N

N

Attributed Graph Rewriting for Complex Event
Processing Self-Management
Wilson A. Higashino, Cédric Eichler, Miriam Capretz, Luiz F. Bittencourt,
Thierry Monteil

» To cite this version:

Wilson A. Higashino, Cédric Eichler, Miriam Capretz, Luiz F. Bittencourt, Thierry Monteil. At-
tributed Graph Rewriting for Complex Event Processing Self-Management. ACM Transactions on
Autonomous and Adaptive Systems, 2016, 11 (3), pp.article n® 19. 10.1145/2967499 . hal-01369701

HAL Id: hal-01369701
https://hal.science/hal-01369701
Submitted on 26 Sep 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International

License

https://hal.science/hal-01369701
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Attributed Graph Rewriting for Complex Event Processing
Self-Management

W!LSON A. HIGASHINO, Western University/University of Campinas
CEDRIC EICHLER, INSA CVL

MIRIAM A. M. CAPRETZ, Western University

LUIZ F. BITTENCOURT, University of Campinas

THIERRY MONTEIL, LAAS-CNRS/INSA Toulouse

The use of Complex Event Processing (CEP) and Stream Processing (SP) systems to process high-volume,
high-velocity Big Data has renewed interest in procedures for managing these systems. In particular, self-
management and adaptation of runtime platforms have been common research themes, as most of these
systems run under dynamic conditions. Nevertheless, the research landscape in this area is still young and
fragmented. Most research is performed in the context of specific systems, and it is difficult to generalize the
results obtained to other contexts. To enable generic and reusable CEP/SP system management procedures
and self-management policies, this research introduces the Attributed Graph Rewriting for Complex Event
Processing Management (AGeCEP) formalism. AGeCEP represents queries in a language- and technology-
agnostic fashion using attributed graphs. Query reconfiguration capabilities are expressed through stan-
dardized attributes, which are defined based on a novel classification of CEP query operators. By leveraging
this representation, AGeCEP also proposes graph rewriting rules to define consistent reconfigurations of
queries. To demonstrate AGeCEP feasibility, this research has used it to design an autonomic manager and
to define a selected set of self-management policies. Finally, experiments demonstrate that AGeCEP can
indeed be used to develop algorithms that can be integrated into diverse CEP systems.

CCS Concepts: ® Information systems — Data streaming; ® Computer systems organization —
Self-organizing autonomic computing; Cloud computing; ® Theory of computation — Rewrite sys-
tems; ® Software and its engineering — Specialized application languages

Additional Key Words and Phrases: Complex event processing, autonomic computing, self-management,
attributed graph, graph rewriting

ACM Reference Format:

Wilson A. Higashino, Cédric Eichler, Miriam A. M. Capretz, Luiz F. Bittencourt, and Thierry Monteil. 2016.
Attributed graph rewriting for complex event processing self-management. ACM Trans. Auton. Adapt. Syst.
11, 3, Article 19 (September 2016), 39 pages.

DOI: http://dx.doi.org/10.1145/2967499

1. INTRODUCTION

Current technological trends such as the Internet of Things and mobile computing
are causing a massive explosion in the volume and velocity of data generated every

This work was partially supported by an NSERC CRD at Western University (CRDPJ 453294-13).
Authors’ addresses: W. A. Higashino and M. A. M. Capretz, Dept. of Electrical and Computer Engineering,
Thompson Engineering Building, Western University, London ON, Canada, N6A 5B9; emails: {whigashi,
mcapretz}@uwo.ca; C. Eichler, INSA Centre Val de Loire, LIFO, 88 boulevard Lahitolle CS 60013 18022
Bourges, France; email: cedric.eichler@insa-cvl.fr; T. Monteil, CNRS, LAAS, 7 avenue du Colonel Roche, F-
31400 Toulouse, France / Université de Toulouse, CNRS, INSA, F-31400 Toulouse, France; email: monteil@
laas.fr; L. F. Bittencourt, Institute of Computing, University of Campinas, Av. Albert Einstein 1251, Campinas
SP, Brazil, 13083-852; email: bit@ic.unicamp.br.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.

2016 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 1556-4665/2016/09-ART19 $15.00

DOI: http://dx.doi.org/10.1145/2967499

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

http://dx.doi.org/10.1145/2967499
http://dx.doi.org/10.1145/2967499

19:2 W. A. Higashino et al.

day. Clearly, processing and understanding this enormous amount of data requires
innovative approaches.

Complex Event Processing (CEP) and Stream Processing (SP) are technologies com-
monly applied in this new Big Data reality. Both CEP and SP are concerned with
processing continuous data flows coming from distributed sources to obtain timely re-
sponses to queries [Cugola and Margara 2012]. These queries are defined by the user
through a set of operators and aim to extract knowledge from incoming data. Because
of their generality, the tasks to which CEP and SP are applied range from simple mon-
itoring to highly complex financial applications such as fraud detection and automated
trading [Grolinger et al. 2014].

Despite this recent surge of interest, the current CEP/SP research and development
landscape is still young and particularly fragmented. A large variety of solutions exist,
and they often use inconsistent terminology and different query definition languages.
Consequently, most ongoing research is performed in the context of specific systems
and languages.

Of particular interest for this research, algorithms and techniques aimed at query
lifecycle management have often been developed in such a system-specific fashion.
For instance, Aurora® can dynamically move processing load to neighbouring servers
[Cherniack et al. 2003], and Nephele can dynamically resize the output buffers of query
operators [Lohrmann et al. 2013]. Both these examples illustrate important query
management techniques, in which the system self-adapts to changing conditions.
However, they were developed in the context of their respective systems and therefore
cannot be easily generalized. More recently, these limitations have become even more
pronounced due to two recent trends in CEP/SP research:

—Many modern systems [Gulisano et al. 2012; Qian et al. 2013] use cloud infrastruc-
tures as runtime environments to leverage cloud performance and inherent elasticity.
Management of such large deployments has led to more complex algorithms and re-
inforces the need to reuse them;

—Recent CEP/SP systems are being offered as services [Amazon 2015; Google 2015]
and accept user-defined operators. In this context, the ability to integrate these
operators in the query management loop becomes essential to these systems.

This research presents Attributed Graph Rewriting for Complex Event Processing
Management (AGeCEP), a novel formalism that enables creation of generic and
reusable procedures for CEP/SP query management. To achieve this goal, AGeCEP pro-
vides a language-agnostic extensible representation of queries and of reconfiguration
actions that specify how queries can be transformed. Once an algorithm is expressed by
this formalism, it can be integrated into diverse modern cloud-based CEP/SP systems
and applied to an extensible set of query operators. In this way, AGeCEP overcomes
the specificity of current CEP/SP research and enables creation of universal algorithms
and strategies.

More specifically, this research develops the following contributions:

—The query lifecycle management (QLM) concept as a composition of four main steps:
single-query optimization, multi-query optimization, operator placement, and run-
time management;

—A novel classification of query operators focused on their reconfiguration capabilities;

—AGeCEP, the formalism used to represent CEP/SP queries and reconfiguration ac-
tions in a way that is both language-agnostic and appropriate for query management.
This formalism is based on the classification just mentioned, attributed directed
acyclic graphs, and graph rewriting rules;

—The design of an autonomic manager based on AGeCEP and the MAPE-K frame-
work [IBM 2006] that can be used to control modern CEP systems.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:3

The fitness of this proposal is then investigated with regard to the following:

—its feasibility as demonstrated by a general methodology that can be used to adapt
operator placement procedures to AGeCEP and by a selected set of self-management
policies defined with AGeCEP in the context of an autonomic manager;

—its viability as demonstrated through performance measurement experiments.

This article is structured as follows: Section 2 discusses existing work regarding
CEP and related formal models. In Section 3, the query lifecycle management concept
is presented and situated in the context of current CEP research. The objectives, basis,
and requirements of the AGeCEP formalism are introduced in Section 4. In accordance
with these requirements, the classification of CEP query operators is described in
Section 5, and AGeCEP is further developed in Section 6. Section 7 presents the design
of an autonomic manager based on AGeCEP. To prove its feasibility, placement is
discussed in Section 8 and a selected set of self-management policies is examined in
Section 9. Finally, a viability study is presented in Section 10, followed by conclusions
in Section 11.

2. RELATED WORK
2.1. Complex Event Processing

The basis of CEP was established by the work of Luckham [2002]. At about the
same time, the database community developed the first classical SP systems, such as
Aurora [Abadi et al. 2003] and STREAM [Arasu et al. 2004]. CEP and SP technologies
share related goals, as both are concerned with processing continuous data flows from
distributed sources to obtain timely responses to queries [Cugola and Margara 2012].

Much of the early distributed CEP research was done in the context of publish/
subscribe systems, such as the Publish/Subscribe Applied to Distributed REsource
Scheduling (PADRES) system [Li and Jacobsen 2005]. Simultaneously, distributed SP
research was under discussion, as in Aurora* [Cherniack et al. 2003] and Borealis
[Abadi et al. 2005]. Current research has obviously been influenced by these works,
but the recent emergence of cloud computing has been strongly shaping the CEP/SP
landscape as well. For instance, StreamCloud [Gulisano et al. 2012] and TimeStream
[Qian et al. 2013] are CEP/SP systems that use cloud infrastructures as their runtime
environments.

This work uses a terminology based on the Event Processing Technical Society
(EPTS) glossary [Luckham and Schulte 2011], which originated from the CEP lit-
erature. This terminology has been chosen because its terms are broadly defined and
encompass most of the SP concepts. Hereafter, CEP is used as a superset of SP, as
defined in the EPTS glossary.

2.2. Query Languages

In CEP systems, users create rules that specify how to process input event streams
and derive “complex events.” These rules have usually been defined by means of propri-
etary rule languages such as Continuous Query Language (CQL) [Arasu et al. 2005].
Similarly, the term “query” has been used by many systems to refer to user-defined
event processing rules. The work described in this article uses the query terminology
to avoid confusion with graph rewriting rules, which are introduced in Section 6.

Despite standardization efforts [Jain et al. 2008], a huge variety of languages are
still in use today. Cugola and Margara [2012] classified existing languages into three
groups as follows:

—Declarative: The expected results of the computation are declared, often using a
language similar to Structured Query Language (SQL). The CQL [Arasu et al. 2005]
is the most prominent representative of this category.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:4 W. A. Higashino et al.

—Imperative: The computations to be performed are directly specified as a sequence
of operators. The Aurora Stream Query Algebra (SQuAl) [Abadi et al. 2003] inspired
most languages in this category.

—Pattern-based: Languages are used to define patterns of events using logical opera-
tors, causality relationships, and time constraints. The TESLA [Cugola and Margara
2010] language is an example of this category.

2.3. CEP Formal Models

Most previous research into CEP formal models was developed in the context of specific
query languages [Arasu et al. 2005; Brenninkmeijer et al. 2008]. These models attach
semantics to queries written using these languages, but they generally cannot be
applied to other contexts without significant adaptation.

More recent research has targeted the development of language-independent for-
malisms for CEP [Kriamer and Seeger 2009; Herbst et al. 2015]. These authors rec-
ognized the importance of a generic model to enable formal analysis of user-defined
queries. Nevertheless, these models are still significantly different from the research
described in this article because they focus on defining query semantics instead of
reconfiguration actions.

Sharon and Etzion [2008] proposed the event processing network (EPN) formalism
as a way to specify event-based applications independently of the underlying imple-
mentation. More recently, Rabinovich et al. [2010] and Weidlich et al. [2013] built on
their research by implementing simulation, static, and dynamic analysis of EPNs.
EPNs share similarities with AGeCEP because they are also language agnostic and
use directed graphs as their basic representation. However, the main goal of EPNs is
to represent applications that can be translated into system-specific queries, whereas
the proposed AGeCEP aims to provide a generic representation of queries.

Cugola et al. [2015], on the other hand, proposed an approach and an accompanying
tool called CAVE that can be used to prove generic properties about user-defined queries
by solving a constraint satisfiability problem.

Finally, Hong et al. [2009] presented the work that most closely approximates the
objectives of this research. Queries written in both declarative and pattern-based lan-
guages are converted to a graph-based query execution plan, and a set of transformation
rules is applied to optimize them. Note, however, that the focus is solely on multi-query
optimization, whereas this research targets the entire query lifecycle management
process.

2.4. The Autonomic MAPE-K Loop

Self-adaptation through self-management is at the core of the autonomic computing
paradigm [Kephart and Chess 2003]. In this paradigm, a system is provided with self-
management capabilities by an autonomic manager. This manager usually implements
an autonomic control loop conceptualised by the MAPE-K framework [IBM 2006], as
depicted in Figure 1. This framework is named after the five functions composing it:

(1) Monitor: monitors events from the managed system to infer symptoms and sends
them to analysis;

(2) Analyse: analyses symptoms and infers whether changes are required. If needed,
sends request for changes to the plan function;

(3) Plan: selects the actions that must be performed based on the analysis results;

(4) Execute: executes the selected actions;

(5) Knowledge base: contains every required piece of information about the system,
including actions that may be performed, their representations, and the inference
rules used by the four other functions.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:5

Analyse Request for Change
!

uepd afueyy)

Autonomic manager

Sensors - Events Effectors - Actions

Managed system

Fig. 1. The MAPE-K autonomic loop.

1. Query Definition

2. Single
Query
Optimization

SELECT IStream(*) L
FROM S1[Rows 100]

3. Multi
Query
Optimization

5. Runtime
Management

4. Operator
Placement

Fig. 2. Query lifecycle.

Note the MAPE-K functions might not exist as separated entities, but, logically, all of
them are still present in an autonomic manager. For the sake of simplicity, this article
assumes each function is implemented by its own software module.

3. QUERY LIFECYCLE MANAGEMENT

QLM can be defined as the set of tasks necessary to manage a query from the time of
its definition by a user up to its execution and subsequent retirement.

In this research, the query lifecycle is defined by the five major steps illustrated in
Figure 2. The cycle starts with the user creating queries using a CEP query definition
language. Each query is submitted to the CEP execution engine, where it is first
analysed and optimized in isolation (Single-Query Optimization) and, following, in
conjunction with other running queries (Multi-Query Optimization).

In the Operator Placement step, the query operators are mapped to a subset of
the available computing resources and starts executing. Following, during Runtime
Management, the system maintains the query execution, responding to context changes
such as hardware and software failures. In this step, the system may need to re-optimize

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:6 W. A. Higashino et al.

and re-place queries. This dependency is represented in Figure 2 by dashed arrows from

box 5 to boxes 2, 3, and 4. Finally, based on the results obtained by the query, users can

decide to refine it or to create one or more new queries, which originates a new cycle.
In the following subsections, each of the QLM steps is detailed.

3.1. Query Definition

Query definition is the step in which users define the CEP queries they want to execute.
As mentioned in Section 2.2, each system usually has its own query language that is
used for this purpose. In addition, the way that users interact with the system to
define and submit queries differs enormously from system to system. For example,
commercial CEP packages such as Oracle Stream Explorer [Oracle 2015] and Software
AG Apama [Software AG 2015] have full-fledged interfaces that help to define queries
and monitor their execution. On the other hand, many academic [Qian et al. 2013]
and lower-level systems [Storm 2015] provide only programming language Application
Programming Interfaces (APIs) that are mostly targeted to software developers.

Because the formalism presented in this research is independent of query language
and, consequently, of how queries are defined, this step is not discussed further in the
rest of this article.

3.2. Single-Query Optimization

Single-query optimization (SQO) is the action of modifying a query to improve its
efficiency while keeping its functional properties unchanged. The “efficiency” of a query
is usually measured with respect to some optimization criterion such as processing
latency, CPU usage, or network consumption. This step is essential because it reduces
the need for technical knowledge by users: Non-optimized queries are corrected before
they are run, reducing their impact on the system.

SQO is executed right after a new query is created and registered. Consequently,
this step assumes no a priori knowledge about available resources or about the state
of the network and servers.

Among all the QLM steps, SQO has been the least studied in the literature. For
example, both STREAM [Arasu et al. 2005] and TimeStream [Qian et al. 2013] rely
mostly on runtime adaptation and use only a few ad hoc heuristics in SQO.

3.3. Multi-Query Optimization

Multi-query optimization (MQO) consists of finding overlaps (common partial results)
between queries and merging them into a single query while maintaining their logical
separation. This step usually optimizes the same criteria as the single-query optimiza-
tion step. MQO can be executed as a separate step when a new query is created or
periodically to take account of modifications in the underlying queries. In both cases,
one of the greatest challenges is to decide which queries should be considered.

MQO has received more attention than SQO. Early research was largely based on
MQO for relational databases and focused on sharing specific operators, such as in
Madden et al. [2002] and Hammad et al. [2003]. Hong et al. [2009] was one of the first
work that formalized MQO as an independent task that can be applied to continuous
queries.

3.4. Operator Placement

Operator placement is the step in which a query execution is mapped into the set
of available computing resources. In the context of distributed and cloud-based CEP
systems, this usually translates into determining the number and types of servers
required and how the queries should be split among multiple processors. More recently,
placement has also been considered in multi-cloud environments [Borgetto et al. 2016].

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:7

This step is executed during initial system deployment, when a new query or a new
operator is created and, in general, whenever a reconfiguration requires a placement
decision. Because of this variety of scenarios, it is common to have different approaches
to deal with incremental and global placement decisions, for example, placement of a
new operator versus placement of all running queries.

Xing et al. [2005] and Pietzuch et al. [2006] presented classical operator placement
approaches for distributed CEP systems. For more information about operator place-
ment strategies, the survey by Lakshmanan et al. [2008] can be consulted.

3.5. Runtime Management

Runtime management refers to the self-managed evolution of a system at runtime.
Here, queries are reconfigured in response to context changes such as hardware and
software failures and sudden bursts of events. This step is the most commonly imple-
mented of all the steps in query lifecycle management.

To support proper runtime management, CEP systems usually define and enforce a
number of self-management policies aiming to improve or to maintain the quality of
service for queries. The implementation of these policies requires two main capabilities:
detecting when a reconfiguration is required and then executing reconfiguration actions.

The detection step frequently involves monitoring system metrics, such as CPU load
and operator queue size, and comparing them with some threshold. The execution
of reconfiguration actions, on the other hand, can have many different forms and
implementations.

One possible classification of reconfiguration actions focuses on their scope and
coarsely categorizes them as behavioural or structural. Behavioural actions change
operator and system parameters but do not modify the query or the system structure.
Common examples are load shedding [Abadi et al. 2003] and buffer resizing [Lohrmann
et al. 2013]. Conversely, structural actions require adapting the structure of queries
and their mapping into system resources. Splitting a query to distribute its execu-
tion [Cherniack et al. 2003] and migrating operators to underloaded servers [Heinze
et al. 2014] are examples of structural actions. The AGeCEP formalism focuses on
structural reconfigurations, as detailed in Section 6.

4. ATTRIBUTED GRAPH REWRITING FOR CEP MANAGEMENT

The AGeCEP formalism has been developed to enable specification of self-management
policies that can be applied to query lifecycle management.

To achieve this goal, two main challenges have to be overcome: The first is to find a
query representation that is language agnostic, yet can encode all information required
by self-management policies. The second is to find a way to specify unambiguous re-
configuration actions that act on the represented queries. The following subsections
discuss these challenges further.

4.1. Modelling Queries

AGeCEP represents CEP queries as Attributed Directed Acyclic Graphs (ADAGs). In
an AGeCEP query graph, each vertex represents a query element, and each edge
represents an event stream flowing from one element to another. Query elements, in
turn, are further classified as:

—event producers: sources of events processed by the query;

—event consumers: consumers of query results;

—query operators: any processing logic that can be applied to one or more input streams
and generates one or more output streams as a result.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:8 W. A. Higashino et al.

Because the graphs used are attributed, it is also possible to represent properties that
qualify the vertices and edges and enrich their representation. Here, the attributes con-
sidered should include all pieces of information required by self-management policies.

To identify these properties, a novel classification of query operators focusing on their
reconfiguration capabilities was elaborated. Integrating a new operator into AGeCEP,
therefore, is simply equivalent to classifying it properly. Details of this classification
are presented in Section 5.

Use of ADAG as a language agnostic representation of CEP queries is a natural choice
corroborated by many studies in the literature. For instance, most CEP systems based
on imperative languages use (non-attributed) DAGs to represent user queries [Abadi
et al. 2003; Storm 2015]. Systems that use declarative languages, on the other hand,
transform user queries into query plans to make them “executable,” which often leads
to DAG-like structures (e.g., the STREAM system and the CQL language [Arasu et al.
2005]). AGeCEP generality is further discussed in Section 6.1.

4.2. Modelling Reconfiguration Actions

In CEP systems, self-management policies may act on different steps of the query
lifecycle and have various goals. In a broad sense, however, they all follow a similar
structure in which (i) potential problems are detected; (ii) appropriate reconfiguration
actions are selected; and (iii) the selected actions are applied as a response.

In this structure, problem detection and action selection are mostly independent of
the chosen query representation. On the other hand, the representation of reconfigura-
tion actions is heavily influenced by this choice. AGeCEP, therefore, also focuses on the
definition and representation of reconfiguration actions. These actions can be applied
to transform queries and can be used by any procedure, including but not limited to
self-management policies. More precisely, because this research focuses on structural
reconfiguration of queries modelled by ADAGs, it is natural to represent the actions
under consideration using a graph transformation formalism.

Such reconfigurations can be modelled formally, yet visually and intuitively by graph
rewriting rules. Graph rewriting is a well-studied technique [Rozenberg 1997] with
multiple applications, including self-management [Rodriguez et al. 2010; Eichler et al.
2013].

Note that a graph rewriting rule formally specifies both a reconfiguration (i.e., its
effect) and the context in which it can be applied (i.e., its applicability), enabling the
study and establishment of guarantees of reconfiguration correctness [Eichler et al.
2016].

4.3. Discussion

In the context of self-management policies and autonomic computing, AGeCEP queries
and reconfiguration actions are part of the knowledge base (KB). Specifically, AGeCEP
focuses on representing “what can be done” and not on the decision-making process that
determines “what should be done.” The MAPE-K modules are expected to use AGeCEP
to implement their functions in conjunction with other information available in the KB
such as monitored events, inference rules, and runtime environment models.

Note that by limiting AGeCEP scope to queries and reconfiguration actions, it is
possible to integrate AGeCEP with existing models and techniques rather than forcing
the adoption of particular ones. By doing so, AGeCEP can be applied to a broader range
of scenarios.

Section 7 shows how existing representations and meta-models can be coupled with
AGeCEP to cover the whole MAPE-K loop and thereby implement a complete autonomic
manager.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management

Duplication | Sharing |

19:9
Behaviour

Merge >—| Merge type |
Split >—| Split type |

v
Split Type

(Random)

Non-
combinable

Combinable

Selectivity | | Complexity |

Non-
duplicable

Duplicable

Non-
shareable

Shareable

Required
Merge Type

Merge-Split

Sharing
Strategy

1
1
! i
! 1
! | : |
:Merge Type : ! : Required Split L than 1
: G
1 1 1
- ') (Cequas1)
i Sorted 0! Query \ Equals 1
1 Union . ! s
! reater
= 1 =
: Custom | : 1 + Source
1 1
e i

Fig. 3. Proposed classification.

T A
— — —p
4 4
(a) Processing. (b) Merge. (c) Split. (d) Merge-Split.

Fig. 4. Operator types—examples.

5. CLASSIFICATION OF CEP OPERATORS WITH RESPECT TO THEIR
RECONFIGURATION CAPABILITIES

One underlying purpose of AGeCEP is to abstract queries and operators while ex-
pressing any information relevant to their self-management. To achieve this goal, this
section identifies a set of criteria related to operator management and presents a novel
classification of CEP query operators focused on their reconfiguration capabilities.

This classification is at the core of the proposed approach because generic query
rewriting rules in AGeCEP are applicable to virtually any set of properly classified
CEP operators. Figure 3 presents an overview of the criteria on which the operators
are classified. Each criterion is detailed in one of the following subsections.

5.1. Operator Type

The type criterion classifies operators according to the number of input and output
streams. There are four different categories in this criterion, illustrated in Figure 4:

—Processing: The operator has one input and one output stream only. These operators
can filter events from the input stream, transform them, or both.

—Merge: The operator has two or more input streams, which are processed together
and merged into one output stream.

—Split: The operator has one input stream, which is processed and split into two or
more output streams.

—Merge-Split: The operator has more than one input stream and more than one
output stream.

Merge operators are sub-classified according to the type of merge they execute:

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:10 W. A. Higashino et al.

—Union: Input events are output as they arrive, with no ordering guarantees.
—Sorted union: Input events are output sorted based on a specified set of attributes.
—Custom: A customized function defines how the input streams are merged.

Finally, split operators are also characterized based on the type of split they perform:

—Random: Input events are sent to a randomly selected output stream.

—Attribute: The output stream is selected based on the values of a specified set of
attributes.

—Query: Input events are split according to the query from which they come.

—Custom: A customized function defines how the events are split.

5.2. Sharing

The sharing criterion refers to the ability of a single operator instance to be shared by
two or more occurrences of the operator. This characteristic is especially important for
multi-query optimization, in which the results of common query subgraphs are reused
among queries.

This criterion is essentially determined by the operator implementation. An operator
is non-shareable if one runtime instance must be created for each operator occurrence.
On the other hand, an operator is shareable if a single instance implements more than
one occurrence. In this case, three sharing strategies are identified:

—Processing: One operator instance is shared among occurrences that execute the
exact same data processing but using different input streams as sources.

—Source: One operator instance is shared among occurrences that execute similar
data processing using the same input streams as sources.

—Processing+Source: One operator instance is shared among occurrences that exe-
cute the same data processing on the exact same input streams.

Figure 5(a) informally illustrates an example of a processing shareable operator. In
this case, a single instance can be used to process both input streams s, and s, as
represented in the right-hand part of the figure. This sharing is possible only because
the same filter (loc = 1 or 2) is applied to both streams. This type of sharing is usu-
ally chosen when an operator instance consumes a lot of memory, and it is therefore
important to create as few instances as possible.

In the example from Figure 5(b), the filter operator is source shareable. In this case,
both filter occurrences process the same input stream s, and have predicates over the
attribute loc. The resulting filter instance implements both predicates. This type of
sharing is applied when it is more efficient to implement multiple processing logics as
a single operation than it is to implement these logics independently.

Finally, the filter operator is assumed to be processing+source shareable in
Figure 5(c). In this example, the exact same data processing is executed on the same
input stream, and therefore only a single instance is necessary. This type of sharing
enables savings in both memory and CPU consumption and is the most commonly
used by CEP systems.

5.3. Duplication

A common strategy used to increase operator throughput is to create more than one
instance of the operator, assign them to different servers (or cores), and split the input
events among these instances. This strategy is illustrated in Figure 6.

Because of the prevalence of this strategy, the proposed classification contains a du-
plicable criterion, which is true when the operator can be duplicated and the processing
load distributed according to the described strategy. Moreover, when an operator is du-
plicable, two other aspects must be considered: the required split type and the required

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:11

(03] Sa " Fiter)5,
Iﬁ.
()

Filter

loc=10or2

Sa Filter) Sa
i loc=10r2
| B &
maw — _h
Bl =]
Sa_ (" Fiter \Sb'
loc=>3
(b) Source sharing.
Filter
loc=10or 2
» %E{_ Filter
Filter
loc=1 or 2

(¢) Processing+Source sharing.

(a) Processing sharing.

Fig. 5. Sharing strategies.

0.’ . BN
Filter N
o] loc=1or 2
loc=1or2
Filter
loc=1or 2 Pig

Fig. 6. Duplication strategy.

merge type. These two criteria determine the type of split (merge) operator that pre-
cedes (succeeds) the duplicated operator. The possible split (merge) types are the ones
defined in Section 5.1.

The required split and required merge types are ultimately defined by the duplicated
operator implementation. Generally speaking, stateless operators can be duplicated
and accept random splits because each event is processed in isolation. Conversely,
stateful operators usually require atéribute splits because they process together events
with similar characteristics (the same attribute values).

Finally, note that a sorted union merge type is needed in scenarios in which the
output stream must be kept ordered after duplication. For example, in Figure 6, there
is no guarantee that the events will reach the merge operator o,, in the same order

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:12 W. A. Higashino et al.

04)
. . Filter
> Filter Filter »| (oc=10r2)
loc=1or 2 rating<3 /., AND
rating <3

Fig. 7. Combination strategy.

Oc¢

they reached the split os. If order needs to be maintained, then the operator o,, must
be replaced by a sorted union.

5.4. Combination

The combinable criterion is true when two or more consecutive occurrences of an
operator o can be combined into a single operator o., which effect is equivalent to
applying all the combined operators in any order (Figure 7).

In most cases, the combinable operators o; and the equivalent combined one o. have
the same implementation. In other cases, o. differs. For example, two binary joins may
be combined as a multiple join operator, which usually has a different implementation
than the binary operator. Hence, the implementer of a combinable operator o must
provide:

—the implementation of operator o. resulting from a combination of o instances.
—a function that, given the parameters of successive instances of o, returns the pa-
rameters of the equivalent combined operator o..

This criterion is especially useful for SQO, in which operators can be combined to
reduce the number of operators in a query.

5.5. Behaviour

This category groups the characteristics of an operator related to its functional be-
haviour. More specifically, operators are classified according to two criteria:

—Complexity: refers to computational complexity as a function of the size of the input
streams.

—Selectivity: refers to the relation between the numbers of output and input events.
An operator selectivity less than 1 means that the number of output events is less
than the number of input events, whereas a selectivity greater than 1 implies that
the number of output events is larger than the number of input events.

5.6. Discussion

The classification presented in this section has been created based on an extensive
literature review of query lifecycle management research. It focuses on intrinsic recon-
figuration capabilities of query operators that are crucial to establish how they can be
reconfigured. As demonstrated in Section 9, these properties enable the expression of
a myriad of different procedures in the context of CEP systems.

Nevertheless, it is expected that not all properties required by current and future
systems are expressed in this classification. For this reason, the classification can be
easily extended with other criteria as needed. In addition, extrinsic operator properties,
such as runtime information, are not part of the classification because they are too
numerous and tightly coupled to the management procedures that use them. Section 6.1
discusses how new criteria and attributes are handled in AGeCEP.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:13

6. REPRESENTATION OF QUERIES AND THEIR TRANSFORMATIONS

AGeCEP provides graph-based models to represent two fundamental aspects of dy-
namic CEP systems: the system state, which is primarily defined by the running
queries, and possible transformations of this state, given by a set of reconfiguration
actions. The following subsections detail both models.

6.1. Query Representation Using ADAGs

In AGeCEP, each user-defined query q is represented by an attributed directed acyclic
graph G. Because the graph is attributed, the vertices and edges are augmented with
a set of attributes that qualify them. Formally, such an attributed graph is specified by
a triple (V, E, ATT), where:

—the vertices V represent the query elements,
—the edges E represent event streams flowing from one element to another,
—and ATT is a family of attribute sets indexed by V U E.

Formally, each set of this family is defined as a sequence of triples (IV, L, T'), where N,
L, and T are the attribute name, value, and type (i.e., domain) respectively.

To represent the types of elements and interactions that may be involved in a CEP
system, AGeCEP also defines stereotypes for the vertices and edges of a query graph.
Each stereotype specifies a set of attributes that are common to elements of that specific
stereotype.

6.1.1. Vertex Attributes. The vertices from a query graph G = (V, E, ATT) can represent
event producers, event consumers, or query operators, denoted as V,, V., and V,,
respectively. V,, V., and V, specify a partition of V, that is, all sets are disjoint subsets
of V, and their union is V.

Query operators all belong to the same stereotype and therefore share the same
list of attributes depicted in Table I. The nature of these attributes is directly related
to the properties considered relevant for defining self-management policies, which
were identified in the classification presented in Section 5. As mentioned, note this
classification is extensible and new criteria can be added as needed. In this case, the
new criteria translate directly to new attributes, and the possible values for the criteria
correspond to the attributes domain.

Event producers and consumers also define their own stereotypes, which contain
the first five attributes of the operator stereotype: id, impl, params, inDegree, and
out Degree. Event producers (consumers) necessarily have an inDegree (outDegree)
equal to 0.

6.1.2. Edge Attributes. AGeCEP uses a single stereotype for edges. The attributes of
this stereotype are described in Table II.

Note that except for id, all edge attributes can be inferred from the graph structure
and vertex attributes. Similarly, the inDegree and outDegree of a vertex can also be
inferred from the graph. Nevertheless, they are maintained as attributes to simplify
the definition and implementation of reconfiguration rules.

Furthermore, it should be emphasized that neither vertex nor edge attributes are
closed sets and can be extended whenever necessary. In particular, extrinsic properties
such as operator placement and runtime information can also be modelled as vertex
and edge attributes.

6.1.3. Example 1: Imperative Language. Figure 8 shows two queries q; and gy using the

AGeCEP representation. To simplify the figure, some attributes have been omitted. The
notation ((op)) specifies that the vertex is of the operator stereotype, whereas ((prod))

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:14 W. A. Higashino et al.
Table I. Attributes of the Vertex Stereotype “Operator”
Name Type Description
id String a unique identifier
impl String the operator implementation name
params List of strings the operator parameters
inDegree N the number of incoming edges
out Degree N the number of outgoing edges
type {“processing”, “merge”, “split”, operator type
“merge-split”}
mergeType {“union”, “sorted”, “custom”, “N/A”} if type =“merge”, the merge type
splitType {“random”, “attribute”, “query”, if type =“split”, the split type
“custom”, “N/A”}
shareable Boolean Is the operator shareable?
shStrategy {“processing”, “source”, “proc+source”, if shareable, the sharing strategy
“N/A”}
combinable Boolean Is the operator combinable?
combImpl String if combinable, the combined operator
o.’s impl. name
combParam fun: List of List of strings — List of and o.’s parameters function
strings
duplicable Boolean Is the operator duplicable?
reqMerge {“union”, “sorted”, “custom”, “N/A”} if duplicable, the succeeding mergeType
reqSplit {“random”, “attribute”, “query”, and the preceding splitType
“custom”, “N/A”}
Table II. Edge Attributes
Name Type Description
id String a unique identifier
sources|the power set of V), producers of events flowing through the edge
queries| List of String the set of queries that share the edge
attrs List of String |name of attributes according to which the events in the edge are grouped

and ((cons)) qualify an event producer or an event consumer. These queries have been
extracted from the Powersmiths’ WOW system [Powersmiths 2015], a sustainability
management platform that uses live measurements of buildings to support energy man-
agement and education. In WOW, queries are implemented in Apache Storm [2015] and
are used to process readings coming from building sensors managed by the platform.
The conversion from Storm queries to AGeCEP is straightforward because Storm also
represents queries using DAGs.

Query q; in Figure 8(a) is used to convert readings from JSON to the native WOW
format (XML). The query is implemented as a sequence of four operators: first, operator
J1 converts the JSON reading into a Java object. Then filters f; and f; remove invalid
readings from the event stream. Finally, operator xml; converts the reading to an XML
document and forwards it to the appropriate service.

Query g9 (Figure 8(b)) is used for the same purpose but has a different structure. The
query has two producers and two instances of operator fi2, which executes a processing
(filtering) logic equivalent to the sequential application of f; and fs.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:15

id="e1” id="e2" id="e3" id="e4” id="e5"
sources={“p1"} sources={“p1"} C “p17} C “p17} sources={“p1"}
queries=({q1"} queries={“q1"} queries={"q1” queries={"q1"} queries={"q1"}
attrs=0 attrs= atirs=0 attrs= attrs=0

; <<op>> . T T

id="j1"
impl=‘json_parser”

<<op>>
id="xmi1”

impl=“filter”

<<prod>> type="processing” type="processing |_conv”
id="p1” combinable="false” combinable=“true” type="processing”
impl="kafka” duplicable="true” duplicable="true” duplicable="true” combinable="false”
reqSplit="random” reqSplit="random” reqSplit=“random” duplicable="false”
regMerge="union” regMerge="union” regMerge="union”
(a) Query q1— Sequential version.
id="e1” id="e3" id="e4” <<op>> id="e6" id="e8”
sources={‘p1"} sources={“p1”, “p2} sources={“p1”, “p2’} id="f12_1" sources={"p1”, “p2’} sources={“p1”, “p2’}
queries={"q2"} queries={q2"} queries={"q2"} impl=“filter" queries={"q2"} queries={"q2"}
attrs=o attrs=o attrs=o type=“processing” attrs=o attrs=
] : N combinable="true”) k
duplicable="true” ’
<.<prfd>”> T:—DpT | reqSplit="random” / /
id="p1 oot i . ! reqMerge="union” /)
impl="kafka" impl="json_parser” I <<op>> /
type=“processing” : id="fSplit” pe: 1 <<cons>>
gonblusbiez s ipak-zol o T e
<<prod>> reqSplit="random” splitType=random” | <<op>> °g‘:"ﬁ::"ai?":j;::'$
id="p2" \ reqMerge="union” la="112 2" < & o
impl="kafka” \ |mp|=“f||ler_ N
\ type="processing” \
P P i “true”
e bl duplicable="true” .
sources={“p2"} sources={“p1”, “p2"}| e c p1”, “p2’}
queries={"q2"} queries={“q2"} reqMerge="union” queries={“q2"}
attrs=0 attrs=0 attrs=0

(b) Query ga—Duplicated filtering.

Fig. 8. JSON to XML conversion—Storm queries.

6.1.4. Example 2: Declarative Language. Figure 9 exemplifies how queries written in the
CQL language [Arasu et al. 2005] can be converted to the ADAG format used in AGe-
CEP. The original queries q; and g2 are shown in Figure 9(a). As it is common in
declarative query languages, CQL queries are transformed into a graph-based execu-
tion plan before being actually run. Figure 9(b) depicts the resulting plan for ¢; and q,.
Both queries were processed together and transformed into a single plan.

From this plan, the conversion to the AGeCEP representation is direct: Operators
and queues are mapped to vertices and edges, respectively. The resulting ADAG can be
visualized in Figure 9(c). Note that the graph expresses most information presented in
the query plan, including the fact that the seq_window operator can be shared among
queries that process the same input sources.

6.1.5. Example 3: Pattern-Based Language. Figure 10 shows the conversion from a Cayuga
Event Language (CEL) [Demers et al. 2007] query to AGeCEP. CEL is a pattern-based
language, even though it uses keywords that are similar to SQL. For instance, CEL
uses the operators NEXT and FOLD to search for sequence of events that satisfy a
stated condition, which is a construct characteristic of this language group.

In Cayuga, queries are transformed into a non-deterministic finite state automaton
to be executed. Figure 10(a) shows a query ¢ and its corresponding automaton. Even
though this automaton can be represented as a graph, its semantics differs from AGe-
CEP queries. For instance, the automaton states (vertices) are associated with input
streams, whereas in AGeCEP vertices represent operators.

Hong et al. [2009] presented a procedure to transform Cayuga automata to graph-
based execution plans. Basically, they introduced two new query operators that imple-
ment the NEXT and FOLD logics and a procedure to convert edge transitions to a
sequence of a filter followed by a projection. The execution plan for the example query
is depicted in Figure 10(b). Once transformed to a graph-based execution plan, the
conversion to AGeCEP is direct and results in the ADAG shown in Figure 10(c).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:16 W. A. Higashino et al.

Ql: Select B, max(A)
From S1 [Rows 50,000]
Group By B

9s

Q2: Select Istream(*)
From S1 [Rows 40,0007,

\\ ’),
S2 [Range 600 Seconds] _
Where S1.A = S2.A

4

seq
Syny -\ windows,
%qz

S

1 S

(a) CQL queries [Arasu et al. 2005]. (b) Generated execution plan [Arasu et al. 2005].

id="q1" id="q3" id="q6"
sources={"s1"} sources={"s1"} sources={"s1"}
queries={“q1”, “q2"} queries={“q1"} queries={“q1"}
attrs=o <<0p>> attrs=o attrs=o

N id="w1” N <<op>>

\ impl=“seq_window” \\ id="a1”

\ e="processing” impl="aggregate”
wpoin |yl e ‘ > (R <oons>>
id="s1 duplicable="false” R combinable="false” id="c1

shStrategy="proc+source”
shareable="true”

duplicable="false”

sources={"s1"}
queries={"q2"}
attrs=2

<<op>>
id="w2"
impl="seq_window”
type="processing”

type=“merge”

<<prod>> > type="processing”

id="s2” combinable="false” mergeType="custom” i "
/ duplicable="false” combinable="false” Cgmt;ma;trle_:u;‘fallse"
/) shStrategy="proc+source”, duplicable="false” ubicaplos aiee \
“true”
id="q2" id="g5” id="q7” id="q8”
sources=({“s2"} sources={"s2"} sources={"s1”, “s2"} sources={"s1”, “s2"}
queries={“q2"} queries={“q2"} queries={“q2"} queries={“q2"}
attrs=o attrs=2 atirs=0 attrs=

(c) AGeCEP representation.

Fig. 9. Conversion from a CQL query to AGeCEP.

6.1.6. Discussion. The AGeCEP query representation has been designed to be as
generic as possible. Most queries written in imperative and declarative languages
can be converted directly to an AGeCEP ADAG. Pattern-based languages, on the other
hand, require additional procedures for conversion, such as the one presented by Hong
et al. [2009] and demonstrated in the previous example. These additional procedures
are needed because most pattern-based languages are executed as automata that do
not follow AGeCEP graph-based model. In other words, there is a semantic mismatch
between the models that must be solved before using AGeCEP to represent pattern-
based queries.

Nevertheless, such mismatch should be solvable in most cases. For instance, Hong
et al. [2009] mentioned that the Sase language [Wu et al. 2006] could be transformed
to a graph-based execution plan using a procedure similar to that used to transform
CEL queries. Similar procedures could also be applied to TESLA [Cugola and Margara
2010]. The development of such procedures, however, is outside the scope of this article
and may need to be analysed case by case.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:17

Q: Select Price 1 As IBMPricel, Price as IBMPrice2
From (Filter{Name = 'IBM' And Price > 83} (Stock)
NEXT{$2.Price > $1.Price}

(Filter{Name = 'IBM'} (Stock)) @

Name="IBM'

Name='IBM' && Price > 83 $2.Price > $1.Price
>
Price_1 -> IBMPrice1
Q Price -> IBMPrice2
Q 1 Q
0 2
(a) Cayuga query [Demers et al. 2007]. (b) Cayuga execution plan.
id="e1” id="e3” id="e4” id="e6”
sources={"stock”}| sources={"stock”} sources={"stock”}| sources={"stock”}|
queries={“q1"} queries={q1”} queries={“q1"} queries={“q1"}
attrs=0 attrs=0 attrs=o attrs=o
T T T
\ T:_o,?;i ' <<op>> ! <<op>> /)
\ (e I id="n1" | e id="p1” /
\ arar;\r::‘“;;"r:\f—“IBM' i e | aralrl;lnzl-:;;‘;:'ce mpErolection '
<<prod>> \ p: A Prea s 8—3“ ! type=“merge” ! B s 1_Pric.e” o params="Price_1, Price” <<cons>>
id="stock” ek i mergeType="custom” e i type="“processing” id=“c2”
Ipeprocessing combinable="false” jYpeprocessing combinable="true”

combinable="true”
duplicable="true”

combinable="true”

duplicable="true” duplicable="true’

duplicable="false”

id=“e5"

io="e2"

~ = 4 sources={*stock™}| :?;Z:ic:ssj‘qs:?;k !
queries={“q1"} anrs=®7

attrs=o

(c) AGeCEP representation.

Fig. 10. Conversion from a Cayuga query to AGeCEP.

6.2. Query Transformation Using Graph Rewriting
In AGeCEP, query reconfigurations are formally expressed in a rule-oriented fashion
using graph rewriting rules.

Various ways of specifying graph rewriting rules have been developed in the past
[Rozenberg 1997]. This research uses the graphical representation and underlying
formalism of the AGG! tool [Taentzer 2004], a well-established graph transformation
environment [Segura et al. 2008]. AGG is based on the Single Push-Out (SPO) approach
[Lowe 1993; Ehrig et al. 1997].

6.2.1. Graph Rewriting Rules. The SPO approach is an algebraic technique for graph
rewriting based on the category theory [Awodey 2006], where a rule r is specified by

L5 R, where:

—L and R are attributed graphs called the left-hand and right-hand sides of .
—m is a partial morphism from L to R, that is, a morphism from a sub-graph L,, of L
to R. This morphism is not necessarily injective.

Aruler : L & Ris applicable to a graph G if G contains an image of L, that is, if
there is a homomorphism % from L to G. Such homomorphism is denoted as 2 : L — G.
Also, the notation A(Gs) is used to denote the image of some subgraph G; of G by the
morphism A. The application of r to G with regard to & consists of constructing the
push-out [Awodey 2006] of m and A, as illustrated in Figure 11. The result of this
application is the graph m,(G).

LAGG’s homepage: http://user.cs.tu-berlin.de/"gragra/agg/index.html.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:18 W. A. Higashino et al.

m
L — R

hl (push-out) 1 hm

G —> mp(B)
mp,

Fig. 11. Construction of a push-out: Application of a graph rewriting rule.

(=

1O ©

(b) Target graph G.
z’- \\ //‘ N /'/d H\ z’d N
] b ! \
= r--.-l id="3" | '1 id="2" ,—-h, id="3" |
\\ ,‘ t !
4
P
s ~ ;'
t \ !
\‘ ‘J .
(¢) Homomorphism h : L — G. (d) Erasing h(L\Lm). (e) Adding an 1somnrph1c copy of
R\m(Lm).

Fig. 12. Illustration of a graph rewriting rule r and its application.

Informally, the application of r to G with regard to & consists of replacing the image
of L in G by an image of R. This can be understood as a three-step process:

(1) erasing the image by A of the part of L that is not in m’s domain, A(L\ L,,).

(2) adding an isomorphic copy of the part of R that is not in the image of m (a copy of
R\m(Ly,)).

(3) if mis not injective, that is, if some vertices v; of L have the same image by m, then
the images of these v; are merged into my,(G).

For the rest of this article, morphisms m of the introduced rules may not be explicitly
shown. Such morphisms are implicitly defined as the identity mapping between the
largest common sub-graphs of L and R, where vertices are uniquely identified by their
id.

The application of a rule r to a graph G is illustrated in Figure 12. The rule r and
its corresponding left- and right-hand sides (L, R) are depicted in Figure 12(a). In this

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:19

rule, the morphism m from L to R is implicit and defined by the identity mapping. The
highlighted nodes in L and R correspond to L,, and m(L,,), respectively.

The target graph is presented in Figure 12(b), and the steps required to apply the
rule are shown in Figures 12(c) to 12(e). First, a homomorphism 4 : L — G is found.
Next, h(L\L,,) is removed from G, followed by the addition of an isomorphic copy of
R\m(L,,). The rule suppresses the nodes with id equal to 2 and 3 and connects directly
the nodes with id 1 and 4.

6.2.2. Rewriting Rules and Attributes in AGeCEP. Vertices and edges appearing on the left-
and right-hand side of AGeCEP rules are analogous to those appearing in queries:
operators, event producers or consumers, and event streams. Hence, they can also be
classified according to the stereotypes described in Section 6.1.

One of the main differences is that attributes appearing in a rule may be defined as
follows:

—fixed value. Fixing an attribute value in L means that the corresponding attribute
in the image by A should have the same value. A fixed value is either a parameter of
the rule or a constant written between quotes.

—non-fixed value. If an attribute value is not fixed in L, then the corresponding at-
tribute in the image by 4 can have any value. Non-fixed valued attributes are omitted
in the rule definition.

—variable. If an attribute is associated with a variable in L, then the variable is bound
to the value of the corresponding attribute in the image by A. If the variable appears
more than once in L, then all its occurrences must bind to the same value; otherwise,
the rule is not applicable. A variable that appears in L can also appear in R. In this
case, the variable in R is replaced with its bound value.

—operations. Attributes may be associated with simple operations in R (typically in-
crement or decrement). These operations are applied along with the rule.

6.2.3. Mutators: Extending Rewriting Rules with Actions on the Real System. Mutators were
first introduced as a lightweight method for handling attribute changes [Eichler et al.
2016]. As such, they are described as arbitrary algorithms updating the value(s) of no,
one, or some attributes. Any rewriting rule may be enriched with a set of mutators
executed at the end of its application phase. Later, a new kind of mutators has been
introduced [Eichler 2015] to describe actions on real systems, typically through method
or API calls. Such mutators are called external as opposed to internal mutators that
act only on the model. In AGeCEP, graph rewriting rules are specified as a couple

(L 3 R,ACTS), each rule being enriched with a set ACTS of external mutators u
enforcing model changes on the real system through API calls.

6.2.4. On the Correctness of Rewriting Rules in AGeCEP. In AGeCEP, the correctness of
a reconfiguration is linked to the reconfiguration capabilities of the operators it im-
pacts: A rule describing a reconfiguration should be applied only to operators with the
proper capabilities (e.g., duplication should be applied to a duplicable operator). This
is guaranteed by fixing the value of the corresponding attributes on the left-hand side
of a rule. Therefore, a properly classified operator can be safely transformed using the
defined rules.

6.2.5. Examples. Figure 13 illustrates a graph-rewriting rule P.,,;, whose goal is to
combine a sequence of two query operators into a single new operator.

The left-hand side of the rule encodes all necessary conditions that operators must
satisfy to enable the combination:

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:20 W. A. Higashino et al.

01 <<op>> <<op>> 01,021 O¢
id=id1 id=id2
impl=op_impl impl=op_impl <<op>>

params=p1
comblmpl=opc_impl
combParam="f"

params=p2
comblmpl=opc_impl
compParam="f"

id=op_idc
impl=opc_impl
params=f(p1, p2)

inDegree=in inDegree="1" inDegree=in
outDegree="1" outDegree=out outDegree=out
oomblunable=“|_rue"" oombl:mble="_rm:" type="“processing”
type="processing type="processing

Fig. 13. Combination of two combinable successive operators Peopp.

id="e1” id="e2"” id="e4” id="e5"
sources={"p1”} sources={"p1”} sources={"p1”} sources={“p1”}
queries={“q1"} queries={“q1"} queries={"q1"} queries={“q1"}
attrs=@ attrs=0 attrs=2 attrs=@

<<op>>
id="j1"
name="json_parser”
type="processing”
combinable="false”
duplicable=‘true”
i lit="random”
requiredMerge="union”,

<<op>>
id="f12"
name="“filter”
type="processing”
combinable="true”
duplicable=‘true”
requiredSplit=“random”
requiredMerge="union”,

<<op>>

id="xml1”
name="xml_conv”
type="processing”
combinable="false”
duplicable="false”

<<prod>>
id="p1” [P
impl=kafka”

<<cons>>
id="c1”
impl="service”

Fig. 14. Query q;—Optimized version.

(1) the output of 07 is exactly the input of 09, that is:
(a) they are directly connected, as represented by the edge (01, 02), and
(b) o1(outDegree) = “1” and og(inDegree) = “17,
(2) they are combinable with each other, that is:
(a) they are combinable, that is, combinable = “true”, and
(b) they have the same implementation, as represented by the attribute impl being
associated to the same variable in L.

The right-hand side of the rule describes the result of a combination. It consists
of deploying a new operator whose impl is determined by the combImpl attribute
of the combined operators and whose parameters are calculated using the function
combParam applied to o1(params) and os(params). The rule morphism is not injective
and associates both 01 and o with o.. As a result, the inputs of 01 and outputs of 0oy are
exactly those of o,.

The result of applying this rule to query q; from Figure 8(a) is shown in Figure 14.

7. AGECEP-BASED AUTONOMIC MANAGER

This section discusses how existing approaches can be coupled with AGeCEP to tackle
the whole MAPE-K loop and thus implement a complete autonomic manager. The focus
is on design aspects that must be taken into consideration when using AGeCEP.

The presented design is primarily based on FRAMESELF [Alaya and Monteil 2015],
an autonomic framework that aims to enable implementation of autonomic managers
that rely on the MAPE-K loop. FRAMESELF provides meta-models and mechanisms
for implementing inference rules and communication between modules.

7.1. Runtime Environment Representation

Modelling the runtime environment is an important aspect of an autonomic CEP man-
ager and is mostly determined by the operator placement strategy used by the system.
Previous research has traditionally represented queries and the runtime environment
as graphs [Ahmad and Cetintemel 2004; Lakshmanan et al. 2008]. In this research,
a similar approach has been used: AGeCEP queries are extended with attributes that
are relevant for placement decisions, and the runtime environment is also modelled as
an (undirected, potentially cyclic) attributed graph.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:21

-~ T|latency=97

<<server>>
id=s1
ram=4096
cpus=2
ip="192.168.0.1"

<<server>>
id=s2
ram=8192
cpus=4
ip="192.168.0.2"

<<server>>
id=s3
ram=8192
cpus=4
ip="192.168.0.3"

mem_usage=2512
load = 0.34

mem_usage=7504
load =0.12

mem_usage=5104
load = 0.55

7
/

id="c1” id="c2”

latency=210 latency=128

Fig. 15. Runtime environment representation.

Table Ill. Monitored Events

Type Event Description
Runtime QueueSize(o, n) Queue from operator o has size n
CPU Load(l, s) CPU load from server s has value [
User New Query(q) New query g was created
New Queries(Q) Set of queries @ was created
Manager Duplicated(o, q) Operator o from query g was duplicated

Figure 15 shows an attributed graph that represents a runtime environment
composed of three servers. In the graph, vertices and edges represent computational
resources and logical connections between them, respectively. The vertices contain
attributes that model server characteristics and also include runtime information.

By using this environment representation and the AGeCEP query model, the place-
ment of an operator into a server can be represented using two approaches: as an
operator attribute whose value contains a unique server identifier or as an edge con-
necting the operator to the server. For the remainder of this article, the first approach
is assumed. Operator placement procedures are further discussed in Section 8.

7.2. Autonomic Manager: Handling MAPE

The following subsections discuss how the AGeCEP formalism can be used by each
module of the MAPE-K loop in an autonomic manager based on FRAMESELF.

7.2.1. Monitor: Receiving Events. To implement the monitor module, it is assumed that
the runtime environment and user queries are instrumented to publish monitoring
events to the autonomic manager. As an alternative, a specialized monitoring module
can poll the system for monitoring data and forward them to the manager on behalf of
system components. Moreover, it is expected that events representing user interaction
with the system, such as creation of new queries, will also be made available.

Once the manager receives monitoring events, it updates the query and environment
models that are stored in the KB and continues to execute the MAPE-K loop.

Table IIT shows common monitored events used by CEP systems. Note that instead
of trying to enumerate all possible events, the table only includes events used by the
self-management policies from Section 9.

This decision is aligned with AGeCEP extensible and generic nature: The monitoring
data that CEP systems must provide are tightly linked to the placement procedures and
self-management policies implemented by the autonomic manager. Therefore, defining
a fixed set of monitoring events would restrict the scope of policies that can be imple-
mented. Instead, AGeCEP allows policies to define the events they need. Analogously to

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:22 W. A. Higashino et al.

how rule mutators establish a contract that CEP systems must implement, the events
required by a policy define a contract of events CEP systems must provide.

7.2.2. Monitor, Analyse, and Plan: Inference Rules. Inference rules are central to the mon-
itor, analyse, and plan modules of the MAPE-K loop. In general, these rules are used
to infer new information based on the KB and on freshly received information.

In the monitor module, the events received by the autonomic manager are processed
by inference rules to infer symptoms. The analysis module uses these symptoms along
with the AGeCEP query and environment models that are stored in the KB to generate
Request for Changes (RFC). Finally, in the plan module, the RFCs and the KB models
are used by another set of rules to create Change Plans (CP).

In the FRAMESELF framework, inference rules are implemented by inference en-
gines such as Jess [2016] and Drools [JBoss 2016]. This research used Drools.

7.2.3. Execute. The execute module is in charge of carrying out the CPs that it receives.
In an AGeCEP-based autonomic manager, a CP is simply a sequence of reconfiguration
actions modelled by graph rewriting rules that are associated with a set of side-effect
mutators. The execute module enforces each reconfiguration of the CP in two steps
involving the application of (1) a graph rewriting rule to update the model and (2) its
associated mutators to update the real system.

In practice, a mutator is an API call that must be implemented by the CEP system
being managed. In cases where the CEP system already exists, API calls can be handled
by wrappers encapsulating the legacy components [Hagimont et al. 2009].

Accordingly, for the feasibility study presented in Section 9, a minimal API has been
defined as follows:

—start Operator(o, m): deploys and starts an operator o in server m;
—stopOperator(o): stops and deletes an operator o;

—connect(o1, 02): creates a connection between operators o1 and o09;
—disconnect(o1, 02): deletes a connection between operators 0; and os;
—redirect(o1, 02): redirects all o1 input (output) streams to input (output) os;
—nugrate(o, s1, s2): migrates an operator o from server s; to server ss.

8. FEASIBILITY: OPERATOR PLACEMENT

This section discusses placement in an AGeCEP-based autonomic manager. As men-
tioned in Section 3.4, operator placement procedures can be used to determine the
global initial placement of all queries, to decide on the placement of a new query or
of new operators, or to adjust the current placement dynamically. In particular, place-
ment can be used by management policies that may require placement decisions (e.g.,
whenever a new operator is deployed).

8.1. General Principle

Independently of the goal and of the algorithm used, operator placement procedures
can usually be described by a general framework composed of three steps:

(1) Metrics from the operators and servers are collected to build a snapshot of the
current system status. In the case of dynamic placement adjustments, these metrics
are also used to trigger procedure execution. For example, in Heinze et al. [2014],
dynamic adjustment is triggered when an overloaded server is detected.

(2) Using the collected data as input, an algorithm is executed to find the new place-
ment. Because the general operator placement problem is NP-hard [Lakshmanan
et al. 2008], these algorithms are usually heuristics that aim to maximize or mini-
mize a utility function estimated from the collected metrics. For instance, Pietzuch

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:23

et al. [2006] aimed to minimize network usage, whereas Xing et al. [2005] tried to
maximize load correlation among servers.

(3) The results of the algorithm are applied. If a placement has been calculated for new
queries or operators, then they are created in the appropriate servers. Conversely,
if a dynamic adjustment is being performed, then the operators that have changed
allocation are migrated to their new servers.

It is argued here that most operator placement procedures can be expressed using
the AGeCEP formalism and integrated within an AGeCEP-based autonomic manager
by adapting them as follows:

(1) The query and runtime environment representations are augmented with
attributes corresponding to the monitored metrics. The metrics are collected
using the same mechanisms as before and are sent to the autonomic manager,
which updates the corresponding attributes upon receipt. In the case of dynamic
adjustment procedures, a monitoring inference rule can also be created to start
the placement based on the collected metrics.

(2) When a placement decision is required, the input data are obtained from the auto-
nomic manager KB, and execution takes place in the same way.

(3) Finally, with the newly calculated placement information, the operators are de-
ployed or migrated through rewriting rules that update the KB and invoke the API
calls startOperator or migrate accordingly.

8.2. Examples

This section presents how two different placement procedures can be expressed using
AGeCEP.

Borealis. In their work, Xing et al. [2005] presented heuristics for global and dynamic
adjustment of placements with the goal of minimizing the end-to-end latency of queries.
The general idea of the presented heuristics is that, given an operator o that needs to
be placed, a server with a current workload that is not correlated with o’s workload
must be found. To calculate load correlation, the heuristics build a time series of each
operator’s load based on monitored data. A server load, in its turn, is defined as the
sum of all its operators’ loads.

To adapt these heuristics to AGeCEP, the load time series can be maintained as an
attribute of operator vertices. Calculations performed by the heuristics require only
this data. As a result of the algorithms, migration rewriting rules are executed for each
operator that has been selected to move.

FUGU. Heinze et al. [2014] presented a dynamic adjustment placement procedure
for the FUGU system. The general idea is to detect overloaded servers and to move
operators from them to underloaded servers. The operators to be moved are selected
based on the latency spikes that their migration will cause; operators with small spikes
are moved first.

A server is detected as overloaded when its CPU utilization exceeds a threshold for x
consecutive measurements. This detection can be easily implemented as a monitoring
inference rule. To decide which operators are moved, the latency spike estimation
procedure uses metrics such as the the operator load and state size, which can be
stored as attributes of the corresponding operator vertices.

After the operators to be moved are selected, their destination is determined based
on a heuristic analogous to the bin-packing problem, in which the server’s available
CPU capacity constitutes the bins and the operators’ loads are the items weight. Once
again, these data are readily available in the KB. Finally, the resulting migrations are
enforced with the aid of rewriting rules.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:24 W. A. Higashino et al.

ALGORITHM 1: CombineAll(q) Action, Combination of all Combinable Operator Sequences
ingq.

while exists a homomorphism h : Lo, — q do
| apply P rule to g wrt. h;
end

9. FEASIBILITY: DEFINITIONS OF SELF-MANAGEMENT POLICIES

This section introduces a selection of self-management policies defined using AGeCEP
and the models and techniques presented in Section 7. Additional policies are intro-
duced in Appendix A. For the sake of readability, algorithms and inference rules are
presented as informal descriptions or pseudocode. Appendix B contains the correspond-
ing inference rules defined in Drools Rule Language [JBoss 2016].

9.1. Operator Combination

9.1.1. Description. The operator combination (Comb) policy is directly related to the
“combinable” criterion of the classification. This policy is used to combine any sequences
of n combinable operators o1, ..., 0, into a single operator o, that has the same effect
on the event stream as the combined sequence. Figure 7 shows an example of such a
sequence and the result of the policy application.

This policy is mostly applied in the single-query optimization step and reduces the
number of operators constituting the query, which brings savings in memory consump-
tion and can also improve query latency and throughput.

9.1.2. Realization using the MAPE-K Loop.

Monitor. Anew query q is submitted by the user, which is signalled by a New Query(q)
event. The event is simply forwarded as a NewQuery(q) symptom to the analysis
module.

Analysis. When a New Query(q) symptom is received, the analysis module checks
whether at least one pair of successive operators (o1, 02) are combinable. This is equiv-
alent to checking whether there is a homomorphism % : L., — q, where Ly is
the left-hand side of the graph rewriting rule shown in Figure 13. If such a homomor-
phism exists, then a Combine(q) request for change (RFC) is sent to the plan module
(Algorithm B.1).

Plan. Upon receipt of a Combine(q) RFC, the Combine All(q) action is inserted into
the change plan.

Execute. The execution of the Combine All(q) action is described by Algorithm 1. The
P,,..» rule is specified in Figure 13; its applicability and effect have been described in
Section 6.2.5. In the single query optimization step, this rule operates at the model
level only and therefore has no associated mutator.

9.2. Operator Duplication

9.2.1. Description. Operator duplication (Dupl) is a policy used to parallelize an opera-
tor execution by creating multiple instances of the operator and splitting input events
among these instances. It can be used to achieve load balancing by distributing oper-
ator instances over several servers to improve query throughput or both. Generally,
query throughput can be improved when the following conditions are satisfied:

(1) the operator processing rate is lower than the incoming event rate;
(2) additional resources exist to which extra instances of the operator can be allocated.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:25

However, this policy may also lead to an increase in resource consumption due to the
deployment of supplementary operators.

9.2.2. Realization Using the MAPE-K Loop.

Monitor. The autonomic manager receives periodic events containing operators per-
formance metrics. Based on these data, a monitoring rule might identify an operator
as a bottleneck if it is not outputting events as fast as it is receiving them. Whenever
a bottleneck is pinpointed, a Bottleneck(o) symptom is sent to the analysis module
(Algorithm B.2).

Analysis. Whenever a Bottleneck(o) symptom is received, the analysis module checks
whether o is duplicable. If this condition is satisfied, then a Duplicate(q, o) RFC is sent
to the plan module (Algorithm B.3).

Plan. When planning a Duplicate(q, o) operation, two scenarios must be considered
(Algorithm B.4):

—o has not yet been parallelized, which implies that duplication requires deployment of
anew instance of 0 and of the appropriate split and merge operators. In this case, the
rule invokes the placement procedure to determine the place of these new operators
and inserts an Initial Duplication(q, o, s, S,, Sn,) action into the change plan, where
Ss, So, and s, are the placements determined for the split, the new instance of 0, and
the merge operator.

—o has already been parallelized, or, more precisely, adequate split and merge opera-
tors have already been deployed. In this case, duplication consists only of adding a
new operator instance. The rule determines the placement s, of this new operator
and adds the Additional Duplication(q, o, s,) action to the change plan.

Execute. Depending on the change plan received, two different actions may be exe-
cuted: an Initial Duplication(q, o, ss, S,, Sm) or an AdditionaDuplication(q, o, s,) action.
The Initial Duplication(q, o, ss, S, sm) action is described by Algorithm 2. Rules

Pé;‘;tll (id, Ss, So, Sm), Pé;‘;tf(id, id;), and PéZ;tf(id, id,,) used by the algorithm are depicted in

Figure 16. Some attributes of 0, 01, and 04 are not shown because of space constraints,

but the copies 0; and o2 have the same values as o for all attributes described in Table I,

except for id, inDegree, and out Degree. In addition, note that the morphism characteriz-

ing PéZ;ff(id, idy,) is not trivial and not injective. The algorithm consists of three steps:

(D Pé’;;fll(id, Ss, S0, Sm) 18 applied to g with respect to the unique possible homomor-
phism. Hereafter, when a single morphism is acceptable, it is omitted. Application
of this rule creates the respective split o, and merge o, and two instances of op-
erator o. Note that operators o, 09, and o,, are created in servers sg, s,, and s, as
indicated by the “placement” attribute value. In addition, operator oy is created
on the same server as the original operator 0. The mutators executed for this rule
are API calls to start Operator(os, s;), start Operator(o1, s), start Operator(os, s,), and
start Operator(0,, Sy).

(2) P(;Z;ff(id, ids) is repeatedly applied as long as possible to redirect all input edges
previously connected to o towards o;. This rule is associated with the mutators
disconnect(v, o) and connect(v, o).

(3) The Pé;‘;tf’(id, id,,) rule merges o and o,,. As a result, all output edges previously con-
nected to o are redirected to o0,,, and the original operator o is deleted. These changes
are performed on the system by the mutators redirect(o, o,,) and stopOperator(o).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:26 W. A. Higashino et al.

<<op>>

O1

<<op>> id=op_id_1
id=id impl=op_impl
impl=op_impl inDegree="1"
inDegree=M outDegree=1"

type="processing”
duplicable="true”
reqMerge=rMerge
reqSplit=rSplit

outDegree=N
type="processing”
duplicable=“true”
reqMerge=rMerge
reqSplit=rSplit

<<op>>
id=id
impl=op_impl
inDegree=M
outDegree=N
type="processing”
duplicable="true”
reqMerge=rMerge
reqSplit=rSplit

Om

<<op>>
id=idm
inDegree="
outDegree="
type=“merge”
mergeType=rMerge

placement=sm

<<op>>
id=op_id_2
impl=op_impl
inDegree="1"
outDegree="1"
type="processing”
duplicable="true”
reqMerge=rMerge
reqSplit=rSplit

placement=so,

L R

(a) Step 1: P(;Z;fl‘ (id, ss, So, Sm), operator duplication.

Os

<<op>> <<op>> Os

id=ids id=ids
inDegree=in inDegree=in + 1
outDegree="2" outDegree="2"
type="“split” type="“split”

splitType=rSplit splitType=rSplit

<<op>>

<<op>>

id=id id=id
impl=op_impl impl=op_impl
inDegree=M inDegree=M-1

<<op>>
id=op_output

<<op>>

id=op_output outDegree=N

type="processing”
duplicable=“true”
reqMerge=rMerge
reqSplit=rSplit

outDegree=N
type="processing”
duplicable=“true”
reqMerge=rMerge
reqSplit=rSplit

R

(b) Step 2: P(;Z;tf (id, ids), redirect input edge.

<<op>>

Om

<<op>>

<<op>>

id=idm id=idm
inDegree="2" inDegree="2"
D oubegrec e
Auplicablo-srir type=“merge” type="merge”
[z " ergeType=rMerge, ergeType=rMerge,

reqMerge=rMerge
reqSplit=rSplit

R

(c) Step 3: P;Z;tﬁ(id, idm), redirect output edges.

Fig. 16. Pé;‘iptl(id): Initial operator duplication.

ALGORITHM 2: Initial Duplication(q, o, Ss, Sy, S») Action, Execution of an Initial Duplication.
id < o(id);
apply Pdi;‘;'?(id, Ss, S0, Sm) t0 q;
while exists @ homomorphism h : L;ﬁ;%(id, id;) - q do
| apply Py7(id. idy) to g wrt. b
end
apply Pid(id, idy) to g;

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:27

<<op>>
id=id
impl=op_impl
inDegree="1"
outDegree="1"
type=“processing”
duplicable="true”
reqMerge=rMerge
reqSplit=rSplit

<<op>>
id=id
impl=op_impl
inDegree="1"
outDegree="“1"
type="processing”
duplicable=“true”

<<op>>

<<op>>

SR id=ids id=idm
Split=rSplit =i
reqSpl P! outDegree=out + 1 InDegrfe:ln +"1
Om type="split” type=“merge’
splitType=rSplit <<op>> mergeType=rMerge

id=op_id_n
impl=op_impl
inDegree="1"
outDegree="1"
type="processing”
duplicable="“true”
reqMerge=rMerge
reqSplit=rSplit

<<op>>
id=ids
outDegree=out
type="split”
splitType=rSplit

On

Fig. 17. Pg,f:jl(id, $,): Addition of an operator instance.
The Additional Duplication(q,o,s,) action, on the other hand, is accomplished by
applying the ngﬁl(id, s,) rule shown in Figure 17. It consists of the simple addition of a
new instance of o connected to the already existing split o, and merge o,,. This rule is
associated with the mutators start Operator(o,, s,), connect(os, 0,), and connect(0,, 0,,).

9.3. Removal of an Unnecessary Merge/Split

9.3.1. Description. The removal of an unnecessary merge/split (RemMS) policy de-
scribes the removal of a particular pattern of a merge operator followed by a split
whose impact on the event streams is null. Such a pattern has null impact if:

—the merge does not modify the streams that it processes. According to the AGeCEP
classification, union is the only merge type satisfying this condition.

—the split operator does not strengthen the stream specificities, or, in other words,
the output streams of the split have the same or fewer constraints than the input
streams of the merge.

The following discussion considers only the case where the number of input streams in
the merge is equal to the number of output streams in the split.

The impact of this policy is positive on both system performance and on resource
consumption because unnecessary operators are suppressed. Hence, this policy is used
whenever possible.

9.3.2. Realization using the MAPE-K Loop.

Monitor. A new query q is submitted by the user, resulting in the NewQuery(q)
symptom being sent to the analysis module. In addition, whenever an operator o from
query q is duplicated by the Dupl policy, the Duplicated(q, 0) symptom is also sent to
analysis.

Analysis. Whenever a New Query(q) or a Duplicated(q, o) symptom is received, the

analysis module checks for the existence of an unnecessary merge/split sequence as
follows:

(1) There is a homomorphism % : L22(id,,, id,, e;, e,) — q, where L2E(id,, id;, e;, ;) is
the left-hand side of the Prbe%’(idm, ids, e;, e,) rule depicted in Figure 18(a);

(2) The split operator does not strengthen the stream specificities. This condition can-
not be checked for “custom” splits. For the other cases, let o,,(pred) be the set of
all incoming edges of o,, and os(succ) be the set of all outgoing edges of os;. This

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:28

W. A. Higashino et al.

Oj O 0; 0,
Ripaatiey W <<op>> <<op>>
id=op_output id=op_input id=op_output id=op_input

€
(o] Os
Om <<op>> <<op>> s ‘ <<DD>> _<<o_p>>
id=id_m id=id_s _ id=id_m ~ id=id_s
inDegree=in inDegree="1" inDegree=in-1 inDegree="1"
outDegree=*1" outDegree=out outDegree:H:’l outDegree:guM
type="merge” type="split” type=’ ma:ga - type=“split”
L wergeType="union’ splitType=sType R qergeType="union splitType=sType
. . b: . .
(a) Step 1: Bypassing the merge/split Pr25, (idm, ids, €;, €o).
Om <<op>> <<op>>
id=id_m id=id_s
inDegree=0 inDegree="1"
outDegree="1" outDegree=0
type="merge” type="split”
L mergeType="union’ splitType=sType R

(b) Step 2: Suppressing the merge/split Prer (idm, ids).

Fig. 18. Prem(idy, ids): removal of a unnecessary merge/split.

ALGORITHM 3: RemoveMergeSplit(q, o, 05,) Action, Execution of a Removal.
idy, < 0, (id);
idy < o,(id);
forall the edge e; whose tail is 0,, do
| apply P22(id,,, id;. e;. f(e)) to g;
end
apply P37 (idy, id;) to g;

condition is met if there is a bijective function f : 0,,(pred) — os(succ) such that for
all e; € o,,(pred), with e, = f(e;), one of the following conditions is satisfied:
—oy(splitType) = “query” and e;(queries) = e,(queries),

—oy(splitType) = “attribute” and e;(attrs) = e,(attrs);

—os(splitType) = “random.”

For each pair (o, 05), a RemoveMergeSplit(q, 0., 05,) RFC is created using an ar-
bitrarily selected function f that satisfies condition 2 (Algorithm B.5).

Plan. On receiving a RemoveMergeSplit(q,onm,0s, [) RFC, the action Remove-
MergeSplit(q, on, 0s,) is inserted into the change plan.

Execute. Algorithm 3 details how to remove an unnecessary merge/split pattern. The
algorithm is executed in two steps. First, the unnecessary merge and split are bypassed
using the Prbg};ﬁ(idm, ids, e;,e,) rewriting rule, as defined in Figure 18(a). This rule is
repeated for all pairs of edges (e;, ¢,) returned by the function f found in the analysis
step. In the second step, the bypassed merge/split is removed using the Puh(id,, id;)
rule (Figure 18(b)).

Note this policy may be executed in a running query. In such a case, each application
of rule Prbe%’(idm, ids, e;,e,) triggers the mutators disconnect(o;, 0,,), disconnect(o, 0,),
and connect(o;,0,), whereas the rule Puk(id,, id;) triggers stopOperator(o,) and
stopOperator(o).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:29

Combination (Execution time vs # of Queries)
14000.0

O 20% of combinable queries
50% of combinable queries
O 80% of combinable queries

11200.0

8400.0

5600.0

Execution time (ms)

2800.0

0.0

100 200 300 400 500 600 700 800 900 1000
of Queries

Fig. 19. Combination policy execution time.

10. VIABILITY: PERFORMANCE EVALUATION

This section discusses the viability of AGeCEP as a formal foundation for developing
generic CEP applications and algorithms. The analysis focuses on the time required to
transform CEP queries using both simple and complex graph rewriting rules.

In the following, the AGG tool [Taentzer 2004] was used to define and apply the
graph rewriting rules. The experiments were conducted on a server with two six-core
processors (Intel Xeon E5-2630, 2.6GHz) and 96GB of RAM. The server was running
Ubuntu Linux 14.04 and Java 1.7.0_75.

10.1. Simple Policy

The first experiment verified the execution time and scalability of the actions executed
by the Comb policy (Section 9.1). This is a simple reconfiguration that consists of a
single rewriting rule in which only two nodes are matched.

The total number of queries to which the rule was applied varied from 100 to 1,000,
and, for each number, three query compositions were tested. In the first composition,
20% of the queries were clones of query g; (Figure 8(a)), and 80% were clones of g
(Figure 8(b)). In the second and third compositions, query ¢; represented 50% and 80%
of the total queries, respectively. Note that only query ¢; has a sequence of combinable
filters f1 and fs.

The graph in Figure 19 shows the average execution time of 30 runs along with the
99% confidence interval. The growth in execution time is almost linear. For all three
compositions, 100 queries were processed in less than 1s and 1,000 queries in less than
14s. For the 80% composition, this is equivalent to rewriting 800 queries according to
the operator combination policy.

10.2. Complex Policy

This experiment verified the performance and scalability of complex sequences of recon-
figuration actions. To perform this experiment, the analysis was divided into two parts.
First, the execution time for applying the Dupl policy (Section 9.2) was assessed. Then,
the execution time for applying Dupl followed by RemM S (Section 9.3) was analysed.

Both parts were executed using the same numbers of queries and the same query
compositions as in the previous experiment. In this case, however, the duplication was
applied only to the operator j; belonging to query qs clones (Figure 8(b)). Note that
after j; duplication, the newly created merge forms a void sequence with the fSplit
operator. Applying RemM S therefore causes this sequence to be removed, resulting in
the query depicted in Figure 20.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:30

id="¢10"
sources={“p1”, “p2"}
queries={“q2"}
attrs=2

W. A. Higashino et al.

T
id="e1” id="e9” I::?ig?" ! I‘:_”‘ﬂ:: id="e6” id="e8"

P17} “p1”, P27} et Lo | il sources={"p1", “p2’} sources={"p1", “p2’}
queries=(q2’}| |queries=('42’} oo pareerk ! i daki MO queries='q2'} queries='q2’}
attrs=2 attrs=2 type="processing | type="processing attrs=2 attre=2

“false” combinable="true”
/ duplicable="true” duplicable="true” /
f<pt?d>.? / reqSplit="random” reqSplit="random” /)
id="p1 ’ reqMerge="union” reqMerge="union”
impl="kafka” [~y <<op>> impl=xmi_conv®
id="jsonSplit” (ype:"m;rge"
il sy G
//V " s " <<op>> <<op>> combinable="false”
T:zro:;> \\ AR, ST i id="f2" duplicable="false’,
impl="kafka" \ impl="json_parser” impl="filter”
\\ / type="processing” type="processing”
o e combinable=‘false” combinable="true”
e) oA - duplicable="true” \ duplicable="true"
,,.gz,,} qu} P: regSplit="random” ‘l reqSplit="random”
regMerge="union” i regMerge="union”
attrs=0 attrs=0 R \ Ly
L
id="e11”
sources={"p1”, “p2"}|
queries=(q2"}
attrs=2
Fig. 20. Query ga—optimized version.
Duplication + Removal of Unnecessary Merge / Split
Duplication (Execution time vs # of Queries) (Execution time vs # of Queries)
300,000 900,000
© 20% of duplicable queries © 20% of duplicable queries
50% of duplicable queries 50% of duplicable queries
" N © 80% of i i
225,000 © 80% of duplicable queries 675,000 80% of duplicable queries 2
z 0
£ H
° £
g £
= 150,000 = 450,000 P
2) S
3 g
g & g =
> 3
w . w
75,000 225,000 =
0 = 0 =
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
of Queries # of Queries

(a) Dupl execution time (b) Dupl followed by Rem M S execution time

Fig. 21. Dupl and RemM S execution times.

Figure 21(a) depicts the execution time of Dupl as a function of the number of queries
for all three compositions. For each duplication, four reconfiguration rules were applied:
P once to create the two instances of j; connected to a new split and merge, P."%

dupl v dupl
twice to redirect the j; inputs (p; and ps) to the new split, and Pé;‘;f;’ to connect the

new merge to the j; successor (fSplit). For the 20% composition, 1,000 queries were
processed in less than 40s, which still is within reasonable time bounds.

The execution time to apply Dupl followed by RemMS is shown in Figure 21(b).
To execute the RemMS policy, three more rewriting rules were applied: P,Z%’ twice to
connect each instance of j; to an instance of fi2 and PS5 once to remove the redun-
dant merge and split. Therefore, Dupl followed by RemM S requires the application of
seven rewriting rules in total. The graph clearly shows an exponential growth that is
especially pronounced in the 50% and 80% scenarios. In these scenarios, rewriting all
queries may take minutes. Indeed, for the 80% scenario, there are no data points for
900 and 1,000 queries because the execution time exceeded the established timeout of
15min.

It is important to discuss these results under proper assumptions about how these
rules will be applied in practice. Finding homomorphisms in graphs is a well-known
NP-complete problem [Garey and Johnson 1979]. Nevertheless, most of the time, these

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:31

rules will be applied to a much smaller number of queries. For example, SQO policies
are executed in response to new queries, and, therefore, only they need to be analysed
right away. Similarly, most runtime management policies are applied only to the small
subset of all running queries that need to be rewritten. For instance, as described in
Section 9.2, duplication is performed only after a bottleneck has been pinpointed. The
extreme cases described in this section were investigated for theoretical purposes and
for completeness of analysis.

11. CONCLUSIONS

This work has introduced and investigated the feasibility and viability of the AGeCEP
formalism. This formalism was developed to overcome the fragmentation of current
CEP/SP solutions. AGeCEP proposes a language-agnostic abstraction of CEP queries
and a formalism to manipulate them, enabling definition of self-management policies
that can be integrated into potentially any CEP system.

AGeCEP represents CEP queries using attributed directed acyclic graphs (ADAG)
whose vertices and edges have a standardized set of attributes that encode informa-
tion relevant to self-management. These standard attributes are based on a novel
classification of CEP operators that focus on their reconfiguration capabilities and also
constitutes a major contribution of this research.

Self-management policies may ultimately trigger the execution of query reconfigura-
tions. AGeCEP formalizes structural reconfigurations of queries using graph rewriting
rules. Moreover, AGeCEP graph rewriting rules are enriched with mutators, which
associate API calls with the effects of a rule and guarantees that model changes are
also applied in the real system.

To demonstrate the feasibility of AGeCEP for specification and enforcement of self-
management policies, this research introduced the design of an autonomic manager
based on AGeCEP and a selection of policies built on this design. Furthermore, it also
presented a generic procedure to adapt operator placement procedures to AGeCEP.
Finally, this research investigated the viability of AGeCEP by executing performance
measurements of query reconfigurations. By considering both expressiveness and per-
formance, these results suggest that AGeCEP can be effectively used to develop algo-
rithms for application and integration into diverse modern CEP systems.

It is important to emphasize that preliminary versions of AGeCEP have already
been used in various studies. For instance, CEPSim [Higashino et al. 2016] is a simu-
lator of cloud-based CEP systems that uses an AGeCEP-based formalism to represent
queries. Furthermore, an autonomic manager for CEP based on AGeCEP ideas has
been introduced by Higashino et al. [2014].

As future work, more self-management policies will be developed, especially focus-
ing on the operator placement and runtime management steps of the query lifecycle.
Moreover, these policies will be integrated into and tested in a real CEP system.

APPENDIXES
A. ADDITIONAL SELF-MANAGEMENT POLICIES

This appendix presents two additional self-management policies defined using AGeCEP
and the models and techniques presented in Section 7.

A.1. Processing Sub-Streams (ProcSubS)

A.1.1. Description. The processing sub-streams (ProcSubS) policy transposes to CEP
the strategy of dividing a problem into the solution of several sub-problems. The policy
considers an operator o processing the result of a merge o,,, as illustrated on the left
side of Figure 22(a). Ideally, this operation should be parallelized and conducted on

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:32 W. A. Higashino et al.

<<op>>
id=op_id_1
inDegree="1"
outDegree="1"
type=“processing”
duplicable=“true”
reqSplit=sType

__________ et

<<op>>

<<op>>

id=op_id reqMerge=mType § «

B id—osﬁp?erge inDegree="1" id=op_id_merge
;nD;glge—n outDegree=“1" ":geg,ee=n1

o “processing” outDegree="1"

e e o < <<op>> type=“merge”

duplicable=“true”

€n ret:ﬁSplilﬂWpe in I:i)de=gorzgid“1 &
lerge=m’ / =
= wfe’ en_, outDegree="1"

type="“processing”
duplicable=“true”
reqSplit=sType

reqMerge=mType

(a) Initial and final situation.

<<op>> 04
id=op_id_1
inDegree="1"
outDegree="1"
type="processing”
duplicable="true”
reqSplit=sType
reqMerge=mType

Om2

<<op>>
id=op_id_merge_2

<<op>>
id=op_id_split

<<op>>

&/ ig=op_id_merge_1 ;
1 inDegree=n ;E?;S;::‘n ingegree:n
) =*1" = outDegree="1"
: ouiDealeesyl type="“split” <<op>> 9
€, splitType=sType, id=op_id
: inDegree="1"
------------------------------ outDegree="1"

type=“processing”
duplicable="true”
reqSplit=sType

reqMerge=mType

(b) Intermediate step of the processing sub-streams policy.

Fig. 22. Processing sub-streams policy.

each of the merged streams. In rough terms, o and o,, should be “swapped,” as shown
on the right side of Figure 22(a).

This transformation is equivalent to multiple duplications of o followed by removal of
the initial merge o,, and the new split introduced by the duplication. Figure 22(b) illus-
trates the query after n duplication steps, where n is the number of 0, input streams.
The merge and split sequence highlighted in the figure can be removed by the RemM .S
policy, resulting in the desired final situation. The policy realization described in the
next section leverages this fact and reuses the Dupl and RemM S policies described in

Sections 9.2 and 9.3.
This policy can be applied under various circumstances:

—Ifthere are enough resources to process o instances in parallel, then this policy can be
used to improve query throughput and latency. This effect is even more pronounced
when o(selectivity) < 1. In this case, the policy can be applied in the SQO step
because the number of events processed by o,, may be significantly reduced.

—If o processes groups of events and o(complexity) is greater than linear, then this
policy reduces query CPU consumption;

—In general, the policy can be used to split the processing load of o with other servers

and cores.

A.1.2. Realization using the MAPE-K Loop.

Monitor. This policy can be triggered at runtime whenever a bottleneck of operator
o is detected, which results in the Bottleneck(o) symptom being sent to analysis.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:33

Analysis. When a Bottleneck(o) is received, the analysis rule first checks if the policy
can indeed improve query throughput. For instance, it can verify whether the selectivity
of operator o is less than 1. Ifthis is true, then the rule searches for a sequence formed by
a merge o,, and a duplicable operator o by checking for a homomorphism % : L., — q,
where the graph L, is indicated in Figure 22(a). Finally, the rule verifies whether
the found sequence o,, and o satisfies the following conditions:

(1) The merge has more than one input stream,
op(inDegree) > 1.

(2) The merge o,, followed by the split introduced by the duplication of o produces a
removable pattern, which translates to:
(a) The merge type of 0,, is “union”,

om(mergeType) = “union”.

(b) The split oy introduced during duplication of o does not strengthen stream
specificities. In the RemMS policy, it was shown that a “random” split is always
valid, whereas a “custom” split cannot be considered. In the other cases:
—ifo(reqSplit) = “query,” then for each stream e entering o,,, le(queries)| = 1;
—if o(reqSplit) = “attribute,” then for each stream e entering o, eattrs) =

os(param), meaning the streams are already grouped with respect to the
same attributes that the split discriminates.

Ifthese conditions are satisfied, then the processing sub-stream policy can be applied.
To achieve this, the rule inserts n requests for duplication of operator o (Algorithm B.6).
Because the RemM S policy is already executed after each duplication, there is no need
to request it explicitly. In addition, note that even though RemMS is triggered n times,
only the last time succeeds because the others cannot find the mapping function f
required by the policy.

Plan. There is no specific plan for this policy.

Execute. There is no specific execution for this policy.

A.2. Predicate Indexing

A.2.1. Description. This policy (PredIndex) implements the predicate indexing MQO
technique introduced by Madden et al. [2002]. The technique detects when two or more
filters process the same input stream and have predicates over the same attributes and
replaces both occurrences with a single one. In this case, the resulting filter has special
data structures that enable it to evaluate multiple (range) predicates more efficiently
than evaluating each predicate independently. This is an example of “source” sharing,
as explained in Section 5.2.

A.2.2. Realization Using the MAPE-K Loop.
Monitor. A set of queries @ is submitted by the user, resulting in a NewQueries(Q)
symptom being set to the analysis module.

Analysis. The analysis module checks whether a pair of filters can be shared by
searching for a homomorphism 4 : L,..q — €, where L., is the left-hand side of
the graph rewriting rule in Figure 23. If a homomorphism exists, then the mod-
ule also checks whether the predicates range over the same attributes. If so, then
a PredicateIndex(®) RFC is sent to the plan module (Algorithm B.7).

Plan. On receipt of the PredicateIndex(®) RFC, the PredicatelIndexAll(®) action is
inserted into the change plan.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:34 W. A. Higashino et al.

<<op>>

P1 id=id1
<<prod>> impl=“g_filter”
id=p1 palrams=param1 04,05 Og
impl=prod_impl I"?Degree=_““1””
outDegree= P1.P2: Ps
<<op>>

params=prod_param

outDegree="1" shareable="true”

id=ids

shStrategy="source”
type=“processing” S impl=“g_filter”
id=ps params={param1, param2}
o impl=prod_impl ;ER)?;::“JZ""
=prod =
2 <<0p>> para:;:‘; el:;re e;?r,,r = shareable="true”
shStrategy="source”

id=id2

7]
<<prod>> impl=“g_filter” type="“split”
id=p2 params=param2
impl=prod_impl inDegree="1"
params=prod_param outDegree="1"
outDegree="1" shareable="“true”

shStrategy="source”
type=“processing”

R

Fig. 23. Pyeq: Predicate indexing rewriting rule.

Execute. Execution of this policy is equivalent to repeatedly applying rule Pp..q, de-
scribed in Figure 23. Note that the two producer vertices p; and p, shown in L actually
represent the same input source, as they are associated with the same implementation
and parameters. The resulting grouped filter is logically equivalent to the execution
of both predicates. This policy is applied only at the query model level, and therefore

there is no associated mutator.

B. INFERENCE RULES

This appendix presents the inference rules used in the MAPE loop by the self-
management policies from Section 9 and Appendix A. The rules are written in Drools
Rule Language, a declarative language based on the event-condition-action paradigm.

ALGORITHM B.1: Operator Combination—Analysis Inference Rule.

rule "comb-analysis"
when
$s: Symptom(category == "NewQuery"”, $query: query)
$rule: Rule(name — "P_comb", $lhs : left)
eval (Util.homomorphism($lhs, $query).value)
then
insert(new Rfc("Combine”, $query))

end

ALGORITHM B.2: Operator Duplication—Monitoring Inference Rule. A Bottleneck Is Detected
if an Operator Queue Size Is Trending Up Considering the Last Five Monitoring Events.

rule "dupl-monitor"
when
$op: Operator($id: id)
Trend(this == Trend.UP) from accumulate(
Event(source == $id, category = "queueSize", $value: value) over window:length(5),
trend($value))
then
insert(new Symptom("Bottleneck", $op))

end

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:35

ALGORITHM B.3: Operator Duplication—Analysis Inference Rule.

rule "dupl-analysis"
when
$s: Symptom(category = "Bottleneck")
$op: Operator(duplicable == true) from $s.operator
then
insert(new Rfc("Duplicate”, $op.query, $op))
delete(3$s)

end

ALGORITHM B.4: Operator Duplication—Plan Inference Rule. The Left-Hand Side of Rule
Pjﬁ(id, s,) (Figure 17) Is Used to Verify if the Appropriate Merge and Split Operators Are
Already in Place.

rule "dupl-plan”
when
$rfc: Rfc(category == "Duplicate”, $op: operator, $query: operator.query)
Rule(name = "P_add_dupl”, $lhs: left)
then
params = ["id": $op.id];
h = Util.homomorphism($lhs, $query, params);

I

if (!h.getValue()) {
pl = Util.placementForInitDupl($query, $op);
insert(new Action("InitialDuplication”, $query, $op, pl["split"],
pl["op"], pl["merge"] 1J;
} else {
p2 = Util.placementForAddDupl($query, $op);
insert(new Action("AdditionalDuplication”, $query, $op, p2["op"]1));
}
delete($rfc);
end

ALGORITHM B.5: Removal of an Unnecessary Merge/Split—Analysis Inference Rule. The
Method hasMapping Searches for the Bijective Function f Defined in Section 9.3.

rule "unnec-ms-analysis"
when
$s: Symptom{category == "NewQuery" || category == "Duplicated", $query: query)
Rule(name == "P_rem_byp", $lhs: left)
then
Homomorphism h = Util.homomorphism($lhs, $query)
if (h.value) {
foreach (Graph g : h.results) {
merge = g.byType("merge")[@];
split = g.byType("split")[0];
Function f = Util.hasMapping(merge, split);
if (f I= null) {
insert(new Rfc("RemoveMergeSplit", $query, merge, split, f))

}

end

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

19:36 W. A. Higashino et al.

ALGORITHM B.6: Processing Sub-Streams—Analysis Inference Rules. It Finds a Sequence of
a Merge and a Duplicable Operator by Searching for an Homomorphism L, — q. The Method
checkSubStream Verifies the Sub-Stream Conditions Defined in Appendix A.1.
declare ProcSubS

query: Query

merge: Operator

op: Operator
end

rule "proc-subs-bottleneck-analysis"
when
$s: Symptom(category == "Bottleneck", $query: query)
$op: Operator(selectivity < 1.0) from $s.operator
$rule: Rule(name = "L_proc”, $lhs: left)
then
params = ["id": $op.id]
h = Util.homomorphism($lhs, $query, params)
for (Graph g : h.results) {
insert(new ProcSubS($query, g.byType("merge")[@], g.byId($op.id)))
}
end

rule "proc-subs-conditions-analysis”
when
$ps: ProcSubSQ)
$query: Query() from $ps.query
$op: Operator(duplicable == true) from $ps.op
$merge: Operator(mergeType == "union", inDegree > 1) from $ps.merge
eval (Util.checkProcSubStream($merge, $op))
then
for (int i = @; 1 < $merge.inDegree; i++) {
insert(new Rfc("Duplicate”, $query, $op))
}
end

ALGORITHM B.7: Predicate Indexing—Analysis Inference Rules.
rule "mgo-analysis-init"
when
Rule(name == "L_pred", $lhs: left)
$s: NewQueries(Squeries: queries)
then
Query g = $queries[@]
for (int 1 = 1; i < $queries.size(); i+) {
q = q.add((Query) $queries[i])

}
if (Util.homomorphism($lhs, q).value) {
insert(new Rfc("PredicateIndex”, q))

}

delete($s)
end
REFERENCES

Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Mitch Cherniack, Jeong-Hyon Hwang, Wolfgang
Lindner, Anurag S. Maskey, Er Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

Attributed Graph Rewriting for CEP Self-Management 19:37

2005. The design of the Borealis stream processing engine. In Proceedings of the 2nd Biennial Conference
on Innovative Data Systems Research (CIDR’05). 277-289.

Daniel J. Abadi, Don Carney, Ugur Cetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2003. Aurora: A new model and archi-
tecture for data stream management. Int. J. Very Large Data Bases 12, 2 (Aug. 2003), 120-139.
DOI:http://dx.doi.org/10.1007/s00778-003-0095-z

Yanif Ahmad and Ugur Cetintemel. 2004. Network-aware query processing for stream-based applications.
In Proceedings of the 13th International Conference on Very Large Data Bases—Volume 30 (VLDB’04).
VLDB Endowment, 456-467.

Mahdi Ben Alaya and Thierry Monteil. 2015. FRAMESELF: An ontology-based framework for the self-
management of machine-to-machine systems. Concurr. Comput.: Pract. Exper. 27, 6 (2015), 1412-1426.
DOI:http://dx.doi.org/10.1002/cpe.3168

Amazon. 2015. Amazon Kinesis. Retrieved from http://aws.amazon.com/kinesis.

Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar, Keith Ito, Rajeev Motwani,
Utkarsh Srivastava, and Jennifer Widom. 2004. STREAM: The Stanford Data Stream Management
System. Technical Report 2004-20. Stanford InfoLab.

Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2005. The CQL continuous query language: Se-
mantic foundations and query execution. VLDB J. 15, 2 (July 2005), 121-142. D0OI:http:/dx.doi.org/
10.1007/s00778-004-0147-z

Steve Awodey. 2006. Category Theory. Oxford Logic Guides, Vol. 49. Oxford University Press.

Damien Borgetto, Rodrigue Chakode, Benjamin Depardon, Cédric Eichler, Jean-Marie Garcia, Hassen
Hbaieb, Thierry Monteil, Elie Pelorce, Anouar Rachdi, A. Al Sheikh, and Patricia Stolf. 2016. Hybrid
approach for energy aware management of multi-cloud architecture integrating user machines. J. Grid
Comput. 14,1 (March 2016), 91-108.

Christian Y. A. Brenninkmeijer, Ixent Galpin, Alvaro A. A. Fernandes, and Norman W. Paton. 2008. A
semantics for a query language over sensors, streams and relations. In Sharing Data, Information and
Knowledge SE-9, Alex Gray, Keith Jeffery, and Jianhua Shao (Eds.). Lecture Notes in Computer Science,
Vol. 5071. Springer Berlin Heidelberg, 87-99. DOI : http://dx.doi.org/10.1007/978-3-540-70504-8_9

Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska, Don Carney, Ugur Cetintemel, Ying Xing, and
Stan Zdonik. 2003. Scalable distributed stream processing. In Proceedings of the 1st Biennial Conference
on Innovative Data Systems Research (CIDR’03). 257-268.

Gianpaolo Cugola and Alessandro Margara. 2010. TESLA: A formally defined event specification language.
In Proceedings of the 4th ACM International Conference on Distributed Event-Based Systems (DEBS’10).
ACM, New York, NY, 50. DOI:http://dx.doi.org/10.1145/1827418.1827427

Gianpaolo Cugola and Alessandro Margara. 2012. Processing flows of information: From data stream
to complex event processing. Comput. Surv. 44, 3 (June 2012), 1-62. DOI:http://dx.doi.org/10.1145/
2187671.2187677

Gianpaolo Cugola, Alessandro Margara, Mauro Pezze, and Matteo Pradella. 2015. Efficient analysis of event
processing applications. In Proceedings of the 9th ACM International Conference on Distributed Event-
Based Systems (DEBS’15). ACM, New York, NY, 10-21. DOI: http:/dx.doi.org/10.1145/2675743.2771834

Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun Sharma, and Walker M.
White. 2007. Cayuga: A general purpose event monitoring system. In Proceedings of the 3rd Biennial
Conference on Innovative Data Systems Research (CIDR’07). 412—422.

H. Ehrig, R. Heckel, M. Korff, M. Lowe, L. Ribeiro, A. Wagner, and A. Corradini. 1997. In Handbook of Graph
Grammars and Computing by Graph Transformations, Volume 1: Foundations, Grzegorz Rozenberg
(Ed.). World Scientific, Chapter Algebraic Approaches to Graph Transformation. Part II: Single Pushout
Approach and Comparison with Double Pushout Approach, 247-312.

Cédric Eichler. 2015. Modélisation Formelle de Systémes Dynamiques Autonomes: Graphe, Réécriture et
Grammaire. Ph.D. Dissertation. Université Toulouse III.

Cédric Eichler, Ghada Gharbi, Nawal Guermouche, Thierry Monteil, and Patricia Stolf. 2013. Graph-based
formalism for machine-to-machine self-managed communications. In Proceedings of the 2013 IEEE 22nd
International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises. T4-79.

Cédric Eichler, Thierry Monteil, Patricia Stolf, Luigi Alfredo Grieco, and Khalil Drira. 2016. Enhanced
graph rewriting systems for complex software domains. Softw. Syst. Model. 15, 3 (July 2016), 685-705.
DOI:http:/dx.doi.org/10.1007/s10270-014-0433-1

M. R. Garey and D. S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman.

Google. 2015. Google Cloud Dataflow. Retrieved from http://cloud.google.com/dataflow/.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

http://dx.doi.org/10.1007/s00778-003-0095-z
http://dx.doi.org/10.1002/cpe.3168
http://aws.amazon.com/kinesis
http://dx.doi.org/ ignorespaces 10.1007/s00778-004-0147-z
http://dx.doi.org/ ignorespaces 10.1007/s00778-004-0147-z
http://dx.doi.org/10.1007/978-3-540-70504-8_9
http://dx.doi.org/10.1145/1827418.1827427
http://dx.doi.org/10.1145/ ignorespaces 2187671.2187677
http://dx.doi.org/10.1145/ ignorespaces 2187671.2187677
http://dx.doi.org/10.1145/2675743.2771834
http://dx.doi.org/10.1007/s10270-014-0433-1
http://cloud.google.com/dataflow/

19:38 W. A. Higashino et al.

Katarina Grolinger, Michael Hayes, Wilson A. Higashino, Alexandra LHeureux, David S. Allison, and Miriam
A. M. Capretz. 2014. Challenges for MapReduce in big data. In Proceedings of the IEEE 10th 2014 World
Congress on Services (SERVICES’14).

Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Soriente, and Patrick Valduriez.
2012. StreamCloud: An elastic and scalable data streaming system. IEEE Trans. Parallel Distrib. Syst.
23, 12 (Dec. 2012), 2351-2365. DOI : http://dx.doi.org/10.1109/TPDS.2012.24

Daniel Hagimont, Patricia Stolf, Laurent Broto, and Noel Palma. 2009. Autonomic Computing and Network-
ing. Springer US, Boston, MA, Chapter Component-Based Autonomic Management for Legacy Software,
83-104. DOI: http://dx.doi.org/10.1007/978-0-387-89828-5_4

Moustafa A. Hammad, Michael J. Franklin, Walid G. Aref, and Ahmed K. Elmagarmid. 2003. Scheduling
for shared window joins over data streams. In Proceedings of the 29th International Conference on Very
Large Data Bases-Volume 29. VLDB Endowment, 297-308.

Thomas Heinze, Zbigniew Jerzak, Gregor Hackenbroich, and Christof Fetzer. 2014. Latency-aware elas-
tic scaling for distributed data stream processing systems. In Proceedings of the 8th ACM Inter-
national Conference on Distributed Event-Based Systems (DEBS’14). ACM, New York, NY, 13-22.
DOI:http://dx.doi.org/10.1145/2611286.2611294

Sebastian Herbst, Niko Pollner, Johannes Tenschert, Frank Lauterwald, Gregor Endler, and Klaus Meyer-
Wegener. 2015. An algebra for pattern matching, time-aware aggregates and partitions on relational data
streams. In Proceedings of the 9th ACM International Conference on Distributed Event-Based Systems
(DEBS’15). ACM, New York, NY, 140-149. DOI : http://dx.doi.org/10.1145/2675743.2771830

Wilson A. Higashino, Miriam A. M. Capretz, and Luiz F. Bittencourt. 2016. CEPSim: Modelling and simula-
tion of complex event processing systems in cloud environments. Fut. Gen. Comput. Syst. 65 (Dec. 2016),
122-139. DOI : http://dx.doi.org/10.1016/j.future.2015.10.023

Wilson A. Higashino, Cédric Eichler, Miriam A. M. Capretz, Thierry Monteil, Maria B. F. De Toledo, and Pa-
tricia Stolf. 2014. Query analyzer and manager for complex event processing as a service. In Proceedings
of the 2014 IEEE 23rd International WETICE Conference. 107-109. DOI : http://dx.doi.org/ 10.1109/WET-
ICE.2014.53

Mingsheng Hong, Mirek Riedewald, Christoph Koch, Johannes Gehrke, and Alan Demers. 2009. Rule-
based multi-query optimization. In Proceedings of the 12th International Conference on Extend-
ing Database Technology Advances in Database Technology (EDBT09). ACM, New York, NY, 120.
DOI:http://dx.doi.org/10.1145/1516360.1516376

IBM. 2006. An Architectural Blueprint for Autonomic Computing. Technical Report. IBM.

Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jennifer Widom, Hari Balakrishnan,
Ugur Cetintemel, Mitch Cherniack, Richard Tibbetts, and Stan Zdonik. 2008. Towards a streaming SQL
standard. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1379-1390.

JBoss. 2016. Drools. Retrieved April 13, 2016 from http:/www.drools.org.

Jess. 2016. Jess, the Rule Engine for the Java Platform. (2016). Retrieved April 13rd, 2016 from http://
www.jessrules.com/.

dJ. O. Kephart and D. M. Chess. 2003. The vision of autonomic computing. Computer 36, 1 (Jan 2003), 41-50.

Jirgen Kramer and Bernhard Seeger. 2009. Semantics and implementation of continuous sliding win-
dow queries over data streams. ACM Trans. Database Syst. 34, 1 (2009), 1-49. DOI :http://dx.doi.org/
10.1145/1508857.1508861

Geetika T. Lakshmanan, Ying Li, and Rob Strom. 2008. Placement strategies for internet-scale data stream
systems. IEEE Internet Comput. 12, 6 (Nov. 2008), 50—60. DOI : http://dx.doi.org/10.1109/MIC.2008.129

Guoli Li and Hans-Arno Jacobsen. 2005. Composite subscriptions in content-based publish/subscribe sys-
tems. In Proceedings of the ACM/IFIP/USENIX 2005 International Conference on Middleware (Mid-
dleware’05). Springer-Verlag, New York, NY, 249-269.

Bjorn Lohrmann, Daniel Warneke, and Odej Kao. 2013. Nephele streaming: Stream processing un-
der QoS constraints at scale. Cluster Comput. 17, 1 (July 2013), 61-78. DOI:http:/dx.doi.org/
10.1007/s10586-013-0281-8

Michael Lowe. 1993. Algebraic approach to single-pushout graph transformation. Theor. Comput. Sci. 109,
12 (1993), 181-224. DOI : http://dx.doi.org/10.1016/0304-3975(93)90068-5

David Luckham. 2002. The Power of Events: An Introduction to Complex Event Processing in Distributed
Enterprise Systems (1st ed.). Addison-Wesley Professional.

David Luckham and Roy Schulte. 2011. Event Processing Glossary—Version 2.0. Technical Report
July. Event Processing Technical Society. 1-19 pages. Retrieved from http:/www.complexevents.com/
2011/08/23/event-processing-glossary-version-2/.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

http://dx.doi.org/10.1109/TPDS.2012.24
http://dx.doi.org/10.1007/978-0-387-89828-5_4
http://dx.doi.org/10.1145/2611286.2611294
http://dx.doi.org/10.1145/2675743.2771830
http://dx.doi.org/10.1016/j.future.2015.10.023
http://dx.doi.org/ ignorespaces 10.1109/WETICE.2014.53
http://dx.doi.org/ ignorespaces 10.1109/WETICE.2014.53
http://dx.doi.org/10.1145/1516360.1516376
http://www.drools.org
http://www.jessrules.com/
http://www.jessrules.com/
http://dx.doi.org/ ignorespaces 10.1145/1508857.1508861
http://dx.doi.org/ ignorespaces 10.1145/1508857.1508861
http://dx.doi.org/10.1109/MIC.2008.129
http://dx.doi.org/ ignorespaces 10.1007/s10586-013-0281-8
http://dx.doi.org/ ignorespaces 10.1007/s10586-013-0281-8
http://dx.doi.org/10.1016/0304-3975(93)90068-5
http://www.complexevents.com/ ignorespaces 2011/08/23/event-processing-glossary-version-2/
http://www.complexevents.com/ ignorespaces 2011/08/23/event-processing-glossary-version-2/

Attributed Graph Rewriting for CEP Self-Management 19:39

Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijayshankar Raman. 2002. Continuously
adaptive continuous queries over streams. In Proceedings of the 2002 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’02). Vol. 13. ACM, New York, NY, 49.
DOI:http:/dx.doi.org/10.1145/564691.564698

Oracle. 2015. Oracle Stream Explorer. Retrieved October 31, 2015 from http://www.oracle.com/technetwork/
middleware/complex-event-processing/overview/index.html.

Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt Welsh, and Margo Seltzer.
2006. Network-aware operator placement for stream-processing systems. In Proceedings of the 22nd
International Conference on Data Engineering (ICDE’06). IEEE, 49.

Powersmiths. 2015. Powersmiths WOW - Build a more sustainable future. Retrieved October 28, 2015 from
http://www.powersmithswow.com/.

Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi Zhang, Lidong Zhou, Yuan
Yu, and Zheng Zhang. 2013. TimeStream: Reliable stream computation in the cloud. In Proceed-
ings of the 8th ACM European Conference on Computer Systems. ACM Press, New York, NY, 1.
DOI:http:/dx.doi.org/10.1145/2465351.2465353

Ella Rabinovich, Opher Etzion, Sitvanit Ruah, and Sarit Archushin. 2010. Analyzing the behavior of event
processing applications. In Proceedings of the 4th ACM International Conference on Distributed Event-
Based Systems (DEBS’10). 223-234. DOI : http://dx.doi.org/10.1145/1827418.1827465

Ismael B. Rodriguez, Khalil Drira, Christophe Chassot, Karim Guennoun, and Mohamed Jmaiel. 2010. A
rule-driven approach for architectural self adaptation in collaborative activities using graph grammars.
Int. J. Auton. Comput. 1, 3 (2010), 226-245.

Grzegorz Rozenberg (Ed.). 1997. Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 1: Foundations. World Scientific.

Sergio Segura, David Benavides, Antonio Ruiz-Cortés, and Pablo Trinidad. 2008. Automated merging of fea-
ture models using graph transformations. In Generative and Transformational Techniques in Software
Engineering II, Ralf Lammel, Joost Visser, and Jodo Saraiva (Eds.). Lecture Notes in Computer Science,
Vol. 5235. Springer, Berlin, 489-505.

Guy Sharon and Opher Etzion. 2008. Event-processing network model and implementation. IBM Syst. J. 47,
2 (2008), 321-334. DOI: http://dx.doi.org/10.1147/sj.472.0321

Software AG. 2015. APAMA Streaming Analytics. Retrieved October 31, 2015 from http://www.softwareag.
com/corporate/products/apama_webmethods/analytics/overview/.

Storm. 2015. Storm: distributed and fault-tolerant realtime computation. Retrieved October 1, 2015 from
http://storm-project.net/.

Gabriele Taentzer. 2004. AGG: A graph transformation environment for modeling and validation of software.
In Applications of Graph Transformations with Industrial Relevance, John L. Pfaltz, Manfred Nagl, and
Boris Bhlen (Eds.). Lecture Notes in Computer Science, Vol. 3062. Springer, Berlin, 446-453.

Matthias Weidlich, Jan Mendling, and Avigdor Gal. 2013. Net-based analysis of event processing networks
the fast flower delivery case. In Application and Theory of Petri Nets and Concurrency SE-15, José-
Manuel Colom and Jorg Desel (Eds.). Lecture Notes in Computer Science, Vol. 7927. Springer, Berlin,
270-290. DOI : http://dx.doi.org/10.1007/978-3-642-38697-8_15

Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance complex event processing over
streams. In Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data—
SIGMOD’06, Vol. 10. ACM Press, New York, NY, 407. DOI : http://dx.doi.org/10.1145/1142473.1142520

Ying Xing, Stan Zdonik, and Jeong-hyon Hwang. 2005. Dynamic load distribution in the Borealis stream
processor. In Proceedings of the 21st International Conference on Data Engineering (ICDE’05). IEEE,
791-802. DOI : http://dx.doi.org/10.1109/ICDE.2005.53

Received January 2016; revised June 2016; accepted June 2016

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 3, Article 19, Publication date: September 2016.

http://dx.doi.org/10.1145/564691.564698
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/index.html
http://www.oracle.com/technetwork/middleware/complex-event-processing/overview/index.html
http://www.powersmithswow.com/
http://dx.doi.org/10.1145/2465351.2465353
http://dx.doi.org/10.1145/1827418.1827465
http://dx.doi.org/10.1147/sj.472.0321
http://www.softwareag.com/corporate/products/apamawebmethods/analytics/overview/
http://www.softwareag.com/corporate/products/apamawebmethods/analytics/overview/
http://storm-project.net/
http://dx.doi.org/10.1007/978-3-642-38697-8_15
http://dx.doi.org/10.1145/1142473.1142520
http://dx.doi.org/10.1109/ICDE.2005.53

