately. In this context,
for both safety and security reasons, it is important to
respectively prevent accidental and malevolent access by a
process to an address outside its own address space. On
modern computers, kernels ensure memory isolation with
the help of a piece of hardware called memory management
unit (MMU). An MMU is a hardware component which all
memory accesses must go through. It translates a virtual
memory address to a physical address if there is indeed a
corresponding one for the current setting. It also checks
whether in the current setting accessing this address is
allowed. It is indeed a common design to have the kernel
space always mapped for efficiency but not accessible while
in user mode. For this to work properly, the kernel has
to maintain page tables which encode for each process the
mapping between virtual addresses and physical addresses,
and the access rights. It is important to note here that an
MMU does not ensure memory isolation by itself, but it is
only a tool the kernel can use to ensure it. A bug in the code
of the kernel that deals with memory management (i.e., the
memory manager) may lead to serious security and safety
issues.

Since a kernel is executed in the so-called kernel mode
(i.e., the privileged mode of the hardware), it is better from a

This work was partially supported by the Celtic-Plus Project ODSI
C2014/2-12, CNRS Action Spécifique Sécurité, and IRCICA.

security point of view to keep it as minimal as possible. This
stems from the general principle that the trusted computing
base (TCB) should be kept minimal. This is the reason
why we focus in this paper on an abstract model of a
microkernel [1] which supports preemptive scheduling and
ensures memory isolation.

Contributions: Our main contribution is a formal proof in
the Coq proof assistant of dynamic memory isolation based
on the MMU. More precisely, it consists of:

o A formal model of a hardware architecture as a monad:
the parts that are important for memory isolation (e.g.,
the MMU) are modeled in all their relevant minutiae,
while less relevant parts are abstracted away.

« A formal model of a microkernel supporting preemptive
scheduling and memory management at an appropriate
abstraction level so that it remains a realistic model
without being linked to a particular implementation.

« An explicit description of the consistency properties
that must be preserved by a microkernel dealing with
an MMU in order for the memory isolation to be
preserved.

Related work: There have been many efforts to make
formal proofs of security for kernels. Below, we compare
our work with those that appear most closely related to ours.

One of the most significant is the formal proof in the
Isabelle/HOL proof assistant of the functional correctness
and security properties of the microkernel seL4 [2]. There
is also CertiKOS which is a hypervisor dedicated to cloud
computing that is formally verified [3]. In particular, its
memory manager BabyVMM is constructed in layers so as
to allow for formal verification by a series of refinements
that are formalized in the Coq proof assistant [4]. In contrast
to those work above, our goal is not to prove formally
properties of a specific microkernel but to clarify what is
assumed by microkernels about the hardware architecture
and what are the constraints a microkernel must follow in
order for memory isolation to be guaranteed at all times.

In [5], an idealized model of a hypervisor was formalized
in Coq and isolation properties were proved. While we also
consider an abstract model, we are not treating isolation from
the point of view of information flow but at the lower level
of page table management (information access). We are thus
led to a model that includes an MMU and that deals with
page allocation.

In [6], the operations of allocation and deallocation of a
microkernel were proved correct. However, those operations

Outgoing

[TToTooToToToToToTo[o[a[io[0] | phyaeat

address
e
Present /absent bit able
/: ; /
w0000 [0 0
0000 |00
0000 |0 |0
0000 |0 |0
110 |11 n-bit offset
0000 |0 |0 copied directly
1010 |1]1 from input
0000 |00 to output
0000 |0 |0
0000 |0 |0
0011 |11
0100 |11
s) o000 |11
[1100 je—[1100 |11
0010 LT kernel bit
0100 |1 |14
2: index into the
page table Incoming
virtual
[oJo]1]oJo]oJoJoJoJoJo]o]o]1]o]0] address
Figure 1. Memory management unit (MMU)

live in a higher layer of the operating system than the lower-
level layer we assume here. Moreover our work show that
the correct implementation of those operations is essential
to ensure memory isolation.

Guo and Zhang proposed in [7] a verification framework
for verifying preemption control operations in a preemptive
kernel. While, in our case, we focus our verification effort
on proving memory isolation between processes.

Outline: We first describe in Section II our formal model
of a microkernel and our formal definition of the memory
isolation. We then make explicit in Section III the consis-
tency properties that are to be preserved in order for memory
isolation to be always guaranteed. In Section IV, we present
our proof methodology and discuss the difficulties met and
their solutions. We finally conclude Section V.

II. FORMAL MODEL OF A MICROKERNEL

In this section, we first briefly recall some basic facts
about microkernels and then describe our formal model for
a microkernel and our formal definition of the memory
isolation.

A. Background on MMU-based microkernels

The purpose of a microkernel is to manage several ex-
ecuting programs known as runnable processes. To ensure
security (in particular memory isolation), processes cannot
directly access the physical memory. All their accesses to
memory use virtual addresses and go through the MMU
that translates virtual addresses to physical addresses. We
illustrate the internal operation of the MMU with one level
of indirection (cf. Fig. 1 taken from [8]). This translation

mechanism is implemented using page tables. These page
tables are managed by the memory manager of the kernel.
Each process has an address space large enough to store
its code and data. The memory manager should ensure
that all the physical pages allocated to a given process
are referenced only in its page table. Using the virtual
address, translate starts by finding the corresponding entry
in page table. It then checks whether accessing to that
virtual address is allowed, i.e. there is a mapped page in
this entry, using the present bit. It also verifies whether this
page is accessible or not using the kernel_only bit and the
kernel_mode of the current state s. When a process tries to
violate these protection rules, the MMU raises an exception
which will be handled by the microkernel. Moreover, to
provide preemptive scheduling, the microkernel must share
CPU time between all the currently runnable processes
giving the illusion of executing all processes at the same
time. Finally, in order to perform some operations that do
require a higher level of privileges (read data from a file, get
access to more physical memory, etc.), a process may request
the microkernel to perform it on its behalf. To that end, the
microkernel provides a set of system calls. A process can
then invoke a system call by triggering an interruption.

Since these mechanisms are clearly crucial to ensure
memory isolation among processes. The memory manager
and the scheduling mechanism used by the microkernel must
be verified.

B. H monad

Gallina, the specification language of Coq, is a purely
functional language and thus does not provide imperative
features such as updatable state, undefined behaviors and
halting. In such language, it is thus common to implement
such features by using a monad [9]. For our model, we have
defined a monad that we call H monad and that provides
states (as described below in Section II-C) and support for
undefined behaviors and halting.

Our H monad is a kind of state monad where M (A) is
the type of a computation that may have side effects and
returns a result of type A: M(A) =.. S — result(AxS)
where S is the type of the state of the system and result(X)
is the inductive type with three constructors: one to return
a result of type A and the new state of type S, and two
others to denote an undefined behavior and halting. In the
following, we will use s to denote a state in .S. In our model,
we classify computations into three groups: a hardware
component models the behavior of a piece of hadware;
an instruction is code for an atomic CPU instruction; a
subroutine is a piece of code that should not be interrupted.

C. State of the system

In real implementations of operating systems, the state
of the system is complex and includes the internal state of
each hardware device and all the kernel data structures. In

our formal verification, we focus only on the part of the state
that is relevant to prove the properties we are interested in.
We split accordingly our formal state into its hardware and
software parts, and the formal definition of the type of the
state is a record whose fields are the functions listed under
the following hardware state and software state.

Hardware state : The following information about hard-
ware devices (mostly processor and memory) is necessary
to reason about memory isolation.

e currentpip(s) is the number of the physical page con-

taining the page table of the current process.

o kernel_mode(s) is a boolean that will be true when the
processor is executing in kernel mode and false in user
mode.

e data(s) is the physical memorys; it contains in particular
the links to the free-page list and the page tables of
processes which are essential for the MMU address
space translation.

The hardware state contains more information, such as the
position of the current instruction to execute, the stream of
interruptions, etc. We will not detail them here since they
are not necessary to understand the rest of this paper.

Software state : During execution, the system needs
to store some information in physical memory and which
must be accessible only in kernel mode. We modeled that
information separately from the memory itself in order to
simplify the proof of our property. Real implementations do
ensure that it is kept separate by storing it in some memory
which is reserved by the kernel and thus never available for
allocation. Following, we provide some details concerning
the most important fields :

e processes(s) is the list of runnable processes. Note that

a process type is a record which contains information
about a runnable process P in this list like the refer-
ence to its page table ptp(P) and the address to the
next instruction to execute. When we switch between
processes the value of currentptp(s) should be updated
with the value of ptp(P) of the selected process P.

o first_free_page(s) is the first page of the free-pages
linked list containing all the pages that can be allocated.
Therefore, a memory manager is required to determine
which pages are available for allocation and which are
not. In our model, it consists of using the available
pages themselves to store the linked list of available
pages. We illustrate this memory model in (Fig 2). On
system startup, available physical pages are initialized
in such a way that the value of the first byte of the page
corresponds to the position of the next free page; the
microkernel has only to keep in its state the position of
the first page of that linked list.

e code(s) denotes the sequences of system and process
instructions. The main property we are interested in

first free page

Physical
memory

3 4 5
Lo e el
0 1 2 3 4

m used page m free page

/’ pointer to the position (as a number)
of the next free page

Figure 2. Memory model

here is to ensure data security. The proof of isolation
for the code would be similar.
Just as for the hardware state, the software state contains
some more information that will not be detailed in this paper,
such as the system stack.

D. Memory isolation

As explained above, each process has its own page table
which is located in memory. Our model for page-table
entries follows closely the description given in Section II-A.
Each entry of a page table corresponds to a virtual address
and contains the corresponding physical-page number and
some bits for access control such as the present bit and the
kernel_only bit. The former should have the value / if there
is a mapped page in this entry and the latter should have
the value O if the mapped page should only be accessible
to the microkernel. Unfortunately, the MMU cannot ensure
separation between process address spaces all by itself.

1 Instruction write : integer — integer — M (unit)

Input : val: the value to be written
vaddr: the virtual address at which it should

be written
Action:

2 paddr + translate(vaddr) ;

3 if paddr is not an exception then

4 ‘ write val at physical address paddr

5 end

Figure 3. Writing a value in memory

Indeed, if the page tables are not configured correctly then
the translation function could translate a virtual address to
a physical address which is also used by another process.
For instance, we have formalized the hardware instruction
write (Fig. 3) that writes a value val at some physical
address paddr. This instruction needs the hardware function
translate (Fig. 4) to compute the physical address paddr
for the virtual address vaddr according to the page table
of the current process. In such a case, even if the physical
page is mapped in two processes page tables, the MMU
will translate addresses without raising any exception and
the current process will access and modify the content of

1 Hardware component

translate : integer — M (integer + exception)

Input : vaddr: a virtual address

Output: the corresponding physical address or an

exception

Action :
2 if the vaddr size is valid then
3 calculate the address of page table entry pte and
the offset in this page corresponding to vaddr;
4 if there is a mapped page in pfe and (the
kernel_mode(s) = true or kernel_only(pte) = 0)

then
5 calculate the physical address and return it;
6 end
7 end

Figure 4. Translating virtual addresses to physical addresses

that page. This clearly shows that the two processes are not
properly isolated.

To ensure isolation then, we need to guarantee that all
page tables are always soundly configured. That is the aim
of our memory isolation property (Def. 1). Intuitively, we
want to show that for any state s there is no interference
between any two runnable processes: if P; and P, are two
runnable processes then all the pages which are used by P;
are different from all pages used by P.

Definition 1 (Memory isolation property). A state s is
isolated iff for all Py,P, € Processes(s) such that
ptp(Py) # pip(P2) and for all p € UsedPages(P),
p ¢ UsedPages(Ps), where

e Processes(s) is the set of runnable processes in the
State s,

o ptp(P;) is the number of the physical page containing
the page table of the process P;,

o UsedPages(P;) is the list of all the pages referenced in
the page table ptp(F;) plus ptp(P;) itself.

III. CONSISTENCY

In this section, we introduce consistency properties and
motivate them with counterexamples that show how a simple
breach of consistency would invalidate memory isolation.
Various of these properties rely on the list of free-pages.

Definition 2. Given a state s, FreePagesLinkedList(s) is the
linked list of all physical pages available for allocation.

A. Software consistency

All marked-free pages are really free: The following
consistency property REALLY_FREE ensures that all marked-
free pages are never mapped in any runnable-process page
table.

Definition 3. Given a state s, REALLY_FREE(S) holds iff
for all p € FreePagesLinkedList(s), p ¢ AllUsedPages(s)
and p < nb_pages, where nb_pages is the number of pages
in physical memory and AllUsedPages(s) is the list of pages
used by all processes in Processes(s).

a used page is marked as the next
free page of the 4 ** free page
first free page

=
Physical TTTTTI TP TTIRI T TTT T TTTTT
memory 3 I' v 4 2
PLd i e il
0 1 s>, B A
Dy
m used page m free page

/‘ pointer to the position (as a number)
of the next free page

Figure 5. Counterexample for REALLY_FREE

By adding the property REALLY_FREE in consistency we
must verify that on each system step, all marked-free pages
are not mapped in any runnable-process page table. For
instance, without such a property, we cannot prove that the
subroutine add_pte (cf. Fig. 6) preserves isolation. Indeed,
this subroutine allocates the first free page selected from
FreePagesLinkedList(s), then adds it into the process page
table. If this page was already used by another process (cf.
Fig. 5), the execution of add_pte would result in a state in
which the page tables of two processes would reference the
same page: consequently, the isolation property would no
longer hold.

1 Subroutine add_pte : integer — integer — M (unit)
Input : permission: access rights for the new mapped
page
index: entry in the page table
Action:
2 if permission and index are valid then
3 pte < get the entry at position index;
4 if there is a mapped page in pte then
5 remove the entry content of pte;
6 end
7 allocate a new physical page p ;
8 add a mapping in pte according to p and
permission;
9 end

Figure 6. Adding an entry in page table

No cycle in free-pages list: The following consistency
property NOT_CYCLIC means that no page appears more
than once in the free-pages list.

Definition 4. Given a state s, NOT_CYCLIC(s) holds iff for
all page p, nb_occurrences(p, FreePagesLinkedList(s)) < 1

where nb_occurrences(p,l) is the number of occurrences
of p in list l.

the page at position 1 is referenced twice
through the free-page linked list
first free page

TTTFT] 17T
! . 1

4
TTTTT]TTTTTITTITTT

Physical
memory

\ 3 N 4 1
RN NN
0 7 2 3 4

m used page m free page

/; pointer to the position (as a number)
of the next free page

Figure 7. Counterexample for NOT_CYCLIC

As we have detailed above, free pages are referenced
through a linked list in physical memory. If such a property
did not hold, the subroutine add_pte could allocate twice
the same physical page (to the same process or a different
one): consequently, isolation property would no longer hold.
Fig. 7 illustrates such counterexample.

No duplication in process used pages: When defining
memory isolation we have explained that all used pages of
any process in the runnable-process list must be different
from all used pages of all the other runnable processes. The
following consistency property NODUPLIC_PROCESSPAGES
property (Def. 5) ensures that for any process, all its used
pages appear only once in its page table.

Definition 5. The consistency property NODU-
PLIC_PROCESSPAGES holds of a state s iff for all
process P € Processes(s), there is no duplication in
UsedPages(P).

The need for this property arises when proving the
isolation property of subroutine remove_pte (Fig. 8). This
subroutine removes the content of a page-table entry and
frees the page p of that entry by adding it to the free-page
list. After the execution of remove_pte, p must be really
free. However, if there were another entry which mapped the
same physical page p, after remove_pte p would be marked
both used and free at the same time. Then another process
might allocate p, and isolation property would no longer
hold. Fig. 9 illustrates an inconsistent state produced after
the execution of remove_pte when a physical page is mapped
twice by the current process.

The current page table is of a process: The following con-
sistency property CURRPROCESS_INPROCESSLIST (Def. 6)
ensures that the number currentpip(s) of the physical page
storing the page table of the current process is indeed the
ptp of one of the runnable processes.

Definition 6. Given a state s, the property
CURRPROCESS_INPROCESSLIST(s) holds iff there exists
P € Processes(s) such that ptp(P) = currentptp(s).

This property is required to preserve the isolation prop-

1 Subroutine remove_pte : integer — M (unit)
Input : vaddr: virtual address to be removed
Action:
2 index < the entry position corresponding to vaddr;
3 if index is valid and there is a mapped page at index
then
4 Remove the entry content and return the page p
which was mapped in this entry;
5 At the first byte of p write the value of the first
free page of s then return p ;
6 Update the first free page of s with the value p;
7 end

Figure 8. Remove a page table entry content

erty for some subroutines which depend on this part of
the state, the current page table. For instance, when the
scheduler switches between processes, it calls the subroutine
save_process (Fig. 10) to remove the first process (which is
the currently running process) from the runnable-process list
to then add it at the end of the list with the currentptp(s)
value and the new current instruction. The isolation property
requires that the used pages should be different, thus when
we add a process to the process list, all its mapped pages
must be different from other mapped pages. Consequently,
to prove isolation, adding the current process to process list
requires that it matches a process in Processes(s), precisely
the first one which has been removed previously. This
property do ensure that the current page table is the page
table of a process in Processes(s).

B. Hardware consistency

Page 0 is never used or marked-free: Physical memory
may contain several kinds of pages such as used pages,
free pages and pages which are not available for allocation.
The latter is very interesting to isolate some part of the
memory from all processes during all possible executions,
for instance to store the code of the microkernel and its
data. Thus, this information must be stated in consistency
properties. So we need to make sure that the pages which
are not available for allocation are indeed never used by a
process or considered free. In our model, we chose page 0 as
a simple example of this kind of pages. Of course, it could
readily be generalized to any set of memory locations which
are unavailable for allocation.

Two specific consistency properties, FREE_NOTZERO
(Def. 8) and USED_NOTZERO (Def. 7), serve to check that
page O stays unavailable for allocation. In a generalization
to any set of unavailable locations, those properties would
check that used and free pages stays within the range of
valid page numbers.

Definition 7. Given a state s, USED_NOTZERO(S) holds

Remove _pte execution

1 —
first free page first free page
;
A . N
Physical |||||||||||||t|b{|||||||||| |||||||||||||t|b{||.f|||||\|||
memory 3 page table |5 3 page table|5 H
L e et e el PO e ey bl
0 T 2 3 T 0 gz EREEA 7P
currentptp currentptp -
m used page mapping
m free page /; pointer to the position (as a number)

of the next free page

Figure 9. Counterexample for NODUPLIC_PROCESSPAGES

1 Subroutine save_process : M (unit)
Action:
2 remove the first process from the runnable-process list;
3 add the current process to the end of the
runnable-process list;

Figure 10. Saving the current process to the process list

iff for all process P € Processes(s), for all page p €
UsedPages(P) then 0 < p < nb_pages.

Definition 8. Given a state s, FREE_NOTZERO(S) holds iff
for all p € FreePagesLinkedList(s), p # 0.

Physical memory large enough: The following consis-
tency property ensures that the memory is large enough.

Definition 9. Given a state s, MEMORY_LENGTH(S) holds
iff
nb_pages x page_size < length(data(s))

where length(data(s)) to denote the size (in bytes) of the
physical memory and page_size to denote the size of a page
in memory.

Obviously, an undefined hardware behavior can cause vul-
nerabilities and hence render a proof of security impossible.
Commonly, it is the programmer that should ensure that the
code never invokes undefined hardware behaviour. Precisely
here we cannot determine the result of accessing to a
physical page which is not defined in memory. Consequently,
we need to define some property that ensure that all available
physical pages are valid and we prove that our model never
causes this security issue.

C. Conclusion

To conclude, consistency is the conjunction of multiple
properties that must be preserved in order for isolation to
be preserved. Testing at runtime that these properties are
preserved is not realistic since it would take too much
time. Indeed, it would for instance require checking if all
the entries of a set of tables match some condition on
every system call. Instead, we characterize the consistency

properties required for isolation and prove that they are
always preserved.

IV. ISOLATION PROOF

A. Hoare logic on monad

In order to reason about our code, we define a Hoare
logic [10] on top of our H monad. A similar approach was
used in [11], [12]. Properties of computations are specified
by Hoare triples of the form {P} ¢ {Q} where:

o P isaprecondition, i.e. a unary predicate on the starting
state;

e cis a computation returning a result of type A, i.e. the
computation is of type M (A);

e () is a postcondition, i.e. a binary predicate on the
returned value and on the ending state.

By definition, a triple {P} ¢ {@} holds iff: for all state s,
if P holds for s then either c(s) denotes the halting of the
system or it denotes a pair (a,s’) where a is a returned
value and s’ is an ending state such that the postcondition Q
holds for this pair. In the case of ¢(s) denoting an undefined
behavior, the triple does not hold.

The weakest precondition for a computation ¢ and a
postcondition @ is the unary predicate on state wp(Q,c)
such that:

o the triple {wp(Q,¢)} c{Q} holds, and
« for any precondition P such that {P} c{Q} holds we
have, for all state s, P(s) implies wp(Q, ¢)(s).

B. Preservation of isolation and consistency

We have formally proved in Coq that all the instructions,
subroutines and hardware components that we model pre-
serve the isolation and the consistency properties. For the
most basic computations used as building blocks for our
instructions and subroutines, we first prove their weakest
precondition triples, and then use it to prove their invariant
triples that state preservation of isolation and consistency.
Then we combine those basic invariant triples to obtain in-
variant triples for the more complex instructions, subroutines
and hardware components. The following examples illustrate
our approach and the difficulties we encountered.

Detailed example: writing in memory: The intended be-
havior of write is to store a given value at a given virtual ad-
dress in memory. First, this instruction invokes the hardware
instruction translate. If there is a mapping that corresponds
to the given virtual address vaddr, translate returns the
physical address paddr, otherwise it returns an exception. In
the first case, wrife then executes the instruction write_phy
(cf. Fig. 11) which stores a value v at the memory address
paddr of the current process.

1 Instruction write_phy : integer — integer — M (unit)
Input : v: value to be stored at paddr
paddr: physical address
Action :
2 p < the page of paddr;
3 ¢ < the position of paddr in p;
4 update_memory(v,i,p);

Figure 11. writing a value at a physical address

Our aim is to ensure that the instruction write preserves
isolation and consistency. So, we must prove the correctness
of the Hoare triple write_invariant.

Proposition (write_invariant). If the isolation property I
and the consistency property C' hold for the state before
the execution of write, then I and C' also hold afterwards.
Formally, we write:

{I A C}write(v,vaddr) {I N C}

translate is invoked first. It can return an exception. In
that case, write ends and the final state will be identical to
the initial state: isolation and consistency are then trivially
preserved.

Let us then consider when translate succeeds. Since
translate is invoked first, its precondition must be the same
as the precondition of the instruction write. The instruction
write_phy is the last instruction invoked by write so its
postcondition must be the same postcondition as write.

Since the whole instruction write is the sequence of those
two functions translate and write_phy, the postcondition
of the first must match the precondition of the second.
translate should preserve isolation and consistency, so its
postcondition will include both these properties.

Another relevant point is that write_phy uses the return
value paddr of translate as a parameter, so we must de-
fine some property R that depends on this value and the
state produced by translate. This property is required to
prove that isolation and consistency hold after the exe-
cution of write_phy. Therefore, the challenge here is to
determine the property R then prove the Hoare triples
for translate_invariant (Lemma 1) and write_phy_invariant
(Lemma 2).

Lemma 1 (translate_invariant). If the isolation property I
and the consistency property C hold for the state before the
execution of translate, then I, C' and R also hold afterwards.
Formally, we write:

{I A C} translate(vaddr) {I AN C AN R}

Lemma 2 (write_phy_invariant). If the isolation property I,
the consistency property C and the property R hold for the
state before the execution of write_phy, then I and C also
hold afterwards. Formally, we write:

{I N C A R} write_phy(v, paddr) {I A C}

After the execution of translate, the new state is equal
to the previous state. So, it is straightforward to prove that
isolation and consistency are preserved. On the other hand,
we have to prove that R(paddr, s) holds afterwards (where
paddr is the physical address returned by translate). For such
needs, we use its weakest precondition triple.

Contrary to translate, write_phy modifies the current state
and does not return any value. Consequently, the postcon-
dition will depend on the new state that we denote s’. This
instruction stores the value v in physical memory. Thus, only
data(s) will be changed.

Therefore we have to prove that if isolation I, consistency
C and R hold of the parameter paddr and the state before
the execution of write_phy then isolation and consistency
hold afterwards. This proof requires eight cases, one for
isolation, and one per consistency property. In the following
we only sketch the proof of the case for isolation. This case
amounts to the fact that if the current process writes a value
in physical memory, it cannot modify a page table of a
runnable process. The challenge is to prove that the position
of the page p (cf. Fig. 11) is different from all positions of
runnable-process page tables and mapped pages into these
tables.

Let P and P, be two different processes
from Processes(s). The consistency property
CURRPROCESS_INPROCESSLIST(s) (Def. 6) ensures

that the page table of the current process is a page table
of a process in Processes(s). Consequently we have three
cases (two of which are symmetric). The first case is when
currentptp(s) is different from both pzp(P;) and pip(Ps).
Isolation and consistency are trivially preserved in this case.
The two other cases are respectively when currentptp(s)
is equal to pip(P;) or, symmetrically, pp(P,). In those
cases, we need the property R to ensure that the page p is
a mapped page in the current-process page table and i is a
position in this page. In addition we need the consistency
property NODUPLIC_PROCESSPAGES to ensure that the
position of a mapped page is different from the position
of the current page table and thus that the page table will
not be modified. Also, we use the isolation property of the
previous state to prove that this instruction can not modify
any other runnable-process page table.

Other example: adding a new PTE: The proof sketch
of write_invariant above was set out to explore the most
relevant points necessary to understand our approach to es-
tablish expected properties of our model. There are however
more involved subroutines that need more effort to prove
their expected properties because of their complexity. In this
section, we will briefly discuss another example.

The expected behavior of the subroutine add_pte (Fig. 6)
is to add a new entry to the page table of the currently-
running process: it maps a new physical page at a given
index in the page table of the currently-running process.
More precisely, if there is no mapping yet at that index,
it invokes a subroutine called alloc_page. This subroutine
allocates a new page then adds a new mapping correspond-
ing to this page and to a given permission. The latter one
requires a precondition ensuring that there is no mapping
in the involved entry which is, notably, ensured by the
second test in Fig. 6. The difficulty is that between this test
and the second instruction which adds the mapping in pte,
the subroutine alloc_page changes the state. Consequently,
we have to propagate this property by proving that if it
holds at the state before the execution of alloc_page then
it holds afterwards. In our model, alloc_page is used in
several subroutines. Therefore, we have defined and proved
a new invariant for alloc_page which preserves isolation and
consistency and propagates the necessary property.

V. CONCLUSIONS AND FUTURE WORK

One conclusion we can draw from this formalization is
that many details about the architecture and the microkernel
are to be taken into account in order to prove memory
isolation between processes. This is thus a typical example
of a proof that would be hard for a human to conduct without
a proof assistant, because there would be too many details to
keep in mind at all times. But with the help of the Coq proof
assistant that keeps track rigorously of all the minutiae of
the proof, one can be sure not to overlook any corner case.

Also we arrived at the current list of consistency proper-
ties listed in Section III after a few iterations. And each
time we were extending this list, we had to go through
all the invariant proofs again to prove that consistency
was preserved. We benefited from the simple but useful
mechanism called bullets which allows to structure proof
script and thus easily find where to insert the additional cases
to be dealt with.

Our formalization in Coq is available at:

http://www.cristal.univ-lille.fr/ "nowakd/microkernel/

One possible future work is to use the insights we gained
from this formalization to design kernels that are more
amenable to formal proof. We are in particular interested
in exokernels [13] because they push much further the
minimality principle [1] while still ensuring fundamental

security properties that would be interesting to formally
prove.

REFERENCES

[1] J. Liedtke, “On micro-kernel construction,” in Proceedings of
the Fifteenth ACM Symposium on Operating System Princi-
ples, SOSP 1995, Copper Mountain Resort, Colorado, USA,
December 3-6, 1995.

[2] G. Klein, J. Andronick, K. Elphinstone, T. C. Murray,
T. Sewell, R. Kolanski, and G. Heiser, “Comprehensive for-
mal verification of an OS microkernel,” ACM Trans. Comput.
Syst., 2014.

[3] L. Gu, A. Vaynberg, B. Ford, Z. Shao, and D. Costanzo,
“Certikos: a certified kernel for secure cloud computing,”
in APSys ’11 Asia Pacific Workshop on Systems, Shanghai,
China, July 11-12, 2011.

[4] A. Vaynberg and Z. Shao, “Compositional verification of a
baby virtual memory manager,” in Certified Programs and
Proofs - Second International Conference, CPP 2012, Kyoto,
Japan, December 13-15, 2012. Proceedings.

[5] G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and
C. Luna, “Formally verified implementation of an idealized
model of virtualization,” in /9th International Conference on
Types for Proofs and Programs, TYPES 2013, April 22-26,
2013, Toulouse, France.

[6] N. Marti, R. Affeldt, and A. Yonezawa, “Formal verification
of the heap manager of an operating system using separation
logic,” in Formal Methods and Software Engineering, Sth
International Conference on Formal Engineering Methods,
ICFEM 2006, Macao, China, November 1-3, 2006, Proceed-
ings.

[71 Y. Guo and H. Zhang, “Verifying preemptive kernel code
with preemption control support,” in 2014 Theoretical Aspects
of Software Engineering Conference, TASE 2014, Changsha,
China, September 1-3, 2014.

[8] A. S. Tanenbaum and A. S. Woodhull, Operating systems
- design and implementation (3. ed.). Pearson Education,
2006.

[9] P. Wadler, “Comprehending monads,” Mathematical Struc-
tures in Computer Science, 1992.

[10] C. A. R. Hoare, “An axiomatic basis for computer program-
ming,” Commun. ACM, 1969.

[11] D. Cock, G. Klein, and T. Sewell, “Secure microkernels,
state monads and scalable refinement,” in Theorem Proving in
Higher Order Logics, 21st International Conference, TPHOLSs
2008, Montreal, Canada, August 18-21, 2008. Proceedings.

[12] W. Swierstra, “A hoare logic for the state monad,” in Theorem
Proving in Higher Order Logics, 22nd International Confer-
ence, TPHOLs 2009, Munich, Germany, August 17-20, 2009.
Proceedings.

[13] D.R. Engler, M. F. Kaashoek, and J. O’Toole, “Exokernel: An
operating system architecture for application-level resource
management,” in Proceedings of the Fifteenth ACM Sympo-
sium on Operating System Principles, SOSP 1995, Copper
Mountain Resort, Colorado, USA, December 3-6, 1995.

