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ALMOST MIXING OF ALL ORDERS AND CLT

FOR SOME Z
d-ACTIONS ON SUBGROUPS OF F

Zd

p

GUY COHEN AND JEAN-PIERRE CONZE

Abstract. For Nd-actions by algebraic endomorphisms on compact abelian groups, the
existence of non-mixing configurations is related to "S-unit type" equations and plays a
role in limit theorems for such actions.

We consider a family of endomorphisms on shift-invariant subgroups of FZ
d

p and show
that there are few solutions of the corresponding equations. This implies the validity of
the Central Limit Theorem for different methods of summation.
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Introduction

Let G be a compact abelian group endowed with its Haar measure µ. If T ℓ1
1 , ..., T

ℓd
d , d ≥ 1,

are commuting algebraic automorphisms or surjective endomorphisms of G, they generate
a Z

d or Nd-action on G: ℓ→ T ℓ = T ℓ1
1 ...T

ℓd
d .

Given an "observable" f : G→ R with some regularity, one can investigate the statistical
behavior of the random field (T ℓf)ℓ∈Nd, in particular the following limits (in distribution
with respect to µ):

- ergodic sums for a sequence (Dn) of sets in N
d: limn |Dn|

− 1
2

∑
ℓ∈Dn

T ℓf,

- ergodic sums along a random walk Zn = Y0 + ...+ Yn−1 on Z
d or Nd:

lim
n
a−1
n

∑

0≤k<n

TZk(ω) f, for a.e. fixed ω, where (an) is a normalizing sequence.

The connected case was considered in [3]. Here we are interested in non connected groups
G. More precisely we consider in Section 1 some commutative actions by endomorphisms
or automorphisms on shift-invariant subgroups of FZd

p (characteristic p, where p ≥ 2 is a
prime integer).

For these actions, mixing of all orders is not satisfied. Nevertheless, it is possible to show
that non-mixing configurations are sparse (Section 2). This was shown for a particular case
of our model (Ledrappier’s system) by D. Arenas-Carmona, D. Berend and V. Bergelson
in [1]. We borrow from their paper, a source of inspiration for us, the term "almost mixing
of all orders" used in the title.

The scarcity of non-mixing configurations allows to apply the cumulant method as in [3]
to prove the Central Limit Theorem for different methods of summation (Section 3).

The last section (appendix) is devoted to reminders on algebraic endomorphisms of com-
pact abelian groups.

1. Shift-invariant subgroups of F
Zd

p and a class of endomorphism

In this section, we recall some facts about shift-invariant subgroups of FZ
d

p (cf. [12]) and
we define a class of endomorphisms of these groups.

1.1. Shift-invariant subgroups of F
Zd

p .

Notations

Let p > 1 be a prime integer fixed once for all and let Fp denote the finite field Z/pZ. For
all integers a, b, we have ap = a mod p, (a+ b)p = ap + bp mod p. Underlined symbols will
represent vectors or tuples. The element (0, 0, ..., 0) is represented by 0. For d ≥ 1, if J is a
set of indices, a |J |-tuple of elements of Zd or Nd (N includes 0) is written aJ = (aj, j ∈ J).
The coordinates are denoted by aj,k, j ∈ J, k = 1, ..., d. The notation xJ represents the
variable (xj , j ∈ J) or the formal product

∏
j∈J xj .

We denote by G
(d)
0 , or simply G0, the compact abelian group F

Z
d

p (with coordinate-
wise addition and endowed with the product topology) identified with the ring Sd =
Fp[[x

±
1 , ..., x

±
d ]] of formal power series in d variables with coefficients in Fp.
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An element ζ = (ζk, k ∈ Z
d) in G0 is represented by the formal power series1 with

coefficients in Fp: ζ(x) =
∑

k∈Zd ζk x
−k. For j = 1, ..., d, the shift σj on F

Z
d

p corresponds

to the multiplication by xj : ζ(x) → xjζ(x).

Polynomials with coefficients in Fp and characters

The ring Fp[x
±
1 , ..., x

±
d ] of Laurent polynomials in d variables with coefficients in Fp is

denoted by Pd . For d = 1, we write simply P. A Laurent polynomial P ∈ Pd reads

P (x1, ..., xd) =
∑

k∈S(P )

c(P, k) xk,

where S(P ), called the support of P , is the finite set {k : c(P, k) 6= 0}.

For P ∈ Pd and ζ ∈ Sd, the product Pζ is well defined:

(Pζ)(x) = (
∑

ℓ∈Zd

c(P, ℓ) xℓ) (
∑

ℓ′∈Zd

ζℓ′ x
−ℓ′) =

∑

k∈Zd

( ∑

j∈S(P )

c(P, j) ζk+j

)
x−k.

The dual Ĝ
(d)
0 of G

(d)
0 can be identified with Pd: for any character χ on F

Zd

p there is a
polynomial P ∈ Pd such that

χ(ζ) = χP (ζ) := e
2π
p
i
∑

ℓ∈S(P ) c(P,ℓ) ζℓ = e
2π
p
ic(Pζ,0).(1)

Shift-invariant subgroups of FZ
d

p

Let G ⊂ G0 be a shift-invariant closed subgroup of FZ
d

p . The annulator G⊥ of G in Ĝ0

is {P : χP (ζ) = 1, ∀ζ ∈ G} = {P : c(Pζ, 0) = 0, ∀ζ ∈ G}. Since G is shift-invariant, if
c(Pζ, 0) = 0, ∀ζ ∈ G, the same relation is satisfied for xk ζ(x), ∀k ∈ Z

d, which implies
Pζ = 0, ∀ζ ∈ G.

Therefore G⊥ can be identified with the ideal J = {P ∈ Pd : Pζ = 0, ∀ζ ∈ G}. Since,

by duality in F
Z
d

p , we have G = (G⊥)⊥ (see Appendix), this shows that G = GJ where

GJ = {ζ : Pζ = 0, ∀P ∈ J }.(2)

Conversely, for every ideal J ⊂ Pd, (2) defines a shift-invariant subgroup GJ of G0.

The dual of GJ is isomorphic to the quotient Ĝ0/G
⊥
J , i.e., ĜJ = Pd/J .

1.2. Endomorphisms of FZ

p and their invertible extension.

For R ∈ P, let γR be the endomorphism of K := F
Z

p defined by R. The action of γR
on characters is the multiplication P → RP . If R 6= 0, the surjectivity of γR on K, or
equivalently the injectivity of the action of γR on the dual group K̂, is clear, since RP ≡ 0
if and only of P ≡ 0.

The invertible extension of γR can be constructed by duality from the action F → RF

on the ring FR[x
±] of fractions of the form F (x) = P (x)

R(x)ℓ
, P ∈ P, ℓ ∈ N. The invertible

extension of γR is the dual action on the compact group dual of the discrete additive
group FR.

1 We write x for (x1, · · · , xd) as well as for x1 · · ·xd, x−k for x−k1

1
· · · x−kd

d , ζk or c(ζ, k) for the

coefficients of the series ζ(x).
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An isomorphic version of the invertible extension is obtained in the following way. Let us
consider the subgroup GJ of G(2), where J is the ideal in P2 generated by the polynomial
x2 − R(x1). Observe that the homomorphism hR from P2 to FR defined by P (x1, x2) →
P (x1, R(x1)) is surjective and has for kernel the ideal J (Lemma 1.2 below). Therefore
we get an isomorphism between P2 modJ and FR. The shift σ2 on the second coordinate
is the invertible extension of γR.

Multidimensional action

This construction can be extended to a multidimensional action. We start with the
group K = F

Z

p and with d polynomials R1, ..., Rd in Fp[x
±]. We can add the polynomial

R0(x) = x to the list.

The family γR1, ..., γRd
generate an N

d-action on K by algebraic endomorphisms. The

dual action on K̂ = P is ℓ→ (P → RℓP ), where Rℓ(x) := Rℓ1
1 (x)...R

ℓd
d (x).

The natural extension is constructed as follows. Let FR[x
±] be the ring of rational frac-

tions in one variable with denominators Rj(x), j = 1, ..., d, i.e., the discrete group of
rational fractions with coefficients in Fp of the form V

R
ℓ1
1 ...R

ℓd
d

, V ∈ P[x±], ℓ1, ..., ℓd ∈ N.

Using duality, the natural extension K̃ ofK (with respect to the endomorphisms γR1, ..., γRd
)

can be built as the dual of FR[x
±] view as an additive group.

As above, we can get an isomorphic version of the invertible extension in a shift-invariant

subgroup of G
(d+1)
0 , namely the shift-invariant subgroups GJ of G

(d+1)
0 , where J is the

ideal generated in Pd+1 by xj+1 −Rj(x1), j = 1, ..., d.

Lemma 1.1. The shifts σ2, ..., σd+1 are the invertible extensions of the endomorphisms

γR1 , ..., γRd
acting on F

Z

p and generate a Z
d-action on G

(d+1)
J .

Proof. If Γ is in Pd+1 = Fp[x
±
1 , x

±
2 , , ..., x

±
d+1], let hR(Γ) be the rational fraction

hR(Γ)(x) = Γ(x,R1(x), ..., Rd(x)).(3)

The map hR is a surjective homomorphism from Pd+1 to FR[x
±]. The homomorphism h̃

defined by h̃ (Γ modJ ) := h(Γ) is well defined, since Γ ∈ J implies h(Γ) = 0. By Lemma
1.2 below, it is an isomorphism between Pd+1 modJ and P.

The multiplication by xj+1 on Pd+1 modJ corresponds by h̃ to the multiplication by
Rj on P and the Z

d-action generated by the shifts σ2, ..., σd+1 on GJ has the N
d-action

generated by γR1 , ..., γRd
on K as a factor through the map h̃. �

Lemma 1.2. The polynomials Lj(x) := xj+1−Rj(x1), j = 1, ..., d, form a basis of KerhR.

Proof. Let us take for simplicity d = 3. If P is in Ker hR, then x2 = R2(x) is a root of the
polynomial Qx(x2) in x2 defined by Qx(x2) = P (x, x2, R3(x))−P (x,R2(x), R3(x)). There-
fore, there is Vx such that P (x, x2, R3(x)) = P (x,R2(x), R3(x)) + Vx(x2)(x2 − R2(x)) =
Vx(x2)(x2 −R2(x)). The last equality follows from P ∈ Ker hR.

Now, R3(x) is a root of the polynomialQx,x2(x3) in x3 defined by P (x, x2, x3)−P (x, x2, R3(x)).
There is Wx,x2 such that P (x, x2, x3) = P (x, x2, R3(x)) +Wx,x2(x3)(x3 − R3(x)). Put to-
gether, it gives: P (x, x2, x3) = Vx(x2)(x2 − R2(x)) +Wx,x2(x3)(x3 −R3(x)).

Vx and Wx,x2 can be written as polynomials, respectively V (x, x2) and W (x, x2, x3). We
have P = V L2 +W L3. �
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Ledrappier’s example ([9]) corresponds to p = 2, d = 1, R1(x) = 1 + x. In this case, the
invertible extension of γR is given by the shift action on the second coordinate for the shift-
invariant group GJ associated to the ideal J generated by the polynomial 1+x1+x2. The
group GJ is the set of configurations ζ in F

Z2

2 such that ζn,m+ ζn+1,m+ ζn,m+1 = 0 mod 2,
∀(n,m) ∈ Z

2. The Z
2-shift-action on GJ endowed with its Haar measure is not r-mixing

for r ≥ 3, a fact which is general for the model described above.

Generalization: endomorphisms of GJ and their invertible extension

For an integer d1 ≥ 1, let GJ be a shift-invariant subgroup of G
(d1)
0 .

Every polynomial R in Pd defines an endomorphism of GJ , γR : ζ(x) → R(x) ζ(x).

Indeed, if ζ is such that Pζ = 0, then PRζ = RPζ = 0. The dual action of γR on ĜJ is
the map P modJ → RP modJ .

Any family R1, ..., Rd2 , d2 ≥ 1, of Laurent polynomials in x = (x1, ..., xd1) defines an
N

d2-action by commuting endomorphisms γRj
of GJ .

The natural invertible extension of this action to a Z
d2-action by algebraic automorphisms

of an extension of GJ can be obtained as above in the following way.

Let xd1+1, ..., xd1+d2 be additional coordinates and consider G
(d1+d2)
0 = F

Zd1+d2

p . The ideal
J ′ in Pd1+d2 generated by J (embedded in Pd1+d2) and by the polynomials xd1+1 −

R1(x), ..., xd1+d2 − Rd2(x) defines a shift-invariant subgroup GJ ′ of G
(d1+d2)
0 .

Let us consider the surjective homomorphism h from the ring Pd1+d2 of polynomials in
d1 + d2 variables to the ring Pd1 of polynomials in d1 variables defined by h(Q)(x) =
Q(x,R1(x), ..., Rd2(x)).

The homomorphism h̃ defined by h̃ (Q modJ ′) := h(Q) modJ is well defined, since
Q ∈ J ′ implies h(Q) ∈ J . Using an extension of Lemma 1.2 below, it can be shown that
it is an isomorphism between Pd1+d2 modJ ′ and Pd1 modJ .

The multiplication by xd+j on Pd1+d2 modJ ′ corresponds by h̃ to the multiplication by
Rj on Pd1 modJ . In other words, the Z

d2-action generated by the shifts σd1+1, ..., σd1+d2

on GJ ′ has the N
d2-action generated by the endomorphisms Rd1+1, ..., Rd1+d2 on GJ as a

factor through h̃.

The action of the shifts on GJ ′ generate a Z
d1+d2-action, invertible extension of the action

generated on GJ by multiplication by x1, ..., xd1 , R1(x), ..., Rd2(x).

In the sequel we restrict the previous model to the case J = {0}. Moreover, although we
think that the methods used below can be extended to d1 > 1, we take d1 = 1.

Total ergodicity

Suppose that the polynomials Rj , j = 1, ..., d, are pairwise relatively prime of degree ≥ 1.
Then the family (Rj, j = 1, ..., d) generates an Z

d-action on K = F
Z

p by endomorphisms,

which extends to a Z
d-action (Aℓ, ℓ ∈ Z

d) on the natural extension K̃ of K which is totally
ergodic (i.e. such that Aℓ on (K̃, µ̃) is ergodic for every ℓ ∈ Z

d\{0}).

Example: (with d = 3) We take p = 2, R0(x) = x, R1(x) = 1 + x, R2(x) = 1 + x + x2.
The orbits on the set of non trivial characters of the generated Z

3-action are infinite by
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primality of the polynomials x, 1+ x, 1+ x+x2. Therefore, we get a 2-mixing Z
3-action,

hence a Z
3-action with Lebesgue spectrum on L2

0(µ̃), where µ̃ is the Haar measure on K̃.

1.3. Non r-mixing tuples.

Let us briefly recall the relation between r-mixing for an action by algebraic endomorphims
and S-unit equations. A general measure preserving N

d-action (T ℓ)ℓ∈Nd on a probability
measure space (X, µ) is mixing of order r ≥ 2 if, for any r-tuple of bounded measurable
functions f1, ..., fr on X with 0 integral and for every ε > 0, there is M ≥ 1 such that

‖ℓj − ℓj′‖ ≥M, ∀j 6= j′ ⇒ |

∫
T ℓ1f1...T

ℓrfr dµ| < ε.(4)

When (X, µ) is a compact abelian group G with its Haar measure, one easily checks by
approximation that mixing of order r for an N

d-action generated by algebraic endomor-
phisms T1, ..., Td is equivalent to: for every set K = {χ1, ..., χr} of r characters different
from the trivial character χ0, there is M ≥ 1 such that ‖ℓj − ℓj′‖ ≥ M for j 6= j′ implies

T ℓ1χ1...T
ℓrχr 6= χ0.

The "non-mixing" r-tuples in N
d for K are the r-tuples in the set

Φ(K, r) := {(ℓ1, ..., ℓr) : T
ℓ1χ1...T

ℓrχr = χ0}.(5)

Example: action by ×2, ×3 on T
1

Let us illustrate the question of mixing on an example in the connected case: the action
×2, ×3 on T

1. A set K of non zero characters on the torus is given by an r-tuple {k1, ..., kr}
of non zero integers. By putting ℓj = (aj , bj), Equation (5) for the action by 2 and 3 reads

k12
a13b1 + ... + kr2

ar3br = 0, which leads to consider equations of the form:

k12
a13b1 + ...+ kr2

ar3br = 1, ((a1, b1), ..., (ar, br)) ∈ (Z2)r.(6)

It is known that, for a given set {k1, ..., kr}, the number of r-tuples ((a1, b1), ..., (ar, br))
solutions of (6), such that no proper subsum vanishes, is finite (cf. Theorem 1.4). It
implies that the Z

2-action generated by the invertible extension ×2,×3 is mixing of all
orders. This mixing result is a special case of a general theorem of K. Schmidt and T.
Ward (1992):

Theorem 1.3. ([13]) Every 2-mixing Zd-action by automorphisms on a compact connected
abelian group G is mixing of all orders.

The proof of Theorem 1.3 relies on a result on S-unit equations (Schlickewei (1990)). Let
us mention the following version of results on S-unit equations in characteristic 0:

Let F be an algebraically closed field of characteristic 0, F∗ its multiplicative group of
nonzero elements. Let Γ be a subgroup of (F∗)r.

Theorem 1.4. (J.-H. Evertse, J.-H. Schlickewei, W. M. Schmidt [5]) If the rank of Γ is
finite, for (k1, ..., kr) ∈ (F∗)r, the number of solutions (γ1, ..., γr) ∈ Γ of equation

k1γ1 + ... + krγr = 1,(7)

such that
∑

i∈I kiγi 6= 0 for every nonempty subset I of {1, ..., r}, is finite.
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"Non-mixing" r-tuples for the action of R1, ..., Rd

The situation is different in characteristic 6= 0, where there can exist infinitely many
solutions for equations of the type (7). In the non connected case (for example for en-

domorphisms of shift-invariant subgroups of FZd

p ), this implies the existence of infinitely
many non-mixing r-tuples, for r ≥ 3.

Our goal is to show that, however, these non-mixing r-tuples for the N
d-actions described

in Subsection 1.2 above are rare in a sense (hence these actions are "almost mixing of all
order") (cf. [1] and D. Masser’s works about non-mixing r-tuples).

Our framework is the setting introduced previously. We consider the N
d-action on F

Z

p

defined by R = (R1, ..., Rd). A finite set of characters is given by a finite family of
polynomials P1, ..., Pr. For such a set, a non-mixing r-tuple of the action is an r-tuple
(a1, ..., ar) ∈ (Nd)r such that in Fp[x

±]

P1(x)
d∏

i=1

Ri(x)
a1,i + ... + Pr(x)

d∏

i=1

Ri(x)
ar,i = 0.(8)

Equation (8) is analogous to the previous S-unit equation (7), but in characteridtic p 6= 0.
Observe that, for a given family (Pj), the equation can be reduced to the case where the
Pj ’s are scalars: it suffices to enlarge the family R by adding the Pj’s to R.

Replacing Rj in Fp[x
±] by R̃j , the polynomial in Fp[x] such that R̃j(x) = xℓRj(x) where

ℓ ≥ 0 is minimal, we can also suppose that the polynomials Rj are in Fp[x].

To count non-mixing r-tuples (for the action of R on K or of the shifts on the natural
invertible extension), in the next section we will study polynomials Γ which belong to
Ker (hR) where hR is the homomorphism defined by (3).

2. Basic special D-polynomials

2.1. Decomposition of special D-polynomials.

2.1.1. Preliminary notations and results.

In this section, we extend results shown for Ledrappier’s example of [1] to the general
model introduced in the first section. We start the proof of the main theorem (Theorem
2.4) with some notations and preliminary results.

Notations: We denote by Υ the set of all monic (i.e., with leading coefficient equal to 1)
prime polynomials in one variable over Fp.

For U ∈ P, Υ(U) denotes the set of its prime monic factors. If U is a constant 6= 0, we
set Υ(U) = {1}. If S is a family of polynomials in one variable, Υ(S) :=

⋃
U∈S Υ(U) is

the set of their prime monic factors.

We denote by Q0 the ring of (Laurent) polynomials, with coefficients in Fp, in the variables
xρ indexed by ρ ∈ Υ. By definition, for every Γ in Q0, there is a finite subset J(Γ) of Υ
such that Γ is a polynomial in the variables xρ, ρ ∈ J(Γ), and reads (in reduced form):

Γ(x) =
∑

a∈ZJ(Γ)

d(a)
∏

ρ∈J(Γ)

xaρρ , with d(a) ∈ Fp.(9)
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The term “reduced" means that a product
∏

ρ∈J(Γ) x
aρ
ρ in the above formula appears only

once for a given a ∈ N
J(Γ) with a coefficient d(a) 6= 0, except for the 0 polynomial. Most

of the time it will be enough to consider polynomials with non negative exponents.

If a polynomial Γ is expressed in a non reduced form, its expression in reduced form
(possibly the 0 polynomial) is

red(Γ)(x) =
∑

b∈ZJ(Γ)

(
∑

a: a=b

d(a))
∏

ρ∈J(Γ)

xbρρ .

An element (α1, ..., αd) of {0, ..., p− 1}d (identified to F
d
p) is denoted by α. For Γ given by

(9), we call α-homogeneous component of Γ, for α ∈ F
J(Γ)
p the sum:

Γα(x) =
∑

b∈ZJ(Γ)

d(p b+ α)
∏

ρ∈J(Γ)

xp bρ+αρ

ρ .(10)

There is a homomorphism h : Γ → h(Γ), denoted also Γ → Γ̂, from Q0 to P, defined by

Γ(x) =
∑

a∈ZJ(Γ)

d(a)
∏

ρ∈J(Γ)

xaρρ → h(Γ)(x) :=
∑

a∈ZJ(Γ)

d(a)
∏

ρ∈J(Γ)

ρ(x)aρ .(11)

We consider also the ring Q1 of polynomials Γ in the variables xρ, ρ ∈ Υ, with coefficients
in Fp[x]:

Γ(x, x) =
∑

a∈ZJ(Γ)

d(a)Ua(x)
∏

ρ∈J(Γ)

xaρρ .(12)

Definitions: If D is a finite subset of Υ (i.e., a finite set of prime polynomials), a
polynomial in Q1 of the form

Γ(x, x) =
∑

a∈ZD

d(a)Ua(x)
∏

ρ∈D

xaρρ , with d(a) ∈ Fp, Ua(x) monic,(13)

is called a D-polynomial. It is called a special D-polynomial if it satisfies
∑

a∈ZD

d(a)Ua(x)
∏

ρ∈D

ρ(x)aρ = 0.(14)

For U ∈ P, if U(x) = c(U)
∏

ρ∈Υ(U) ρ(x)
θρ(U), c(U) ∈ Fp, is the factorization of U into

prime monic factors, we put

Ψ(U)(x) = c(U)
∏

ρ∈Υ(U)

xθρ(U)
ρ .

For example, for p = 2 and U(x) = x3 + x5, denoting by ρ1, ρ2 the polynomials x and
1 + x, we get Ψ(U)(x) = x3ρ1x

2
ρ2 .

Observe that Ψ(U)(x)− U(x) is a special Υ(U)-polynomial.

We define now a map Γ → Ψ(Γ), also denoted Γ → Γ̃, from Q1 to Q0, which maps Γ

given by (12) to the (not necessarily reduced) polynomial Γ̃:

Ψ(Γ)(x) = Γ̃(x) =
∑

a∈ZJ(Γ)

d(a) Ψ(Ua)(x)
∏

ρ∈J(Γ)

xaρρ .(15)
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If Γ is a special D-polynomial, then Γ̃ is a special D ∪a Υ(Ua)-polynomial. Denoting by

r(Γ) the number of terms of Γ and S(Γ) its support, observe that Γ̃− Γ is a sum of r(Γ)
special

⋃
aΥ(Ua)-polynomials:

Γ̃(x)− Γ(x) =
∑

a∈S(Γ)

c(a) [
∏

ρ∈Υ(Ua)

xθρ(Ua)
ρ − Ua(x)]

∏

ρ∈J(Γ)

xaρρ .(16)

Basic special D-polynomials

Let D be any family of prime polynomials containing the polynomial x → x. The poly-
nomials xρ − ρ(x), ρ ∈ D, are called basic special D-polynomials (abbreviated in "bs D-
polynomial"). We say that a polynomial Γ is shifted from Γ0 if Γ(x) = xa Γ0(x) for some
monomial xa. We will use the following elementary lemma:

Lemma 2.1. For any monic polynomial U in one variable, Ψ(U)(x)− U(x) is a sum of
polynomials shifted from basic special Υ(U)-polynomials.

Proof. If U is a power of a prime polynomial, U(x) = ρ(x)b, b ≥ 1, then we use:

xbρ − ρ(x)b = (

b−1∑

k=0

xb−k−1
ρ ρ(x)k) (xρ − ρ(x)).

The general case follows from the formula Y bZc − ybzc = (Y b − yb)Zc + yb(Zc − zc) by
induction. �

A polynomial Λ is called generalized basic special D-polynomial (abbreviated in “gbs D-
polynomial"), if it is obtained from a basic special D-polynomial ∆ by shift and dilation
(exponentiation with a power of p as exponent).

Therefore Λ is a gbs D-polynomial if there are a ∈ Z
d, t ≥ 0 and a bs D-polynomial

∆ = xρ − ρ(x) such that:

Λ(x) = xa (∆(x))p
t

= xa (xp
t

ρ + (−ρ(x))p
t

.

In the sequel, R = (Rj , j = 1, ..., d) will be a fixed finite family of d ≥ 2 distinct prime
polynomials in one variable over Fp. If the polynomial x→ x is not included in the family
R, we add it to the list.

For this fixed family, it is convenient to introduce another notation for polynomials in Q0

depending on the variables xρ ∈ R. We write them as polynomials in d variables xi:

Γ(x) =
∑

a∈Nd

d(a)

d∏

i=1

xaii .(17)

The variable xi corresponds to the polynomial Ri. We will use the equivalent notations
xa,

∏d
i=1 x

ai
i or

∏
ρ∈R x

aρ
ρ (here Υ(R) = R, since the Rj’s are prime polynomials).
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Γ in (17) is written in its reduced form (a product
∏d

i=1 x
ai
i appears only once for a given

a ∈ N
d). As above, Γ reads as a sum of α-homogeneous components:

Γ(x) =
∑

α∈Fd
p

Γα(x) =
∑

α∈Fd
p

[
∑

b∈Nd

cb,α

d∏

i=1

xp bi+αi

i ] =
∑

α∈Fd
p

(

d∏

i=1

xαi

i ) Γα(x),(18)

with Γα(x) := (
d∏

i=1

x−αi

i ) Γα(x) =
∑

b∈Nd

cb,α

d∏

i=1

xp bii .(19)

We denote by r(Γα) the number of monomials in the sum Γα. The length of Γ is the
number r(Γ) of its monomials. It is the cardinal of the support of Γ.

The map Γ → Γ̌

In case the Ri’s are monic polynomials non necessarily prime, we use the reduction to
the prime case given by the following map. Let Ri =

∏
ρ∈Υ(R) ρ

bi,ρ . The map Γ → Γ̌ is
defined by

Γ(x) =
∑

a∈S(Γ)

c(a)

d∏

i=1

xaii → Γ̌(xΥ(R)) = red (
∑

a∈S(Γ)

c(a)
∏

ρ∈Υ(R)

x
∑d

i=1 aibi,ρ
ρ ).(20)

If Γ is such that hR(Γ) = 0, i.e.,
∑

a∈S(Γ) c(a)
∏
Ri(x)

ai = 0, then Γ̌ is a special Υ(R)-
polynomial.

The goal of this section is the study of the set of special R-polynomials. Theorem 2.4 will
show that, for every family R of polynomials and every r, there is a finite constant t(r,R)
and a finite family E of polynomials in one variable containing R such that every special
R-polynomial Γ of length r is a sum of at most t(r,R) gbs E-polynomials. The constant
t(r,R) does not depend on the degree of the polynomial Γ.

Let us now recall or mention some facts about polynomials over Fp.

Lemma 2.2. a) For any polynomials A,B, we have (ABp)′ = A′Bp.

b) A product of pairwise relatively prime polynomials is a p-th power if and only if each
factor is a p-th power.

c) If P is a (reduced) polynomial in one variable, then P ′ = 0 if and only if P = Up for
some polynomial U .

d) If V1, ..., Vn are pairwise relatively prime polynomials which are not p-th powers, then
(
∏n

i=1 Vi)
′ 6= 0.

Proof. a), b) are clear. For c), suppose that P ′ = 0, with P (x) =
∑

k

∑p−1
ℓ=0 c(k, ℓ) x

pk+ℓ,

then 0 = P ′(x) =
∑

k

∑p−1
ℓ=1 ℓc(k, ℓ) x

pk+ℓ hence P (x) = [
∑

k c(k, 0) x
k]p.

For d), observe that (
∏n

i=1 Vi)
′ = 0 implies that

∏n
i=1 Vi is equal to Up for some polynomial

U by c), which is impossible by the hypotheses on the Vj ’s and b). �

2.1.2. Decomposition of special R-polynomials.
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Let Γ be a polynomial as in (18). With the notation (19), for β ∈ F
d
p we put

Aβ(Γ)(x) :=
∑

α

(
d∏

i=1

Rαi+βi

i (x))′ Γα(x),(21)

Bβ(Γ)(x) := −(
∏

i

Rβi

i (x))A0(Γ)(x) = −(
∏

i

Rβi

i (x))
∑

α

(

d∏

i=1

Rαi

i (x))′ Γα(x),(22)

Πβ(Γ)(x) := (
∏

i

Rβi

i (x))′
∑

α

(

d∏

i=1

Rαi

i (x)) Γα(x).(23)

We assume that Γ is a special R-polynomial, i.e., Γ̂ = 0.

It follows that Aβ(Γ) (hence also Bβ(Γ)) is a special R-polynomial. Indeed we have by

Lemma 2.2 a):

Âβ(Γ) =
∑

α

∑

a

c(b, α) (
∏

i

Rαi+βi

i )′
∏

i

Rpbi
i

= [
∑

α

∑

a

c(b, α) (
∏

i

Rαi+βi

i )
∏

i

Rpbi
i ]′ = [(

∏

i

Rβi

i ) Γ̂]′ = 0.

From the identity (
∏

iR
βi+αi

i )′ = (
∏

iR
βi

i )′ (
∏

iR
αi

i ) + (
∏

iR
βi

i ) (
∏

iR
αi

i )′, we get

Πβ(Γ) = Aβ(Γ) +Bβ(Γ).

Notation: For a finite family of prime polynomials D = {Si, i ∈ I(D)} and β =
(β1, ..., βI(D)), we put

DD,β,0 :=
∏

i∈I(D)

Sβi

i , DD,β,1 := (
∏

i∈I(D)

Sβi

i )′,(24)

ζ(D) := D ∪
⋃

β∈F
I(D)
p

Υ(DD,β,1).(25)

If we iterate k-times the map ζ : D → ζ(D) starting from a finite family of prime
polynomials R, we get a finite family of prime polynomials denoted by ζk(R).

Remark that, if the derivatives of order 1 of products of polynomials in a family of prime
polynomials R do not contain prime factors 6∈ R, then ζ(R) = R. This the case in few
examples like for p = 2: R = {x, 1+x} (Ledrappier’s example), R = {x, 1+x, 1+x+x2}.
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The map Ψ (also denoted by )̃ defined in (15) gives for Πβ(Γ), Aβ(Γ), Bβ(Γ):

Πβ(Γ)(x) = DR,β,1(x)
∑

α

(
∏

i

Rαi

i (x)) Γα(x) →

Π̃β(Γ)(x) = (
∏

ρ∈Υ(DR,β,1)

x
θρ(DR,β,1)
ρ )

∑

α

(
∏

i

xαi

i ) Γα(x) = Ψ(DR,β,1)(x)
∑

α

Γα(x),(26)

Aβ(Γ)(x) =
∑

α

DR,β+α,1(x) Γα(x) →

Ãβ(Γ)(x) =
∑

α

(
∏

ρ∈Υ(R,Dβ+α,1)

x
θρ(DR,β+α,1)
ρ ) Γα(x) =

∑

α

Ψ(DR,β+α,1)(x) Γα(x),(27)

Bβ(Γ)(x) = DR,β,0(x)A0(x) = DR,β,0(x)
∑

α

DR,α,1(x) Γα(x) →

B̃β(Γ)(x) = Ψ(DR,β,0)(x)
∑

α

Ψ(R, DR,α,1)(x) Γα(x).(28)

The polynomials Ãβ(Γ), B̃β(Γ) are special ζ(R)-polynomials (with more variables than

Γ in general). This follows from (16) and from the fact that Aβ(Γ), Bβ(Γ) are special
R-polynomials, as was shown above.

Reduction of the number of terms

For γ ∈ F
d
p, we define u(γ) by u(γ)i = 0 if γi = 0, u(γ)i = p − γi if γi = 1, ..., p − 1,

i = 1, ..., d. We have: DR,0,1(x) = 0, DR,β
1
+α,1(x) = 0, for α = u(β

1
).

If Γ is not reduced to 0, by shifting Γ by a monomial, we can assume that Γ0 6= 0. If Γ
does not reduce to the single component Γ0, there is β

1
6= 0 such that Γβ

1
6= 0.

If Γ does not reduce to a single homogeneous component, we can optimize the choices of
components in the decomposition (see the proof of Theorem 2.4). There are at most pd

non zero homogeneous components. We get

r(Ã0(Γ)) ≤ (1− λr) r, r(Ãβ′

1
) ≤ (1− µr) r,(29)

with λr = max(p−d, r−1), µr = max((1− λr)p
−d, r−1).(30)

Suppose that Γ0,Γβ
1
6= 0. Let β = u(β

1
). The polynomials Ãβ, B̃β(Γ), are special ζ(R)-

polynomials with strictly less terms than Γ.

For a family R, we get from the differences Π̃β(Γ)− Πβ(Γ), Ãβ(Γ)− Aβ , B̃β(Γ)− Bβ(Γ)
respectively the following special polynomial:

∆
β

R,α,0(x) := Ψ(DR,β,1)(x)

d∏

i=1

xαi

i −DR,β,1(x)

d∏

i=1

Rαi

i (x), α ∈ F
d,(31)

∆R,β+α,1(x) := Ψ(DR,β+α,1)(x)−DR,β+α,1(x), α ∈ F
d, α 6= β ′,(32)

∆
β

R,α,k(x) := Ψ(DR,β,0)(x) Ψ(DR,α,1)(x)−DR,β,0(x)DR,α,1(x), α ∈ F
d \ {0}.(33)
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Some polynomials in the list can be 0 and there can be redundancy. With the notation
used in (30), the number of these polynomials is

≤
∑

α

r(Γα) +
∑

α6=β′

r(Γα) +
∑

α 6=0

r(Γα) = r + r(1− µr) + r(1− λr) ≤ 3 r(Γ).

By Lemma 2.1 each of them can be expressed as a sum of shifted basic polynomials, with
a number of terms bounded by a constant C. They are then shifted by the corresponding
Γα associated to the α-homogeneous component of Γ.

The results of these preliminaries are summarized in the following lemma:

Lemma 2.3. Let Γ be a special R-polynomial of length r.

Let Aβ(Γ),Πβ(Γ), Bβ(Γ), Π̃β(Γ), Ãβ(Γ), B̃β(Γ) be defined respectively by (21), (23), (22),

(26), (27), (28). Then we have

Ψ(DR,β,1) Γ = Π̃β(Γ)(34)

= Ãβ(Γ) + B̃β(Γ) + Π̃β(Γ)−Πβ(Γ) + Aβ(Γ)− Ãβ(Γ) +Bβ(Γ)− B̃β(Γ).(35)

Ãβ(Γ) and B̃β(Γ) are special ζ(R)-polynomials with a number of terms strictly less than
the number of terms of Γ.

The differences Π̃β(Γ)− Πβ(Γ), Aβ(Γ)− Ãβ(Γ), Bβ(Γ)− B̃β(Γ) are sums of at most Cr

gbs ζ(R)-polynomials.

The polynomial Π̃β(Γ) differs from Ãβ(Γ)+B̃β(Γ) by at most 3C r(Γ) gbs ζ(R)-polynomials

given by the decomposition of (31), (32), (33).

Now we prove the main result of this section, which will be used to show that the non-
mixing configurations are sparse for the actions that we consider.

Theorem 2.4. Let r be an integer ≥ 2. For every family R = (Rj, j = 1, ..., d) of d ≥ 1
polynomials, there is a finite constant t(r,R) and a finite family E of polynomials in one
variable containing R such that every special R-polynomial of length ≤ r is a sum of at
most t(r,R) gbs E-polynomials.

Moreover, E = ζr1(R) for some r1 ≤ r and there are two constants K > 0, θ ≥ 2, such
that t(r,R) ≤ Krθ.

Proof. Let H(r0) be the property that, for every non empty family D of polynomials,
every special D-polynomial Γ of length r ≤ r0 is a sum of at most Cr02

r0 gbs ζr(D)-
polynomials, where C is the constant introduced before Lemma 2.3.

Let R = (Rj , j = 1, ..., d) be a family of d polynomials. Let Γ be an R-polynomial Γ of
length r(Γ) = r0 + 1. By applying the map Γ → Γ̌ to Γ which preserves the number of
terms, we can assume that the Ri’s are prime and distinct.

The propertyH(2) is satisfied (the null polynomial is the only reduced special R-polynomial
of length ≤ 2), if the Ri’s are pairwise relatively prime. Let us show that H(r0) implies
H(r0 + 1).

We use the fact that, if Γ is a pth power of a special R-polynomial which is a sum of
at most t(r, ζr(R)) gbs S-polynomials, then Γ has the same property (with the same
t(r, ζr(R))) since the pth power of a sum is the sum of the pth power of its terms.
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Therefore, we can write Γ = xs Λpt , for some s ∈ Z
d and some special R-polynomial Λ

(with the same number of terms: r(Λ) = r(Γ)) containing at least two non zero homo-
geneous components, Λβ

0
,Λβ

1
. Multiplying by a monomial, one can assume β

0
= 0. Let

β = u(β
1
).

We apply Lemma 2.3 to Λ. With the previous notations, Π̃β(Λ) differs from Ãβ(Λ)+B̃β(Λ)

by at most 3Cr(Γ) gbs ζ(R)-polynomials.

Ãβ(Λ) and B̃β(Λ) are special ζ(R)-polynomials with a number of terms ≤ r0. Therefore,

by the induction hypothesis (applied with D = ζ(R)), they are sum of at most r0 2
r0

gbs ζr0(ζ(R))-polynomials.

For r0 ≥ 3, since ζr0(ζ(R)) = ζr0+1(R), Π̃ is a sum of at most 2Cr0 2
r0 + 3C(r0 + 1) ≤

C(r0 + 1) 2r0+1 gbs ζr0+1(R)-polynomials.

Using (34), after multiplication of Π̃β(Λ) by (
∏

ρ∈Υ(Dζr0 (R),β,1)
x
θρ(Dζr0 (R),β,1)
ρ )−1, the inverse

of Ψ(Dr,β,1), to obtain Λ, this shows that H(r0 + 1) is true (a product of distinct prime
polynomials is not a p-th power, hence its derivative is not zero, cf. Lemma 2.2).

The previous computation suffices to give an effective bound for the number of generalized
basic special E-polynomials in the decomposition of a polynomial Γ of a given length r(Γ).
The following more precise estimation gives a polynomial bound.

First we take the β
0
-homogeneous component of Λ which contains the biggest number

of terms. Let rλr be this number. Altogether, the other components contain r(1 − λr)
terms. Then we take the β

1
-homogeneous component which contains the second biggest

number of terms (denoted by rµr).

Let c := p−d. As there are at most pd nonempty homogeneous components, we have
rλr ≤ r − 1 (hence 1− λr ≥ r−1) and λr ≥ c, µr ≥ c(1− λr).

If θ > 2 is such that (1− c)θ−1 ≤ c
2
, then (1− λr)

θ + (1− µr)
θ + c

2
r1−θ ≤ 1, since

(1− λr)
θ + (1− µr)

θ + c
2
r1−θ ≤ c

2
(1− λr) + (1− µr)

θ + c
2
r1−θ

≤ c
2
(1− λr) + (1− µr) +

c
2
r1−θ ≤ 1 + (1− λr)(−

c
2
) + c

2
r1−θ ≤ 1− [ c

2
r−1 − c

2
r1−θ] ≤ 1.

For this choice of θ and K = 6/c, we have K(r(1 − λr))
θ + K(r(1 − µr))

θ + 3r ≤ Krθ.
Therefore this shows, by induction, that the number of needed gbs ζr(R)-polynomials for
the decomposition of Γ is ≤ Krθ. �

2.2. Counting special R-polynomials.

We need an auxiliary lemma.

Lemma 2.5. Let h be an integer, F a finite set of non zero integers and p an integer > 1.
For h ≥ 1, let Wh ⊂ Z be the set of integers which can be written as a sum L =

∑h
i=1 vi p

ti,
ti ∈ N, vi ∈ F . There is a constant K depending on F, h such that, for all N ≥ 1, the
cardinal of the set Dh ∩ [−N,N ] is less than K (logN)h.

Proof. Taking an element L 6= 0 in Wh ∩ [−N,N ], we can write L =
∑h1

i=1 vi p
ti , ti ∈ Z

+,
where we can assume that the set {tj , j = 1, ..., h1} is written in increasing order and

h1 ≤ h is such that
∑h1

i=k vi p
ti 6= 0, for all 1 ≤ k ≤ h1.

We have |L| = pt1 |v1 +
∑h1

j=2 vj p
tj−t1 |; hence pt1 ≤ |L| ≤ N ; therefore: t1 ≤ logN/ log p.
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Since
∑h1

j=2 vj p
tj−t1 6= 0, we have 1 ≤ |

∑h1

j=2 vj p
tj−t1 | ≤ |L| +M , where M denotes the

maximum of |u|, for u ∈ F ; hence: pt2−t1 |v2 +
∑h1

j=3 vj p
tj−t2 | ≤ |L|+M , which implies

t2 = t2 − t1 + t1 ≤ log(|L|+M)/ log p+ log |L|/ log p ≤ log(N +M)/ log p+ logN/ log p.

By iteration, we obtain h1 ≤ h and a constant Ch depending only on h such that

L =

h1∑

i=1

vi p
ti and t1 ≤ t2 ≤ ... ≤ th1 ≤ Ch logN/ log p.

Therefore L can take at most |2F |h(Ch logN)h = K (logN)h different values. �

In the statement of the next theorem, R is a family of polynomials (R1, ..., Rd) and t(r)
is the constant t(r) = t(r,R) introduced in Theorem 2.4,

Theorem 2.6. The number θ(D, r) of reduced special R-polynomials Γ with r terms,
supported in a domain D, satisfies for a constant γ(r)

θ(D, r) = O(|D|r/3 (log diamD)γ(r)).(36)

Proof. Let Γ(x) =
∑

a∈S(Γ) c(a) x
a be a reduced special R-polynomials with r terms such

that S(Γ) ⊂ D.

By Theorem 2.4, there are a finite family of polynomials E and t = t(r,R) such that
Γ =

∑t
j=1∆j , where each ∆j is a gbs E-polynomials,

∆j(x) =
∑

b∈S(∆j)

d(j, b) xb.

In the above formula, we have b ∈ Z
d′ for some d

′

≥ d. If d
′

> d we embed Z
d into Z

d′

by completing by 0 the missing coordinated. We can view the elements a of the support
S(Γ) of Γ as points in Z

d′ , with the last d
′

−d coordinates equal to 0. The decomposition
of Γ reads more explicitly:

Γ(x) =
∑

a∈S(Γ)

c(a) xa =
∑

j

(
∑

b∈S(∆j)

d(j, b) xb) =
∑

g∈Zd′

[
∑

j

∑

b∈S(∆j): b=g

d(j, b)] xg.

Putting u(g) =
∑

j

∑
b∈S(∆j) : b=g d(j, b), for g ∈ Z

d′ , the formula reads in reduced form:

Γ(x) =
∑

g∈Zd′ :u(g)6=0

u(g) xg.

With the above embedding of Zd into Z
d′ , we get

u(g) = 0 for g 6∈ S(Γ), u(g) = c(g) for g ∈ S(Γ).

Let us denote by Φ the family of the ∆j ’s and write d(∆, b) instead of d(j, b) for the
coefficients of ∆ = ∆j ∈ Φ.

Using an idea of [1], we put a graph structure on Φ by saying that there is an arrow
between ∆ and ∆′ if S(∆) ∩ S(∆′) 6= ∅. For this graph structure, Φ decomposes in
connected components denoted by Φk.

Let Sk :=
⋃

∆∈Φk
S(∆). Since S(∆) and S(∆′) are disjoint for ∆,∆′ in different compo-

nents, the sets Sk are disjoint.
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It follows that the above definition of u can be written

u(g) =
∑

∆∈Φk

∑

b∈S(∆) : b=g

d(∆, b), for g ∈ Sk.

We have Γ(x) =
∑

k Γk(x) with

Γk(x) =
∑

g∈Sk

u(g) xg =
∑

g∈Sk

[
∑

∆∈Φk

∑

b∈S(∆) : b=g

d(∆, b)] xg

=
∑

∆∈Φk

[
∑

b∈S(∆)

d(∆, b)] xb] =
∑

∆∈Φk

∆(x).

Therefore the supports S(Γk) are pairwise disjoint and each Γk is a special E-polynomial
(actually, once reduced, a special R-polynomial).

We say that a reduced special R-polynomial Γ =
∑

a∈S(Γ) c(a) x
a is R-minimal if, for

every set S1 strictly contained in S(Γ), the polynomial
∑

a∈S1
c(a) xa is not a special

R-polynomial.

Let us assume first that the polynomial Γ is R-minimal. The disjointness of the supports
S(Γk) implies that Φ is a connected graph.

The support of the gbs polynomials are sites of the form b+pkvt, t ∈ J , where J is a finite
set of indices corresponding to the collection of all basic special polynomials. Suppose
that ∆,∆′ are two gbs polynomials with a common site in their support. This site reads
b+ pkvt = b′ + pk

′

vt′ , since it belongs to ∆ and ∆′. Therefore, b′ − b = pkvt − pk
′

vt′ .

If c1 and c2 belong respectively to ∆ and ∆′, then we have: c1 = b+pk1vt1 , c2 = b′+pk2vt2 ;

hence: c2 − c1 = b′ + pk2vt2 − (b+ pk1vt1) = pkvt − pk
′

vt′ + pk2vt2 − pk1vt1 .

It follows that, if c′ belongs to a connected chain (starting at c) of gbs polynomials ∆j (i.e.,
two consecutive ∆,∆′ in the chain have a common site in their support), the difference
c′ − c has the form:

c′ − c =
∑

i

(pkivti − pk
′
ivt′i).(37)

There are |D| choices for c multiplied by p − 1 (the cardinal of Fp \ {0}). We obtain
all minimal special R-polynomials starting from c by constructing all possible connected
chains of gbs E-polynomials.

Since, in view of (37), S(Γ) ⊂
∏d

i=1(W2t(r) + ci), using Lemma 2.5 for each coordi-
nate, we obtain that the number of choices is at most, for a given starting point c,
[K (log diam (D))t1(r)]d, where t1(r) is a constant.

This implies that the number θ(D, r) of minimal special R-polynomials Γ with s terms,
s ≤ r, supported in a domain D, satisfies the bound

θ(D, r) = O(|D| (log diamD)d t1(r)).(38)

If Γ is not R-minimal, then there is S1 strictly contained in S(Γ) such that
∑

a∈S1
c(a) xa

is a special R-polynomial. Since
∑

a∈S(Γ)\S1
c(a) xa is also a special R-polynomial, by

iteration of this decomposition, any special D-polynomial decomposes as a sum of minimal
ones with disjoint supports. As the length of a minimal polynomial is at least 3, (36)
follows from (38). �
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3. Application to limit theorems

3.1. Preliminaries: variance, cumulants.

We need some general facts about variance, summation sequences, cumulants. (See [3]
for more details.) Recall that, if S = (T ℓ, ℓ ∈ Z

d) is an abelian group isomorphic to Z
d of

unitary operators on a Hilbert space H, for every f ∈ H there is a positive finite measure
νf on T

d, the spectral measure of f , with Fourier coefficients ν̂f(ℓ) = 〈T ℓf, f〉, ℓ ∈ Z
d.

When νf is absolutely continuous, its density is denoted by ϕf .

We assume that S has the Lebesgue spectrum property for its action on H, i.e., there
exists a closed subspace K0 such that {T ℓK0, ℓ ∈ Z

d} is a family of pairwise orthogonal
subspaces spanning a dense subspace in H. If (ψj)j∈J is an orthonormal basis of K0,
{T ℓψj , j ∈ J , ℓ ∈ Z

d} is an orthonormal basis of H. For every f ∈ H, νf has a density
ϕf in L1(dt).

Summation sequence

Definitions: We call summation sequence any sequence (wn)n≥1 of functions from Z
d to

R
+ with 0 <

∑
ℓ∈Zd wn(ℓ) < +∞, ∀n ≥ 1. Given S = {T ℓ, ℓ ∈ Z

d} and f ∈ H, the

associated sums are
∑

ℓ∈Zd wn(ℓ) T
ℓf .

We say that (wn) is ζ-regular, if ζ is a probability measure on T
d and the sequence of

nonnegative kernel w̃n defined by

w̃n(t) =
|
∑

ℓ∈Zd wn(ℓ) e
2πi〈ℓ,t〉|2

∑
ℓ∈Zd |wn(ℓ)|2

, t ∈ T
d,(39)

weakly converges to ζ when n tends to infinity. This is equivalent to

ζ̂(p) = lim
n→∞

∫
w̃n(t) e

−2πi〈p,t〉 dt, ∀p ∈ Z
d.

When the spectral density is continuous, ϕf → (ζ(ϕf))
1
2 satisfies the triangular inequality.

Variance for summation sequences

If (wn) is a ζ-regular summation sequence and f in H with a continuous spectral density
ϕf . By the spectral theorem, we have for θ = (θ1, ..., θd) ∈ T

d:

(
∑

ℓ

w2
n(ℓ))

−1‖
∑

ℓ∈Zd

wn(ℓ) e
2πi〈ℓ,θ〉 T ℓf‖22 = (w̃n ∗ ϕf)(θ) −→

n→∞
(ζ ∗ ϕf)(θ).(40)

For example, if (Dn) is a Følner sequence of sets in Z
d, then wn(ℓ) = 1Dn

(ℓ), ζ = δ0 and
the usual asymptotic variance σ2(f) is ϕf(0).

Moments, cumulants and the CLT

Let us recall now some general results on mixing of order r, moments and cumulants (see
[10]). In what follows, we assume the random variables to be uniformly bounded.

Let (X1, ..., Xr) be a random vector. For any subset I = {i1, ..., ip} ⊂ Jr := {1, ..., r}, we
put m(I) = m(i1, ..., ip) := E(Xi1 · · ·Xip). Cumulants are computed from moments by

C(X1, ..., Xr) =
∑

π∈P

(−1)p(π)−1(p(π)− 1)! m(I1) · · ·m(Ip(π)),(41)
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where π = {I1, I2, ..., Ip(π)} runs through the set P of partitions of Jr = {1, ..., r} into
nonempty subsets and p(π) is the number of elements of π.

Putting s(I) := C(Xi1 , ..., Xip) for I = {i1, ..., ip}, we have

E(X1 · · ·Xr) =
∑

π∈P

s(I1) · · · s(Ip(π)).(42)

For a single random variable Y , we define C(r)(Y ) := C(Y, ..., Y ), where (Y, ..., Y ) is the
vector with r components equal to Y . If Y is centered, C(2)(Y ) coincides with ‖Y ‖22.

Let be given a random field of real random variables (Xk)k∈Zd and a summable weight

w from Z
d to R. For Y :=

∑
ℓ∈Zd w(ℓ)Xℓ, using the multilinearity of the cumulants, we

obtain:

C(r)(Y ) =
∑

(ℓ1,...,ℓr)∈(Z
d)r

w(ℓ1) · · ·w(ℓr)C(Xℓ1
, · · · , Xℓr

) .(43)

Lemma 3.1. The number γ(p, r) of partitions of Jr into p ≤ r nonempty subsets satisfies
r∑

p=1

(−1)p−1 (p− 1)! γ(p, r) = 0.(44)

Proof. (44) follows by induction from the following formula: γ(p, r) = γ(p − 1, r − 1) +
p γ(p, r − 1), p = 1, ..., r, r ≥ 1. �

Theorem 3.2. (cf. [11], Theorem 7) Let (Xk)k∈Zd be a random process and (wn)n≥1 a

summation sequence on Z
d. Let Y (n) =

∑
ℓ wn(ℓ)Xℓ, n ≥ 1. If ‖Y (n)‖2 6= 0 and

∑

(ℓ1,...,ℓr)∈(Z
d)r

wn(ℓ1)...wn(ℓr)C(Xℓ1
, ..., Xℓr

) = o(‖Y (n)‖r2), ∀r ≥ 3,(45)

then Y (n)

‖Y (n)‖2
tends in distribution to N (0, 1) when n tends to ∞.

Proof. Let βn := ‖Y (n)‖2 = ‖
∑

ℓ wn(ℓ)Xℓ‖2 and Z(n) = β−1
n Y (n). In view of (43), we

have C(r)(Z(n)) = β−r
n

∑
(ℓ1,...,ℓr)∈(Z

d)r w(ℓ1)...w(ℓr)C(Xℓ1
, ..., Xℓr

), hence by (45):

lim
n
C(2)(Z(n)) = 1, lim

n
C(r)(Z(n)) = 0, ∀r ≥ 3.(46)

Using the formula linking moments and cumulants, the theorem follows from the result
of [6] applied to (Z(n))n≥1. �

Algebraic framework

Coming back to the framework of a compact abelian group G, we consider a totally
ergodic N

d-action ℓ→ T ℓ by algebraic commuting endomorphisms on G, or its invertible
Z
d-extension, with the Lebesgue spectrum property.

Below a function f on G will be called a "regular function" if f belongs to the space
AC0(G), i.e., has an absolutely convergent Fourier series. Recall that, if f is regular,
its spectral density ϕf is continuous on T

d and for every ε > 0 there is a trigonometric
polynomial P defined on G such that ‖ϕf−P‖∞ ≤ ε.

The proof of the CLT given in [11] for a single ergodic endomorphism of a compact abelian
group G is based on the computation of the moments of the ergodic sums of trigonometric
polynomials and uses mixing of all orders. As mentioned in Section 1.2, for Zd-actions by
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automorphisms on G, mixing of all orders is satisfied when G is connected, but may fail
for non connected groups like shift-invariant subgroups of FZd

p . Nevertheless, when the
non-mixing configurations are sparse enough, the moment method can be applied.

Non-mixing r-tuples

Let f =
∑

j∈J cjχj be a trigonometric polynomial and Φ = (χj , j ∈ J). We defined the

set of “non-mixing" r-tuples for Φ = (χj , j ∈ J) by

N (Φ, r) := {(a1, ..., ar) : ∃χj1 , ...χjr ∈ Φ : C(T a1χj1, ..., T
arχjr) 6= 0}.(47)

In view of (54) (appendix) and (41), if (a1, ..., ar) ∈ N (Φ, r), we have T a1χj1...T
arχjr = χ0,

for some (χj1 , ..., χjr) ∈ Φ. We will use the results of the subsection 2.2 to show that the
sets N (Φ, r) are small in some sense.

3.2. Counting non zero cumulants.

Now we consider the action by endomorphisms discussed in the first section. For d ≥ 2,
R1, R2, ..., Rd are d polynomials of degree ≥ 1 in x over Fp, fixed once for all. Recall that
for aj ∈ Z

d, the action of T aj on a character χQj
associated to a polynomial Qj is the

multiplication of Qj by Raj =
∏d

i=1R
aj,i
i .

For Q̃ = (Q1, ..., Qr), the corresponding cumulant is CQ̃(A) = C(T a1χQ1 , ..., T
arχQr

). Let

χ1, ..., χr be characters on F
Z

p . They correspond to a set of polynomials in one variable

Q̃ = {Q1, ..., Qr}. For an r-tuple A = (a1, ..., ar) ∈ (Zd)r the relation T a1χ1...T
arχr = χ0

is equivalent to the relation

r∑

j=1

Qj

d∏

i=1

R
aj,i
i = 0.(48)

In the present framework, the formula for cumulants is used for the random variables
Xj = T ajχj , where the characters χj = χQj

are associated by (1) to non zero given fixed
polynomials (over Fp) Qj, i = 1, ..., r.

For a domain D ⊂ Z
d, Dr denotes the set of r-tuples A of elements of D.

Let Q :=
∑

iQiR
ai. The moments read as the integral (actually a finite discrete sum)

∫
e

2π
p
i
∑

k∈S(Q) c(Q,k) ζk dζ =
∏

k∈S(Q)

1

p

p−1∑

j=0

e
2π
p
i c(Q,k)j.

They are equal to 1 if
∑

iQiR
ai = 0 and to 0 else (mod p).

Proposition 3.3. For each r ≥ 3, there are constants γ,K (dependent on Q̃) such that

#{A ∈ Dr : CQ̃(A) 6= 0} ≤ K |D|
r
2
− 1

2 (log diamD)γ.(49)

Proof. If C(T a1χ1, ..., T
arχr) 6= 0, by (41) there exists a partition π = {I1, ..., Ip} of

J = {1, ..., r} such that
∑

j∈Ik
Qj R

aj = 0, k = 1, ..., p. This implies
∑

j∈J Qj R
aj = 0.

The polynomial Λ(x, x) =
∑r

j=1Qj(x)
∏d

i=1 x
aj,i
i satisfies (48) when Ri is substituted to

xi.

Let Υ(Q̃) be the set of prime factors of the polynomials Qj in Q̃. In Υ(Q̃) it may exist
prime factors belonging to R and possibly new prime factors denoted by Ri, i = d+1, ..., δ.
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We enlarge the set R to R̃ = R
⋃

Υ(Q̃) by adding to R the prime factors of the Qj ’s,

i.e., we consider the set of prime polynomials R̃ = {R1, ..., Rd, Rd+1, ..., Rd+δ}.

The factorization of Qj in prime monic polynomials (with d(Qj) ∈ Fp) is

Qj(x) = d(Qj)
∏

ρ∈Υ(Q̃)

ρgj,ρ = d(Qj)
d∏

i=1

R
gj,i
i

d+δ∏

i=d+1

R
gj,i
i .

Some of the gj,i may be zero. Equation (48) reads

r∑

j=1

d(Qj)

d∏

i=1

R
gj,i
i

d+δ∏

i=d+1

R
gj,i
i

d∏

i=1

R
aj,i
i = 0.

Putting aj,i = 0 for i = d + 1, ..., d + δ, the new r-tuple B = (b1, ..., br) in (Zd′)r is
given by bj,i = aj,i + gj,i, i = 1, ..., d + δ. We get a polynomial with d′ ≥ d variables,∑r

j=1 c(bj)
∏d+δ

i x
bj,i
i which is a (not necessarily reduced) special R̃-polynomial. We have

∑

j∈J

Qj R
aj =

∑

b

c(b) R̃
b
, with c(b) =

∑

j:aj+g
j
=b

d(Qj).

The r-tuple A can be viewed as a collection of r vectors in Z
d which is divided into the

two following subsets: A0 := {aj : c(aj + gj) = 0}, A1 := {aj : c(aj + gj) 6= 0}. The terms

corresponding to aj ∈ A0 disappear. The sum Γ(x) =
∑

b: c(b)6=0 c(b) x
b is reduced.

Once the sets A0, A1 are chosen, A is determined up to a permutation which introduces
a bounded factor in the counting of the configurations A0.

In what follows, K will a generic constant which may change from an inequality to another.
D̃ is the domain obtained from D when the a’s are replaced by the b’s. Its cardinal and
its diameter are less than a constant times the cardinal and the diameter of D.

Let us say that aj is equivalent to aj′ if aj+gj′ = aj′+gj′. All elements in the same equiv-

alence class are at bounded distance from each other (their mutual distance is bounded
by maxj,j′ ‖gj − gj′‖. Once an element is chosen in a class, there is an uniformly bounded
number of choices for the other elements. The classes of aj’s such that c(aj+gj) = 0 have

at least two elements.

Let t ∈ [0, r] be the number of elements in A0. The number of choices for the elements
of A belonging to A0 is at most K |D|t/2. The polynomial Γ is reduced and has less than
r − t terms. By Theorem 2.6 the number of choices of such polynomials is less than
K |D̃|(r−t)/3 (log diam D̃)γ(r).

Therefore the total number of choices for A is at most K |D̃|t/2+(r−t)/3 (log diam D̃)γ(r) =
K |D̃|r/3+t/6 (log diam D̃)γ(r).

If A1 is not empty, then we have r − t ≥ 3, since a reduced special R-polynomial has at
least 3 terms, and the above upper bound is less than K |D̃|r/2−1/2 (log diam D̃)γ(r).

If A1 is empty, then t = r. If each class is composed only of pairs of 2 elements, then
r = 2r′ is even and the computation of the cumulant corresponds exactly (for r′ instead
of r) to the case where all moments are equal to 1. By (44) the cumulant is 0. It shows
that this case does not appear in the computation for (49). Therefore there is a class
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containing at least 3 elements and we have a bound by K |D̃|(r−3)/2+1 (log diam D̃)θ(r)) ≤
K |D̃|r/2−1/2 (log diam D̃)γ(r)). which is less than K |D|r/2−1/2 (log diamD)γ(r)), for a new
constant K. �

Example: For r = 4, the cumulants are given by
∫
T a1χ1 T

a2χ2 T
a3χ3 T

a4χ4 − [
∫
T a1χ1 T

a2χ2

∫
T a3χ3 T

a4χ4

+
∫
T a1χ1 T

a3χ3

∫
T a2χ2 T

a4χ4 +
∫
T a1χ1 T

a4χ4

∫
T a2χ2 T

a3χ3].

The characters are given by polynomials Qi. The integrals and their products take the
value 0 or 1. Each time an integral is 1, we have relations of the form

∑
i∈I QiR

ai = 0.
There are 3 cases:

a) Q1R
a1 +Q2R

a2 +Q3R
a3 +Q4R

a4 = 0 (and no vanishing subsums),
b) Q1R

a1 +Q2R
a2 = 0 and Q3R

a3 +Q4R
a4 = 0, or the analogous relations obtained by

permutation,
c) [Q1R

a1+Q2R
a2 = 0, Q3R

a3+Q4R
a4 = 0], [Q1R

a1+Q3R
a3 = 0 and Q2R

a2+Q4R
a4 =

0], or the analogous relations obtained by permutation.

In case c) we see that a1 and a2 are close together as well as a3 and a4 and a2 and a4. It
follows that the four elements a1, a2, a3, a4 are close together and there is only one degree
of freedom for the choice of A if A belongs to this type of 4-tuple.

If we are in case b), but not in case c), then we have the relations Q1R
a1 + Q2R

a2 = 0
and Q3R

a3 +Q4R
a4 = 0 (hence Q1R

a1 +Q2R
a2 +Q3R

a3 +Q4R
a4 = 0). The cumulant

reduces to
∫
T a1χ1 T

a2χ2 T
a3χ3 T

a4χ4 −
∫
T a1χ1 T

a2χ2

∫
T a3χ3 T

a4χ4 = 1− 1 = 0.

If we are in case a), but not b) or c), the cumulant is
∫
T a1χ1 T

a2χ2 T
a3χ3 T

a4χ4 = 1.
The relation Q1R

a1 +Q2R
a2 +Q3R

a3 +Q4R
a4 = 0 may be reducible, but we find at least

3 terms in the irreducible relations of the decomposition. The number of 4-tuples A =
(a1, a2, a3, a4) belonging to types corresponding to case a) is less than O(|D| (log diamD)θ)
for some constant θ.

3.3. Examples of limit theorems for some shift-invariant groups.

If (wn)n≥1 is a summation sequence on Z
d, for f ∈ L2(G), we put σn(f) := ‖

∑
ℓ wn(ℓ) T

ℓf‖2
and assume σ2

n(f) 6= 0, for n big enough. We suppose that (wn) is ζ-regular.

We can suppose ζ(ϕf) > 0, since otherwise the limiting distribution is δ0. By ζ-regularity
we have σ2

n(f) ∼ (
∑

ℓ w
2
n(ℓ)) ζ(ϕf) with ζ(ϕf) > 0.

Theorem 3.4. Let (wn)n≥1 be a summation sequence on Z
d which is ζ-regular (cf. def-

inition in Subsection 3.1). Let f be a regular function with spectral density ϕf such that
ζ(ϕf) > 0. The condition

∑

(ℓ1,...,ℓr)∈N (Φ,r)

r∏

j=1

wn(ℓj) = o
(
(
∑

ℓ∈Zd

w2
n(ℓ))

r
2

)
, ∀ finite family Φ of characters , ∀r ≥ 3,(50)

implies

(
∑

ℓ∈Zd

w2
n(ℓ))

− 1
2

∑

ℓ∈Zd

wn(ℓ)f(T
ℓ.)

distr
−→
n→∞

N (0, ζ(ϕf)).(51)
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Proof. a) First let us take for f a trigonometric polynomial. Let us check (45) of Theorem
3.2, i.e., in view of (43),

|
∑

(ℓ1,...,ℓr)∈ (Zd)r

C(T ℓ1f, ..., T ℓrf)wn(ℓ1)...wn(ℓr)| = o
(
(
∑

ℓ∈Zd

w2
n(ℓ))

r
2

)
, ∀r ≥ 3.(52)

If the cumulant C(T ℓ1f, ..., T ℓrf) is 6= 0, then (ℓ1, ..., ℓr) is a non-mixing r-tuple for the
set Φ of characters which appear in the expansion of f ; hence (cf. notation (47)):

∑

(ℓ1,...,ℓr)∈(Z
d)r

C(T ℓ1f, ..., T ℓrf)

r∏

j=1

wn(ℓj) =
∑

(ℓ1,...,ℓr)∈N (Φ,r)

C(T ℓ1f, ..., T ℓrf)

r∏

j=1

wn(ℓj).

Since the cumulants are bounded, the sums in the previous formula are bounded by
C
∑

(ℓ1,...,ℓr)∈N (Φ,r)

∏r
j=1wn(ℓj). Therefore, in view of (50), the condition of Theorem 3.2

is satisfied. This implies the CLT when f is a trigonometric polynomial.

b) Now, for a regular function by the ζ-regularity of (wn), we have:

(
∑

ℓ∈Zd

w2
n(ℓ))

−1 ‖
∑

ℓ∈Zd

wn(ℓ) T
ℓf‖22 =

∫

Td

w̃n ϕf dt →
n→∞

ζ(ϕf).

If (εk) a sequence of positive numbers tending to 0, there is a sequence of trigonomet-
ric polynomials (fk) such that: ‖ϕf−fk‖∞ ≤ εk. Let us consider the processes defined
respectively by

U (k)
n := (

∑

ℓ∈Zd

w2
n(ℓ))

− 1
2

∑

ℓ∈Zd

wn(ℓ) fk(T
ℓ.), Un := (

∑

ℓ∈Zd

w2
n(ℓ))

− 1
2

∑

ℓ∈Zd

wn(ℓ) f(T
ℓ.).

We have ζ(ϕf−fk) → 0. It follows that ζ(ϕfk) 6= 0 for k big enough.

Since σ2
n(fk) ∼ (

∑
ℓ w

2
n(ℓ)) ζ(ϕfk) with ζ(ϕfk) > 0, it follows from the result in a) for the

trigonometric polynomials fk: U
(k)
n

distr
−→
n→∞

N (0, ζ(ϕfk)) for every fixed k. Moreover, since

lim
n

∫
|U (k)

n − Un|
2
2 dµ = lim

n

∫

Td

w̃n ϕf−fk dt = ζ(ϕf−fk) ≤ εk,

we have lim supn µ[|Un(k) − Un| > ε] ≤ ε−2 lim supn

∫
|Un(k) − Un|

2
2 dµ →

k→∞
0 for every

ε > 0.

Therefore the condition limk lim supn µ[|Un(k)−Un| > ε] = 0, ∀ε > 0, is satisfied and the

conclusion Un
distr
−→
n→∞

N (0, ζ(ϕf)) follows from Theorem 3.2 in [2]. �

Application to shift-invariant subgroups

The limit theorems shown in [3] hold in the present framework of shift-invariant subgroups.
We restrict the presentation to two examples.

Let us consider a family (Rj , j ∈ J) of polynomials of degree ≥ 1 and γj = γRj
the

corresponding endomorphisms of K = F
Z

p . As in Section 1, taking the natural invertible

extension, we extend them to automorphisms of the shift-invariant subgroup GJ of G(d+1)

defined by the ideal J = Ker (hR). The (Rj)’s are chosen to be algebraically independent.

Therefore we have a totally ergodic Z
d-action (T ℓ, ℓ ∈ Z

d) on GJ , with T ℓ = T ℓ1
1 ...T

ℓd
d

and Tj the composition by the shift σj+1.
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Example 1: Følner sequence in N
d

Theorem 3.5. Let (Dn)n≥1 be a Følner sequence of sets in N
d. If f is a regular func-

tion, we have σ2(f) = limn ‖
∑

ℓ∈Dn
T ℓf‖22/|Dn| = ϕf(0). If moreover log diamDn =

O(|Dn|δ), ∀δ > 0, then

|Dn|
− 1

2

∑

ℓ∈Dn

T ℓf(.)
distr
−→
n→∞

N (0, σ2(f)).

Proof. The sequence wn(ℓ) = 1Dn
(ℓ) is ζ-regular, with ζ = δ0. Suppose that ϕf(0) 6= 0.

We have σ2
n(f) ∼ |Dn|ϕf(0) and wn(ℓ) = 0 or 1. Condition (50) reads here

∑

(ℓ1,...,ℓr)∈N (Φ,r)

r∏

j=1

1ℓj∈Dn
= o(|Dn|

r
2 ), for r ≥ 3.

For r ≥ 3, by Proposition 3.3 we have

#{A ∈ Dr
n : CP̃ (A) 6= 0} = O(|Dn|

r
2
− 1

2 (log diamDn)
θ(r)).

By the hypothesis on the diameter, this bound implies (50) and the result follows from
Theorem 3.4. �

Remark: For the case of rectangles, see Theorem 4.3.

Example 2: Random walks and quenched CLT

Using the notations and results of [3], now we apply the previous sections to random walks
of commuting endomorphisms or automorphisms on a shift-invariant subgroup G.

Let us present the result for d = 2. We take two polynomials (R1, R2) with γR1, γR2 the
corresponding endomorphisms ofK = F

Z

p generating a 2-dimensional action with Lebesgue
spectrum. Taking the natural invertible extension, we extend them to automorphisms (the

shifts σ1, σ2) of the shift-invariant subgroup GJ of G
(3)
0 defined by the ideal J generated

in P3 by x2 −R1(x1), x3 −R2(x1).

Let (Xk)k∈Z be a sequence of i.i.d. Z
2-valued random variables generting a reduced ape-

riodic random walk.

Theorem 3.6. Suppose that W has a finite moment of order 2 on Z
2. Let ℓ → T ℓ be a

Z
2-action generated by shifts σ2, σ3 on GJ . Let f be in AC0(GJ ) with spectral density ϕf

such that ϕf(0) 6= 0. Then, there exists a constant C such that, for a.e. ω,

(CnLogn)−
1
2

n−1∑

k=0

TZk(ω)f(.)
distr
−→
n→∞

N (0, 1).

Proof. Theorem 4.16 in [3] gives the δ(0)-regularity for the r.w. summation (wn(ω, ℓ))n≥1 =

(
∑n−1

k=0 1Zk(ω)=ℓ)n≥1.

For a recurrent 2-dimensional r.w., for a.e. ω,
∑

ℓw
2
n(ω, ℓ) ∼ E

∑
ℓw

2
n(., ℓ) ∼ CnLog n.

To concluded, we need the bound:

∑

(ℓ1,...,ℓr)∈N (Φ,r)

r∏

j=1

wn(ℓj) = o((nLog n)r/2).(53)
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For every δ > 0, by the law of iterated logarithm there is a finite constant C(ω) such that

‖ℓ‖ > C(ω)n
1
2
+δ ⇒ wn(ω, ℓ) = 0.

Therefore, the previous sum can be restricted to ℓj in a ball of radius C(ω)n
1
2
+δ. Moreover,

we know that supℓ wn(ℓ) = o(nε), ∀ε > 0 (Proposition 4.1, in [3]). It follows that the lhs
of (53) is less than nrε multiplied by the cardinal of r-tuples in the set N (Φ, r) supported

in the ball B(0, C(ω)n
1
2
+δ), for which a bound is given by Proposition 3.3.

This bound is less than C nrε n2 ( 1
2
+δ) ( r

2
− 1

2
), up to a logarithmic factor. Taking into account

only the powers of n, on the left hand, we find for the power of n: rε + (1 + 2δ) ( r
2
− 1

2
)

which is < r/2, if ε+ δ < 1
2
r−1. �

4. Appendix: endomorphisms of compact abelian groups

We recall here some properties of endomorphisms of compact abelian groups. G denotes

a compact abelian group, Ĝ the dual group of characters on G, χ0 the trivial character.

The following fact has been used in the first section: let H be a closed subgroup of G,

L a subgroup of Ĝ. If H⊥ = {χ ∈ Ĝ : χ(h) = 1, ∀h ∈ H} denotes the subgroup of Ĝ
annulator of H and if L⊥ = {h ∈ G : χ(h) = 1, ∀χ ∈ L} denotes the closed subgroup of
G annulator of L, then (H⊥)⊥ = H, (L⊥)⊥ = L.

Let d ≥ 1 be an integer and (T1, ..., Td) commuting endomorphisms of G. If ℓ = (ℓ1, ..., ℓd)

is in N
d, we write T ℓ for T ℓ1

1 ...T
ℓd
d . If f is function on G, T ℓf stands for f ◦ T ℓ.

If necessary, we lift the action to an invertible Z
d-action by commuting automorphisms

of an extension of G. The Z
d-action is said to be totally ergodic if T ℓ is ergodic for every

ℓ ∈ Z
d\{0}. It is equivalent to: T ℓχ 6= χ for ℓ 6= 0 and any character χ 6= χ0, to the

Lebesgue spectrum property, as well as to 2-mixing.

Let (f1, ..., fr) be a finite set of trigonometric polynomials and Φ = (χj , j ∈ J) be the
finite set of characters 6= χ0 on G such that fi =

∑
j∈J ci,j(fi)χj, j = 1, ..., r. For

(a1, ...ar) ∈ (Zd)r, we have
∫
f1(T

a1x)...fr(T
arx) dx =

∑

j1,...,jr∈J

c1,j1...cr,jr1Ta1χj1
...Tarχjr=χ0 .(54)

Exactness

If γ is a surjective algebraic endomorphism of G, its action on Ĝ, still denoted by γ, is
injective. The operator of composition by γ on L1(G) is denoted by Tγ . In what follows
we consider endomorphisms with finite kernel.

The adjoint operator Πγ of Tγ is defined by
∫

G

Tγf g dµ =

∫

G

f Πγg dµ, f ∈ L1, g ∈ L∞.

It is a contraction of L∞(G) and it extends to a contraction of L2(G). It can be expressed
for f =

∑
χ∈Ĝ cf(χ)χ(x) ∈ L2(G) as

Πγf(x) =
1

|Kγ|

∑

y: γy=x

f(y) =
∑

χ∈Ĝ

cf(γχ)χ(x).(55)
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It follows from (55) that

Πγ χ1 = 0 if χ1 6∈ γĜ, Πγ χ1 = χ2 if there is χ2 ∈ Ĝ such that γχ2 = χ1.(56)

By injectivity, χ2 is uniquely defined in the second case.

Recall that an endomorphism γ is exact (as a measure preserving map on (G, µ)), if

lim
n

‖Πn
γf‖2 = 0, ∀f ∈ L2

0(µ).(57)

Exactness of an (algebraic) endomorphism γ is equivalent to:

∀χ 6= χ0, ∃N(χ) such that Πn
γχ = 0, for n ≥ N(χ).(58)

Let R be in Fp[x]. It defines an endomorphisms γR of the group F
Z
+

p . By (55), the transfer
operator Π = ΠγR acts on a function formally defined by its Fourier series as follows:

f =
∑

P∈Fp[x]

c(f, χP )χP → Πf =
∑

P∈Fp[x]

c(f, χPQ)χQ.

Therefore we have: Πnf =
∑

Q c(f, χRnQ)χQ and ‖Πnf‖2 =
∑

Q |c(f, χRnQ)|2.

A character χ = χP associated to a polynomial P ∈ Fp[x
±], belongs to R(x)nFp[x

±] if P
is divisible by R(x)n. Therefore, either R(x) = cxε, with c 6= 0 in Fp and ε = ±1 or γR is
exact, since then, for every a polynomial P , there is N(P ) such that P is not divisible by
R(x)n for n ≥ N(P ).

Complete commutation

Proposition 4.1. Let γ1, γ2 be commuting surjective endomorphisms of G such that
Ker (γ1) is finite. The following conditions are equivalent 2:

Tγ2Πγ1 = Πγ1Tγ2 ,(59)

γ2χ ∈ γ1Ĝ ⇒ χ ∈ γ1Ĝ,(60)

Ker (γ1) ∩ Ker (γ2) = {0}.(61)

Proof. Condition (59) is equivalent to Tγ2Πγ1χ = Πγ1Tγ2χ, for every χ ∈ Ĝ.

Using (55), we have Tγ2Πγ1χ = 0 if χ 6∈ γ1Ĝ, = γ2ζ if χ = γ1ζ , with ζ ∈ Ĝ. Likewise, we

have Πγ1γ2χ = 0 if γ2χ 6∈ γ1Ĝ, = η if γ2χ = γ1η, with η ∈ Ĝ.

Therefore, (59) is equivalent to: γ2χ 6∈ γ1Ĝ⇔ χ 6∈ γ1Ĝ, i.e., to (61), since the implication
⇐ is always satisfied by commutativity.

The annulator of γ1Ĝ is the kernel of γ1. By commutation of γ1 and γ2, the kernel Ker(γ1)
is mapped into itself by γ2.

By (60), Ker (γ1) and γ2Ker (γ1) have the same annulator, hence they coincide. The equal-
ity γ2Ker (γ1) = Ker (γ1) implies that γ2 is surjective on Ker γ1. Since the kernel is finite,
injectivity and surjectivity of the restriction of γ2 to K(γ1) are equivalent. Therefore,
injectivity holds.

Now let u ∈ Ker (γ1) ∩ Ker (γ2). It satisfies u ∈ Ker (γ1) and γ2u = 0. By injectivity of
the restriction of γ2 to Ker(γ1), this implies u = 0.

2 Property (59) is the notion of complete commutation used by M. Gordin [7]. See also [8]. This
property can be viewed as a primality condition between γ1 and γ2.
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Conversely, the condition Ker (γ1) ∩Ker (γ2) = {0} implies injectivity, hence surjectivity
and (60) follows. �

The symmetry in Condition (61) implies: Tγ1Πγ2 = Πγ2Tγ1 . Observe that if γ1 = γ2 the
equivalent conditions are satisfied if and only if γ1 is an automorphisms.

Example 1: (Endomorphisms of T
ρ, ρ > 1) Let A,B be two commuting non singular

matrices d×d with coefficients in Z. A sufficient condition for (61) for the endomorphisms
defined by A and B on T

ρ is that, in the decomposition of Rd into irreducible (over Z)
spaces Vj under A (and B), for each Vj the determinants of the restriction of A and B
are relatively prime. See also [4].

Example 2: (Endomorphisms of FZ
+

p ) If R1, R2 are two relatively prime polynomials in one

variable, the endomorphisms γR1 and γR2 acting on F
Z
+

p endowed with its Haar measure
are completely commuting. This follows from Bezout relation and (60).

Regular functions on F
Z
d

p

A distance ρ on F
Zd

p is defined by ρ(ζ, ζ ′) =
∑

k∈Zd 2−‖k‖|ζk − ζ ′k|. Let Dn be the square

{ℓ : |ℓ1| ≤ n, ..., |ℓd| ≤ n}. The regularity of a function f on G0 or on a subset of G0 (how
it depends on the remote coordinates) is measured by the variations

Vn(f) := sup
ζ,ζ′: ζℓ=ζ′

ℓ
,∀ℓ∈Dn

|f(ζ)− f(ζ ′)|, n ≥ 1.

If D is a finite set in Z
d, the space F(D) of complex valued functions on the finite group

F
D
p can be viewed as the subspace of the space C(FZd

p ) of complex continuous functions

on F
Zd

p depending only on the coordinates ζℓ for ℓ ∈ D.

To a point ζ in F
Zd

p , let us associate the point πD(ζ) whose coordinates coincide with the

coordinates of ζ on D and are equal to 0 outside D. If f is a function on F
Zd

p , we denote
by ΠDf the function in F(D) defined by ΠDf(ζ) = f(πD(ζ)).

If (Dn)n≥0 is an increasing sequence of domains in Z
d such that

⋃
nDn = Z

d, then for

every continuous function f on F
Zd

p we have: limn ‖f − ΠDn
f‖∞ = 0. It follows that

f =
∑∞

n=0 ϕn, where ϕn = ΠDn
f − ΠDn−1f ∈ F(Dn) and the series is converging in the

uniform norm.

An approximation of f depending only on coordinates in {0, ..., n−1} is yield by replacing
f by the function ϕn such that ϕn(ζ) = f(πn(ζ)). Clearly we have ‖f − ϕn‖∞ ≤ Vn(f).

Suppose that ϕn is a function on F
Z+
p depending only on coordinates in {0, ..., n−1}. Then

ϕn is a finite sum of characters supported on subsets of {0, ..., n−1}. If the polynomial R
has degree at least 1, RnQ has degree ≥ n + deg(Q). Polynomials of degree respectively
≥ n + deg(Q) and < n define orthogonal characters. It follows that ϕn is orthogonal to
characters of the form χRnQ.

Lemma 4.2. Let f satisfy Vn(f) = O(λn), for λ < p−1. Then f belongs to AC0(F
Z+
p )

and for every R ∈ P[x] of degree ≥ 1, ‖Πnf‖∞ ≤ C ′λn, for a constant C.

Proof. We have:
∑

R |c(χQ, f)| ≤
∑

n

∑
deg(Q)<n |c(χQ, f)| ≤

∑
n≥1#{Q : degQ <

n} Vn(f) = O(
∑

n≥1 p
nλn) = O(1).
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Writing f = f − ϕn+k + ϕn+k, we obtain c(f, χRnQ) = 〈f, χRnQ〉 = 〈f − ϕn+k, χRnQ〉, if
k < degQ, which implies |c(f, χRnQ)| ≤ ‖f − ϕn+k‖∞ ≤ Vn+k(f).

We deduce that ‖Πnf‖∞ ≤
∑

Q |c(f, χRnQ)| ≤
∑

Q Vn+degQ(f) is bounded by
∑

k≥0

#{Q : degQ = k} Vn+k(f) ≤
∑

k≥0

pk+1 Vn+k(f) ≤ Cλn. �

A limit theorem for sums of rectangles

The case of rectangles is a special case for which the martingale method can be used to
obtain a functional theorem for ergodic sums. From Theorems 1 and 8 in [4] and the
previous lemma, it can be deduced:

Theorem 4.3. Let (Rj , j = 1, ..., d) be pairwise relatively prime polynomial of degree ≥ 1
and let (γj = γRj

) be the associated family of commuting algebraic exact endomorphisms

of FZ
+
, such that Ker (γi) ∩Ker (γj) = {0}, for i 6= j. Let Tj := Tγj , j = 1, ..., d and T ℓ =

T
ℓ1
1 ...T

ℓd
d . If (Dn)n≥1 is an increasing sequence of rectangles and if f satisfies the regularity

condition Vn(f) = O(λn) with λ < p−1, then the sequence (|Dn|
− 1

2

∑
ℓ∈Dn

T ℓ f)n≥1 satisfies
a functional CLT.
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