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Tensor DoA estimation with directional elements
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Abstract. This paper introduces directivity gain pattern as a physical
diversity for tensor array processing, in addition to time and space shift
diversities. We show that tensor formulation allows to estimate Direc-
tions of Arrival (DoAs) under the assumption of unknown gain pattern,
improving the performance of the omnidirectional case. The proposed
approach is then applied to biologically inspired acoustic elements.
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1 Introduction

Directional sensor arrays have been adressed in the context of smart antennas,
through beamforming techniques [1] and null-steering (see [2, 3] for a list of
examples). However, very few studies have investigated directional elements for
Direction of Arrival (DoA) estimation, such as [4, 5], both with Uniform Circular
Arrays (UCA). High resolution DoA estimation with known sensor gains through
the MUSIC [6] algorithm has been further studied in [3], where the effects and
advantages of different directivity patterns have been considered, as well as a
realistic dipole array implementation; a derivation of Cramér-Rao Bound (CRB)
for directional elements of a UCA is also included.

If sensors are omnidirectional (as in most literature in array processing), only
relative phase differences between sensors are needed to extract DoA informa-
tion. However, if the antenna elements are directional, one must jointly exploit
gain and phase differences in every direction of interest. To our knowledge, ex-
isting studies of DoA estimation in the presence of directional elements only
cover the case of known directivity gains: our aim is to treat the case of DoA
estimation for sensors with unknown gain patterns.

Tensor analysis has been extended to DoA estimation, requiring at least three
physical diversities, such as time, space and space shift [7, 8]. Recently, a general
formulation for tensor array processing has been extended to the wideband case
through multiple physical diversities in [9]. The possibility of the inclusion of
directivity gains into the formulation was suggested therein, but not further
investigated.
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Our paper introduces the directivity gain pattern in the tensor model for
array processing, thus allowing to exploit directional elements even when their
directivity gains are not known. Computer results are reported as a function of
SNR and sensor directivity, in comparison to Cramér-Rao Bounds (CRB). The
effect of directivity patterns is also shown with respect to the omnidirectional
case. Finally we show the practical interest of the proposed methods through the
analysis of a small network of microsensors, bio-inspired from insects [10, 11].

2 Physical Model

2.1 Multiple Source Multiple Sensor Framework in the Far-Field

Assume R source signals impinge on an array of L sensors, each located at a
position in space defined by a vector p` ∈ R3. For each source, denote the angles
of arrival by a vector θr = [φr, ψr] in 3D, 1 ≤ r ≤ R, or by a scalar θr = φr if
we restrict our attention to a localization problem in 2D.

We assume that the signal received at the `th sensor at time t follows the
additive model below:

x`[t] =

R∑
r=1

g`(θr) ςr[t− τ`(θr)] + n`[t], 1 ≤ ` ≤ L (1)

where ςr[t] ∈ R is the rth source signal, τ` is the delay of arrival and n`[t] refers to
noise. If c denotes the (constant) propagation speed, we have τ`(θ) = pT` d(θ)/c,
where d(θ) is the unit modulus vector pointing in direction θ.

Notice that in our framework, each sensor may have its own gain pattern
g` : R 7−→ R+. If the signal is narrowband around radial frequency ω0, we can
work in baseband and write the complex envelope of received signals as

x`(t) =

R∑
r=1

g`(θr) sr(t) e
ıω0τ`(θr) + n`(t) (2)

where sr(t) is the complex envelope of the rth waveform ςr(t) around ω0. Now,
defining x(t) = [x1(t), . . . , xL(t)]T leads to the standard compact writing [6]:

x(t) = A(θ) s(t) + n(t) ∈ CL×1 (3)

where s(t) = [s1(t), . . . , sR(t)]T and n(t) = [n1(t), . . . , nL(t)]T . The L×R steer-
ing matrixA = [a(θ1), . . . ,a(θR)] has elements A`r = a`(θr) = g`(θr) e

ıω0τ`(θr).

2.2 Multiple Sub-Arrays

Now, following the original idea developed in [7], assume we have at our disposal
a set of M sub-arrays, each containing L sensors, and deducible from each other
by a translation. Choose one of these sub-arrays as a reference, label it with
m = 1, and denote by δm, m > 1 the vector defining the translation to obtain
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the M−1 remaining sub-arrays. To simplify subsequent equations, we also define
δ1 = 0. The delay of arrival of the rth source to reach sensor ` of array m is then
τ`(θr) + ζm(θr) where ζm(θr) = δTmd(θr)/c. Then, at fixed radial frequency ω0,
the complex envelope of the signal received at the `th sensor of the mth sub-array
can be written as X`mt =M`mt +N`mt, where [9]:

M`mt =

R∑
r=1

A`r Bmr Srt ∈ CL×M×T

with

A`r = g`(θr) e
−ω0τ`(θr)

Bmr = e−ω0ζm(θr)

Srt = sr(t)

(4)

Notice that L×R steering and pattern matrix A is the same as in Section 2.1.
Space shift elements of M ×R steering matrix B are a function of the delay of
arrival on each sub-array m. Finally, source complex envelopes constitute T ×R
matrix S. We shall work under the assumptions summarized below.
Assumptions

1. The first sensor (` = 1) is taken as origin, so that p1 = 0, and has a unit
gain in all directions, i.e. g1(θ) = 1, ∀θ.

2. The first sub-array is considered as a reference, so that δ1 = 0.
3. The space shifts δ1, . . . , δM are known, whereas sensor positions p`, ` 6= 1

and gains g`(θ), ` 6= 1 are unknown.
4. The sensor gains g`(θ) are real (which is actually equivalent to assuming

that their phase is known) and frequency-flat.
5. Sources sr(t) are deterministic.
6. The wave propagation speed c does not depend on frequency (i.e. the medium

is not dispersive).
7. Noise is circular complex white Gaussian.

Notice that Assumptions 1 and 2 are not restrictive, and permit to fix the scale
indeterminacies in model (4), as pointed out in the next section. Assumption 4
means that L continuous real functions are unknown. However, they need to be
known only at values θr, so that we may consider only g`r = g`(θr) as unknowns.
The circularity could be relaxed in Assumption 7 to the price of an increased
notational complexity, as in [8].

If sensors within a sub-array overlap, p` = 0 ∀` and matrix A only contains
information about directivity gains: A`r = g`(θr). Therefore, the only space
information is carried by space-shift matrix B. On the other hand, if sensors
within a sub-array do not overlap, p` = 0 ⇐⇒ ` = 1.

2.3 Tensor Decomposition

Any tensor represented by an array M of size L × M × T can be decom-
posed into a sum of R decomposable terms: M =

∑R
r=1 D(r). By decom-

posable, it is meant that there exist R triplets of vectors (u(r),v(r),w(r))
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such that D`mt(r) = u`(r)vm(r)wt(r). When R is minimal, it is called ten-
sor rank, and this decomposition is unique if R is not too large; for instance,
R ≤ (L− 1)(M − 1) ≤ T − 2 is sufficient almost surely [12].

Hence in the absence of noise, one can identify every term in (4) with a de-
composable tensor, that is: A`rBmrSrt = u`(r) vm(r)wt(r). This identifiability
property is the main motivation in resorting to tensor-based algorithms. How-
ever, there is still a scaling ambiguity that cannot be resolved, in general. In
fact, denote by ar, br and sr the columns of matrices A, B and S, respectively.
Even if the entries D`mt(r) = A`rBmrSrt are known, which we shall denote as
D(r) = ar ⊗ br ⊗ sr, column vectors are only determined up to scaling factors
since ar ⊗ br ⊗ sr = αar ⊗ βbr ⊗ 1

αβsr, for any pair of nonzero scalars (α, β).
In other words, this leaves 2R scalar unknowns, unless some other constraints
are available. In the present context, we precisely know that the first entry of
ar and br are equal to 1, ∀r, because of Assumptions 1 and 2. These constraints
hence completely fix scaling indeterminacies.

2.4 Acquisition System and Directivity Gains

For the sake of simplicity, we consider sources that are coplanar with the ac-
quisition system: sensor positions become p` = [px` , p

y
` ], and τ`(θ) becomes

τ`(θr) = px` cos(θr)+py` sin(θr), both functions of azimuth only. This amounts to
considering elevation ψr = π/2, ∀r. We choose to work with a UCA of radius ρ,
with px` = ρ cos(2π`/L) and px` = ρ sin(2π`/L) [3].

Without loss of generality, we assume that all the sensors within a sub-array
have identical directivity pattern g(·), with maximum gain in the radial direction
from the center of the array: g`(θr) = g(θr − 2π`/L). Function g(θ) =

√
G(θ) is

chosen to be a simple nonnegative, smooth and 2π-periodical function, with

Gγ(θ) =
D(γ)

2γ
(1 + cos(θ))

γ
(5)

and parameter γ controls the directivity D(γ) = 2γ2π∫ 2π
0

(1+cos(θ))γdθ
.

3 Identifiability of Sources and DoA

The tensor model in (4) can be expressed in vector form as

x =

R∑
r=1

sr � br � ar + n (6)

where � denotes the Kronecker product. Since measurement noise vector n
is circular white Gaussian and isotropic, i.e. Σ = σ2I, with zero mean and
covariance σ2I, the log-likelihood then takes the form:

Υ (θ,α,β, s) ∝ −(x− µ)H Σ−1 (x− µ) (7)
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where µ =
∑R
r=1 sr�br�ar is unknown and constrained by its parameterization.

The parameter vector v for µ is composed of DoAs and factor matrices: v =
[θ1, . . . , θR,a1, . . . ,aR, s1, . . . , sR]. The CRB represents the lower bound on the
variance of any unbiased estimator and corresponds to the inverse of the Fisher
Information Matrix (FIM). For the derivation of the FIM of the estimation
problem in (7), refer to [9] and references therein.

Once factor vectors ar, br, sr are estimated through a CP decomposition
routine, such as Alternating Least Squares (ALS), DoAs can be estimated by:

θ̂r = arg min
θ∈Θ

[
(b̂r − br(θ))H(b̂r − br(θ))

]
If M = 2, DoAs can also be estimated through the ESPRIT algorithm [13],
which is equivalent to the tensor approach in its particular instance for M = 2.

Theoretically, this solution can only be approximate, since the minimization
has been carried out in two stages. To obtain a more accurate solution, one
should maximize the likelihood (7), e.g. by executing an iterative ascent with
the suboptimal solution as a starting point. However, this improvement has
revealed to be negligible in subsequent computer experiments.

If the acquisition system is composed of M = 2 sub-arrays, deduced from
each other by a single translation δ = δ2, the tensor approach based on model
(4) reduces to ESPRIT [13], after inclusion of the unknown sensor gains g`(θr)
into A: {

x1(t) = As(t) + n1(t)

x2(t) = ΦAs(t) + n2(t)

where Φ = Diag{e−ω0ζ(θ1), · · · , e−ω0ζ(θR)} is a unitary operator that relates
both sub-arrays to each other, and ζ(θr) = δTd(θr)/c.

4

4 Results for L = M = 4

R = 4 uncorrelated narrowband sources arriving from θ = [25◦, 65◦, 105◦, 345◦]
were simulated with T = 64 time samples. Each sub-array is a UCA of radius
ρA ≈ λ/(20

√
2) with L = 4 sensors, whereas directivity gains are described in

Subsection 2.4, with D = 4. M = 4 sub-arrays with the aforementioned structure
are located around a UCA of radius ρB = λ/(2

√
2) (see Figure 1).

As in [8, 14], SNR is defined as:

SNR = 10 log10

E
[
xHx

]
E [nHn]

= 10 log10

‖ x ‖22
LMTσ2

n

(8)

and Mean Square Error is defined as MSE(θ) = 1
π2

1
NR

∑N
n=1

∑R
r=1(θ̂rn − θr)2.

The approaches compared in Figure 2 refer to tensor DoA estimation: ALS
full and CRB full when sensors are non overlapping and directional, with

4 If M = 2, we also need to fix a half plane ambiguity w.r.t. the translation axis, either
thanks to A or thanks to some a priori information.
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Fig. 1. Acquisition system for L = M = 4

0 5 10 15 20 30 40

10−7

10−6

10−5

10−4

10−3

10−2

SNR [dB]

M
SE

[r
ad

2 ]

ALS full
ALS gain
ALS shift
CRB full
CRB gain
CRB shift

Fig. 2. MSE vs SNR, D = 4, L = M = 4

A`r = g`(θr) e
−ω0τ`(θr); ALS gain and CRB gain when sensors are overlapping

and directional, with A`r = g`(θr); ALS shift and CRB shift when sensors are
non overlapping and omni-directional, with A`r = e−ω0τ`(θr).

Figure 2 shows that, when sensor positions within a sub-array are not known,
the introduction of unknown directional elements improves the estimation. Fig-
ure 3 illustrates the dependence of the MSE on sensor directivity D, showing an
optimum at D ≈ 4 (i.e. γ ≈ 5) for the present system.

5 Optimization of a Bio-Inspired Microsystem

We consider the case of a small network (M = 2) with a few sensors per sub-
array. The directivity patterns are chosen according to the anatomy of a fly, that
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Fig. 4. Bio-inspired sensor network with two sub-arrays: M = 2 and δ = 1mm

is known to direct its flight toward other sound emitting insects. We omit the
specific physics [11] and focus on the feasibility, in order to reduce the size of
the smallest known DoA microsystem [10].

Figure 4 shows the biologically inspired acquisition system: the same group
is repeated twice (M = 2) through one translation δ = 1mm; impinging sources
have identical central frequency f = 10kHz and are simulated from a unit vari-
ance random distribution with T = 64 time samples. At this working frequency,
given the propagation speed of sound through air at 20◦, c = 343.2m/s, space
shift δ corresponds to approximately λ/34. One sub-array is composed of a ref-
erence omnidirectional sensor (D1 = 1 i.e. γ1 = 0), a main sensor [15] with a
cardioid pattern (D2 = 2.7 i.e. γ1 = 2 , α2 = 180◦) and two highly directional
sensors (D3 = D4 = 17.7, i.e. γ3 = γ4 = 100, α3 = 90◦ and α4 = 135◦) [16].5

5 A cardioid can be defined by 2 parameters: directivity D as described in 2.4 and
orientation angle α, that refers to the direction of maximum directivity.
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In Figure 5, the results of the proposed algorithm are compared with CRB as
a function of SNR, for a given number of impinging sources R ∈ {1, 2}. It appears
that it is still possible to identify more than one source with a microsystem of
the size of the auditory system of a fly, at the cost of a loss of accuracy.
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Fig. 5. MSE vs SNR, for R ∈ {1, 2} sources; θ ∈ {45◦, 135◦}; δ = 1mm, f = 10kHz
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Fig. 6. MSE vs frequency, R = 2 sources: θ1 = 45◦, θ2 = 135◦; δ = 1mm, SNR = 20dB

In order to face noisy realistic situations, the fly makes use of additional me-
chanical and neural active solutions, whereas the proposed method may optimize
the number of sub-arrays M , space shift δ and working frequency f . Figure 6
shows the MSE as a function of working frequency at 20dB: performance is opti-
mal for f = 170kHz, which corresponds to δ ≈ λ/2. Equivalently, we could also
attain this condition by increasing the space shift δ between the two sub-arrays
up to 17mm, keeping f = 10kHz.
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Fig. 7. CRB vs SNR for reduced systems; R = 2 sources: broadside: θ1 = 75◦, θ2 =
115◦; endfire: θ1 = 15◦, θ2 = 165◦; δ = 1mm, f = 10kHz

Figure 7 illustrates the contribution of particular groups of sensors, by de-
creasing their number and selecting their directivity patterns, through a customer-
driven tradeoff. Three relevant configurations are compared: the first is the 8-
sensor configuration of figure 4 (LM = 8); the second is formed by the omnidi-
rectional sensor and the big cardioid (total of LM = 4 sensors); the third is given
by the omnidirectional sensor and the two small and quite directional elements
(total of LM = 6 sensors).

These configurations are tested for two sets of DoAs: the CRB on the DoAs
is plotted for R = 2 sources arriving from the broadside or from the endfire of
the system. While the CRB of the estimation for the first configuration remains
globally the best, the role of the second and the third reduced systems is reversed:
the big cardioid is more sensitive to endfire sources, whereas the two quite direc-
tional elements are more sensitive to broadside sources. The conclusion is that
the two contributions are complementary. Interestingly, only flies which can lo-
cate sound emitting distant targets seem to possess a highly sensitive cardioid
sensor in each of their two sub-systems.

6 Conclusion

We already knew from [7] that space, time, and translation in space induced
exploitable diversities, when omnidirectional sensors are used. This remains true
if sensors have known nonzero gain patterns, because they can be compensated.
But the question whether sensor gain patterns could induce a diversity was still
open. We showed that it can indeed be the case, in particular when sensors are
co-located in each sub-array. In that case, there is no space diversity anymore,
but tensor approaches can still be applied by using time, pattern and space
translation diversities. Our last contribution is the conception of a network of
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sensors (M = 2, LM = 4 to 8) according to the extreme compactness of bio-
inspired microsystems. Space translation diversity helps to compensate for non
perfectly known directivity patterns of bio-inspired systems.
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