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Tensor DoA Estimation with Directional Elements
Francesca E. D. Raimondi, Pierre Comon

Abstract—Directivity gain patterns are treated as a physical

diversity for tensor array processing, replacing space diversity,

in addition to time and space shift diversities. We show that the

tensor formulation allows to estimate Directions of Arrival (DoAs)

under the assumption of unknown gain patterns, improving the

performance of the omnidirectional case. We propose a trilinear

model where one dimension of the multi-way data array is fully

provided by gain patterns, allowing tensor approaches even when

space diversity is missing due to sensor overlap.

Index Terms—DoA estimation, Tensor, Directivity, Gain, Pat-

terns, Smart Antennas, Directional Arrays

I. INTRODUCTION

D

IRECTION of Arrival (DoA) estimation is a central
problem in array signal processing, e.g. for telecommu-

nications, seismology, speech, biomedical engineering. Acqui-
sition systems are composed of multiple sensors that receive
source signals from different directions [1], [2]. Directional
sensor arrays have been used in the context of smart antennas,
through beamforming techniques [3] and null-steering (see [4],
[5] for a list of examples). Several studies have investigated
directional elements for DoA estimation, such as [6], [7],
both with Uniform Circular Arrays (UCA). High resolution
DoA estimation through the MUSIC algorithm [8] with known
sensor gains has been further studied in [5], where the effects
and advantages of different directivity patterns have been
considered, as well as a realistic dipole array implementation;
a derivation of the Cramér-Rao Bound (CRB) for directional
elements of a UCA is also included.

If sensors are omnidirectional (as in most of the literature
in array processing), only relative phase differences between
sensors are needed to extract DoA information. However, if
the antenna elements are directional, one may jointly exploit
gain and phase differences in every direction of interest. To
our knowledge, existing studies on DoA estimation in the
presence of directional elements mostly cover the case of
known directivity gains; conversely, our aim is to treat the case
of DoA estimation using sensors with unknown gain patterns.

Tensor analysis has been applied to sensor arrays for DoA
estimation, which requires at least three physical diversities,
such as time, space and space shift [9], [10] through multiple
translated subarrays. Recently, a general formulation of tensor
array processing has been extended to the wideband case
through multiple physical diversities in [11]. We show in this
paper that gain patterns can constitute a diversity in their own
right.

In fact, contrary to more standard approaches, e.g. MUSIC
[2], [8], tensor approaches can handle unknown gains, as
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subsequently demonstrated. On the other hand, ESPRIT [12]
can be seen as a particular tensor approach and can solve
the localization problem if two identical translated subarrays
are available. However, in [12], gain patterns have not been
explicitly taken into account as a pure source of diversity
(i.e. when all sensors are co-located within each subarray, and
only differ in their directivity). The same observation applies
to multi-dimensional extensions of ESPRIT [13], [9]. We
show that even when directional sensors completely overlap
within a subarray, thus canceling space diversity, their gain
patterns allow a trilinear tensor model, fully replacing the
space diversity of [9].

More precisely, the rotational invariance of [12] was ex-
tended to multiple space shift translations through a sub-
space fitting approach in [13] for collinear space shifts, and
a deterministic tensor approach in [9] for arbitrary space
shifts. In this scenario a reference subarray (representing space
diversity through sensors located at different positions) is
repeated through multiple translations (representing space shift
diversity through dislocated subarrays). In [9], [12], [13], gain
patterns have not been exploited to improve the estimation
performance. Indeed, although they may be unknown, gain
patterns contain important spatial information about impinging
sources and their inclusion into the model may help the
underlying low rank approximation problem.

We propose a trilinear model, where one dimension of
the multi-way data array is fully provided by gain patterns,
allowing tensor approaches even when space diversity is
missing due to sensor overlap. Computer results are reported
as a function of SNR, sensor directivity, and sensor overlap, in
comparison to Cramér-Rao Bounds. The effect of directivity
patterns is also shown with respect to the equivalent omnidi-
rectional case. We think that sensor gain patterns have con-
siderable potential in the context of small electronic devices
with limited space available.

II. PHYSICAL MODEL

Assume R source signals impinge on an array of L sensors,
each located at a position in space defined by a vector p

`

2

R3

, 1  `  L. For each source, denote the angles of arrival
by a vector ✓

r

= [�

r

, 

r

] in 3D, 1  r  R, or by a scalar
✓

r

= �

r

if we restrict our attention to a localization problem
in 2D. We assume that the signal received at the `-th sensor
at time t, 1  t  T follows the additive model below:

x

`

(t) =

RX

r=1

g

`

(✓

r

) &

r

(t� ⌧

`

(✓

r

)) + n

`

(t) (1)

where &
r

(t) 2 R is the r-th source signal, ⌧
`

is the delay of
arrival and n

`

(t) refers to white Gaussian noise. In the far
field, if c denotes the (constant) propagation speed, we have
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⌧

`

(✓) = p

T
`

d(✓)/c, where d(✓) is the unit modulus vector
pointing in direction ✓.

Notice that in our framework, each sensor may have its own
gain pattern g

`

: R 7�! R+. In a narrow band around radial
frequency !

0

, we can work in baseband and write the complex
envelope of received signals as

x

`

(t) =

RX

r=1

g

`
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) s

r

(t) e

�|!0⌧`(✓r)
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(t) (2)

where s

r

(t) is the complex envelope of the r-th waveform
&

r

(t) around !

0

. Now, define x(t) = [x

1

(t), . . . , x

L

(t)]

T

and steering vectors a(✓

r

) 2 CL with entries a

`

(✓

r

) =

g

`

(✓

r

) e

�|!0⌧`(✓r). This leads to the usual compact form [8]

x(t) = A(✓) s(t) + n(t) 2 CL (3)

with s(t) = [s

1

(t), . . . , s

R

(t)]

T , n(t) = [n

1

(t), . . . , n

L

(t)]

T ,
✓ = [✓

1

, . . . , ✓

R

], and the L ⇥ R steering matrix, A(✓) =

[a(✓

1

), . . . ,a(✓

R

)].

A. Multiple subarrays
Now, broadening the original idea developed in [9], assume

we have at our disposal a set of M subarrays, each containing
L directional sensors, and deducible from each other by a
translation (see Figure 1). Choose one of these subarrays as a
reference, label it with m = 1, and denote by �

m

, m > 1 the
vectors defining the translations to obtain the M�1 remaining
subarrays. To simplify subsequent equations, we also define
�

1

= 0. The delay of arrival of the r-th source to reach sensor
` of subarray m is then ⌧

`

(✓

r

) + ⇣

m

(✓

r

), where ⇣

m

(✓

r

) =

�

T
m

d(✓

r

)/c. Then, at fixed radial frequency !

0

, the complex
envelope of the signals received at the `-th sensor of the m-th
subarray can be written as X

`mt

= M

full

`mt

+N

`mt

, where [11]:
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(4)

Notice that the L ⇥ R steering and pattern matrix, A, is the
same as in § II. Space shift elements of the M ⇥ R steering
matrix, B, are a function of the delay of arrival on each
subarray m. Finally, source complex envelopes constitute the
T ⇥R signal matrix, S.

If the acquisition system is composed of M = 2 subarrays,
deduced from each other by a single translation � = �

2

, the
tensor approach based on model (4) reduces to ESPRIT [12]:

(
x

1

(t) = As(t) + n

1

(t)

x

2

(t) = �As(t) + n

2

(t)

where � = Diag{e

�|!0⇣(✓1)
, · · · , e

�|!0⇣(✓R)

} is a unitary
operator that relates both subarrays, and ⇣(✓

r

) = �

T
d(✓

r

)/c.1
We shall work under the assumptions summarized below.

1If M = 2, we also need to fix a rotation ambiguity with respect to the
translation axis.

Assumptions:
A1 The first sensor (` = 1) is taken as origin, i.e., p

1

= 0,
and has unit gain in all directions, i.e. g

1

(✓) = 1, 8✓.
A2 The first subarray is considered as a reference, i.e., �

1

=

0, without restricting the generality.
A3 Space shifts �

1

, . . . , �

M

are known, whereas the matrix
of sensor positions P = [p

2

, . . . ,p

L

] is unknown.2
A4 Sensor gains g

`

(✓), ` > 1, are unknown, real (which is
actually equivalent to assuming that their phase is known)
and frequency-flat.

A5 Sources s

r

(t) are deterministic.
A6 Wave propagation speed c does not depend on frequency

(i.e. the medium is not dispersive).
A7 Noise is circular complex white Gaussian.

Notice that Assumptions A1 and A2 are not restrictive, and
permit to fix the scale indeterminacies in model (4), as
pointed out in the next section. Assumption A4 means that L
continuous real functions are unknown. However, they appear
in the model only at values ✓

r

, so that we may consider only
the (L�1)⇥R matrix, G, with G

`r

= g

`+1

(✓

r

), 1  `  L�1,
as unknown. The circularity Assumption A7 could be relaxed
to the price of an increased notational complexity, as in [10].

1) Diversity of Gain Patterns Only: Notice that if sensors
within a subarray do overlap, i.e. are located at the same place,
and differ only through their directivity, then p

`

= 0, 8`, and
matrix A only contains information about gain patterns: A

`r

=

g

`

(✓

r

). Therefore, in this degenerate case, the approaches of
[13], [9] do not apply and the only space information is carried
by space-shift matrix B:

M
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tr
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(5)

Notice that in this way we managed to decouple space infor-
mation (that we know through shifts �

m

) from gain pattern
information (that we do not know). Model (5) is the starting
point of our contribution.

2) Diversity of Space Shift Only: In this case, g
`

(✓) = 1

8✓, 8`, and we end up with the classic omnidirectional model
described in [9]: Ashift

`r

= e

�|!0⌧`(✓r).

B. Tensor Decomposition
Any tensor represented by an array M of size L⇥M ⇥ T

can be expressed as a sum of R decomposable terms: M =P
R

r=1

D(r) [14]. By decomposable, it is meant that there exist
R triplets of vectors {u(r),v(r),w(r)} such that D

`mt

(r) =

u

`

(r)v

m

(r)w

t

(r), or, equivalently, D(r) = u(r) ⌦ v(r) ⌦

w(r), where ⌦ denotes outer (tensor) product. When R is
minimal, it is called tensor rank, and this decomposition is
unique if R is not too large; for instance, R < LMT/(L +

M + T � 2) is sufficient almost surely [15].

2This is the standard assumption of ESPRIT approaches [2], [12], [13], [9],
i.e. uncalibrated subarrays. However, with unknown space shifts and known
sensor positions, the mathematical problem is the same [10].
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Hence in the absence of noise, one can identify every term
in (4) with a decomposable tensor, that is: A

`r

B

mr

S

tr

=

u

`

(r) v

m

(r)w

t

(r). This identifiability property is the main
motivation in resorting to tensor-based algorithms. However,
there is still a scaling ambiguity that cannot be resolved,
in general. In fact, denote by a

r

, b

r

and s

r

the columns
of matrices A, B and S, respectively. Even if the entries
D

`mt

(r) = A

`r

B

mr

S

tr

are known, or equivalently D(r) =

a

r

⌦b

r

⌦s

r

, column vectors are only determined up to scaling
factors since a

r

⌦b

r

⌦s

r

= ↵a

r

⌦�b

r

⌦

1

↵�

s

r

, for any pair of
nonzero scalars (↵,�). In other words, this leaves 2R scalar
unknowns for the tensor model

X =

RX

r=1

a

r

⌦ b

r

⌦ s

r

+N (6)

unless some other constraints are imposed. In the present
context, we precisely know that the first entries of a

r

and b

r

are equal to 1, 8r, because of Assumptions A1 and A2. These
2R constraints hence completely fix scaling indeterminacies.

C. A Physical Measure for Identifiability: Coherences
An angular measure was introduced in [16], in order to

assess identifiability conditions easy to compute and interpret.
For instance, the coherence µ

A

of CPD factor matrix A =

[a

1

, . . . ,a

R

] is defined as µ

A

= max

p 6=q

|a

H
p

a

q

|/ka

p

k ka

q

k.

Theorem 1. [16] CPD in (6) is essentially unique if coher-
ences of factor matrices satisfy 1

µA
+

1

µB
+

1

µS
� 2R+ 2.

For space shift B, coherence µ

B

is a measure of the angular
separation between sources, similarly to A

shift, whereas the
coherence µ

S

of signal matrix S is the largest correlation
coefficient between sources. For pure gain pattern diversity
embedded in A

gain of (5), coherence µ

gain

A

is a measure of
similarity among pattern responses to impinging sources. Since
a

T
p

a

q

=

P
L

`=1

g

`

(✓

p

)g

`

(✓

q

), |aT
paq|

kapkkaqk  1, with equality if
and only if g

`

(✓

p

) = g

`

(✓

q

) 8`.
Thus, the uniqueness condition stated in Th. 1 can be

interpreted in a physical sense: the tensor model of § II-A1 is
unique if sources are not too closely spaced, if their directivity
response is not too similar, and if their time signatures are not
too correlated.

III. ESTIMATION OF SOURCES AND DOA
The tensor model in (6) can be expressed in vector form as

x = vec{X} =

RX

r=1

s

r

⇥ b

r

⇥ a

r

+ n (7)

where ⇥ denotes the Kronecker product, as defined in [14],
[17]. Since the measurement noise vector, n = vec{N }, is
circular white Gaussian and isotropic, i.e. with zero mean and
covariance ⌃ = �

2

I , the log-likelihood takes the form:

⌥(#) / �(x� µ)

H ⌃�1

(x� µ) (8)

where µ =

P
R

r=1

s

r

⇥b

r

⇥a

r

is unknown and constrained by
its actual parameterization # = [✓, vec{G}, vec{P }, vec{S}].
The CRB represents the lower bound on the variance of

q = 0q = p

x axis

y
a
x

i
s

Fig. 1: Acquisition system for L = M = 4, ⇢A > 0

any unbiased estimator and is equal to the inverse of the
Fisher Information Matrix (FIM). For the derivation of the
FIM of the estimation problem in (8), refer to [11] and
references therein. Similarly to [10], the CRB is computed
assuming that a

r

and s

r

are nuisance parameters, i.e. with
parameter vector � composed of DoAs and factor matrices:
� = [✓, vec{A}, vec{S}].

Although the optimal solution is given by the global max-
imum of ⌥(#), we propose a suboptimal two-step proce-
dure in the same spirit as [10], with smaller computational
burden: first ⌥ is maximized with respect to parameter
⇠ = [vec{A}, vec{B}, vec{S}] through a CP decomposition
routine, such as Alternating Least Squares (ALS) [18]; then
DoAs can be estimated by

ˆ

✓

r

= argmin

✓2⇥

h
(

ˆ

b

r

� b

r

(✓))

H
(

ˆ

b

r

� b

r

(✓))

i
.

This solution can then, if necessary, be refined by a local
ascent of ⌥(#). However, this improvement has revealed to
be negligible in subsequent computer experiments.

IV. COMPUTER RESULTS

For the sake of simplicity, sources and the acquisition
system are assumed to be coplanar. Sensor positions then
become p

`

= [p

x

`

, p

y

`

], 1  `  L, and delays becomes
⌧

`

(✓

r

) = [p

x

`

cos(✓

r

)+p

y

`

sin(✓

r

)]/c, both functions of azimuth
only. This amounts to considering elevation  

r

= ⇡/2, 8r.
We work with UCAs of radius ⇢, with p

x

`

= ⇢ cos(2⇡`/L)

and p

y

`

= ⇢ sin(2⇡`/L), as in [5]. We choose a directivity
pattern g(·) with maximum gain in the radial directions from
the center of the array, 2⇡`/L. Hence, the response of sensor
` to source r amounts to g

`

(✓

r

) = g(✓

r

� 2⇡`/L). Function
g(✓) is chosen to be a simple nonnegative, smooth and 2⇡-
periodical function, with

g(✓)

2

=

D(�)

2

�

(1 + cos(✓))

� (9)

and parameter � controls directivity D(�) =

2

�
2⇡R 2⇡

0 (1+cos(✓))

�
d✓

exponentially.
We simulated R = 4 uncorrelated narrowband sources

arriving from ✓ = [25

�
, 65

�
, 105

�
, 345

�
] with T = 64 time
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samples. Each subarray is a UCA of radius ⇢
A

= �/(20

p

2)

with L = 4 sensors, whereas gain patterns have D(�) = 4 (i.e.
� = 5). M = 4 subarrays with the aforementioned structure
are located around a UCA of radius ⇢

B

= �/(2

p

2) (see
Figure 1). As in [10], [19], SNR is defined as:

SNR = 10 log

10

E
⇥
µ

H
µ

⇤

E [n

H
n]

= 10 log

10

k µ k

2

2

LMT�

2

(10)

and estimated Mean Square Error is defined as
MSE(✓) =

1

⇡

2
1

NR

P
N

n=1

P
R

r=1

(

ˆ

✓

rn

� ✓

r

)

2. Results are ob-
tained by averaging over N = 200 noise realizations.

The three approaches compared in Figures 2, 3, 4 refer to
tensor DoA estimation, with the same equivalent SNR:
ALS full refers to tensor Mfull in (4), when sensors are

non overlapping (⇢
A

> 0) and directional: A

full

`r

=

g

`

(✓

r

) e

�|!0⌧`(✓r) and �2 full

=

kµfullk2
2

LMT

10

�SNR/10.
ALS gain refers to tensor Mgain in (5), when sensors are

overlapping (⇢
A

= 0) and directional: A

gain

`r

= g

`

(✓

r

)
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Fig. 4: MSE vs ⇢A
p
2 (inter-sensor distance), SNR = 20dB, D = 4

and �2 gain

=

kµgaink2
2

LMT

10

�SNR/10.
ALS shift refers to tensor Mshift as in [9], when sensors

are non overlapping and omni-directional: A

shift

`r

=

e

�|!0⌧`(✓r) and �2 shift

=

kµshiftk2
2

LMT

10

�SNR/10.
Figure 2 shows MSE as a function of SNR: when sensor

positions within the reference subarray are not known, the
introduction of unknown directional elements improves the
estimation (ALS full), even when sensors overlap (ALS gain).

Figure 3 illustrates the dependence of the MSE on sensor
directivity D, showing an optimum at D ⇡ 4 (i.e. � ⇡ 5)
for the present configuration. The large value of the MSE for
small and large directivity is due to bad conditioning of factor
matrix A

gain. Indeed, as D grows gain patterns g
`

(✓

r

) become
elongated toward one direction, thus attenuating all the others.
In this configuration, pattern coherence µ

A

approaches 1.
Figure 4 shows the dependence of the MSE on the inter-

sensor distance within the reference subarray, for ALS shift
(omnidirectional non overlapping sensors, ⇢

A

> 0) in com-
parison with ALS gain (directional overlapping sensors, null
inter-sensor distance, ⇢

A

= 0). The former is a decreasing
function of inter-sensor distance, hence intersecting the latter
at a critical distance where the presence of directional elements
is not essential for tensor modeling.

V. CONCLUSION

We already knew from [9] that space, time, and translation
in space induced exploitable diversities, when omnidirectional
sensors are used. This remains true if sensors have known
nonzero gain patterns, because they can be compensated. But
the question whether sensor gain patterns could induce a
diversity of their own was still open. We showed that it can
indeed be the case, even when sensors are co-located within
each subarray. In this case, there is no space diversity anymore,
but tensor approaches, which need at least three diversities, can
still be applied thanks to gain pattern diversity.
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