
HAL Id: hal-01369587
https://hal.science/hal-01369587

Submitted on 21 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Attack Description and Response Architecture
Based on Multi-level Rule Expression Language

Samih Souissi, Layth Sliman, Benoit Charroux

To cite this version:
Samih Souissi, Layth Sliman, Benoit Charroux. An Attack Description and Response Architecture
Based on Multi-level Rule Expression Language. Journal of information assurance and security (JIAS),
2016. �hal-01369587�

https://hal.science/hal-01369587
https://hal.archives-ouvertes.fr

An Attack Description and Response Architecture

Based on Multi-level Rule Expression Language

Samih Souissi

Télécom ParisTech

Paris, France

souissi@telecom-paristech.fr

Layth Sliman, Benoit Charroux

EFREI Engineering College

Villejuif, France

{sliman, charroux@efrei.fr}

Abstract—In the recent years, cyber-attacks have increased

rapidly and have become more diverse and unpredictable.

Having devastating impacts, the selection of appropriate

countermeasures has become a major challenge. We present an

attack description and response system based on multi-level rule

expression language. It provides a framework to evaluate,

identify, classify and defend against sophisticated attacks. Our

approach helps simplify complex rules’ expression and event

handling, thanks to a modular architecture and intuitive rules

along with a powerful expression language. The proposed system

is flexible and takes into consideration several attack properties

in order to simplify attack handling and aggregate defense

mechanisms.

Index Terms— Attack Description, Attack Classification,

Fuzzy Matching, Security Architecture, Intrusion Detection,

Prevention Systems, Detection Rules

I. INTRODUCTION

Cyber-attacks have become more numerous and

sophisticated. Thus, Security has become a major concern and

has gained more interest for enterprises and corporations.

Security aims at protecting firm resources from undesired

access by users and applications. Improving security in

enterprise information system relies on analyzing threats, risks

and vulnerabilities to specify suitable countermeasures. This

imposes several challenges to tackle with security issues. One

of these challenges is attack detection and response.

To deal with the growing complexity of new attacks,

several solutions such as intrusion detection and prevention

systems (IDS/IPS) and web application firewalls (WAF) have

been proposed. These solutions can be based either on

signature or on behavior detection. They play an important

role in countering security threats. Signature-based system

tend to use static rules and to detect only specific attacks or

anomalous behaviors that are already known. In anomaly-

based case, they need learning process and detection is more

complex. In addition, attack detection techniques are far from

being satisfactory [1]. In fact, solutions like IDSs provide

unmanageable amount of “false positives” alarms which are

hard to inspect. Furthermore, many detection systems do not

offer an appropriate compromise between acceptable

performance and detection language simplicity. In order to

have a good detection rate, the more complex the attack the

more complex the defined rule sets. How can a detection

system cope with challenges while providing an easy to use

and to interact platform?

In attacks detection system the choice of the detection

system architecture, implemented rules and parameters, as well

as attack modeling are crucial issues. However, the current

paper focuses only on the architectural aspects such as

modularity, flexibility, extendibility, expressiveness, and

simplicity of use in heterogeneous environments. We have

already dealt with modeling issues in a previous work [2]. The

objective of this work is to bring a level of abstraction that

makes the detection of complex attacks more feasible and the

detection rules and security policy definition simpler. To this

end, hereafter we introduce a novel evaluative classification-

based attack detection and response architecture while

providing a simple, user-oriented detection rules and

integration language. We focus in this paper on the use of our

system in a heterogeneous environment requiring complex

events correlation and aggregation.

 The remainder of this paper is organized as follows.

Section II details the related work concerning existing attack

detection solution. In section III, we present our proposition

describing the architecture, the language, and their interaction.

The feasibility of our solution is illustrated in section IV

through a use case and a solution technical description.

Finally, section V presents the conclusion and perspectives for

future work.

II. RELATED WORK

In this section we consider research works in both detection

and response architectures and Security languages.

A. Detection and Response Solutions

Over the last decade, on an architectural level, many

solutions and mechanisms have been proposed to detect

computer and network attacks. Most of them are intrusion

detection systems that enable to write basic vulnerability

signatures.

Snort [3], one of the most prevalent IDS, uses a signatures’

ruleset. Packets are captured, decoded and diagnosed within a

preprocessor. Then detection occurs according to the

predefined rules to generate events and report by various

means. Snort deployment is easy and it has already existing

rich rules database. However, it may not be adapted to detect

complex attack or to allow mitigation scenarios defining.

Unlike Snort, Bro [4] implements a scripting environment.

This IDS is highly customizable, with a powerful scripting

language. However, it does not provide a well-documented

ruleset. Besides, these solutions are better in detecting attack

on a packet level.

For deeper applicative level detection WAF are often used.

ModSecurity [5] is a signature-based attack detection solution

and has relatively good performances. Though, this system is

strongly related to some types of web servers and it only

analyses POST queries to avoid performance deterioration. In

addition, the rules’ defining is very complex, needing a high

expertise in HTTP protocol and regular expressions. Naxsi [6]

uses a heuristic approach for the detection of XSS and SQL

injection attacks. Its performances are acceptable but require a

learning process to define white-lists. Defined rules are static

and limited to the context of injection attacks using a

cumulative scoring system. These systems do not offer a

compromise between acceptable performance and simplicity.

Simmons et al. [8] present a cyber-attack taxonomy called

AVOIDIT used to identify and characterize attack. Using

attack components, a set of metrics is defined and used by an

attack defense performance taxonomy (ADAPT system [9]).

This system is game model-based. ADAPT allows classifying

and detecting blended attacks. It helps make an intelligent

decision when defending against attacks. However, the

taxonomy lacks defense strategies and it relies on a game

decision system that the user is not necessarily able to modify

or to define. In [10], Wu et al. propose an attack classification

for automatic response systems. Based on this 3 dimensions

response-oriented classification (Source: attack origin,

Technique: method used by the attacker, Result: outcome of

the attack), a correspondence matrix for every attack technique

is defined taking into account different sources and results as

matrix parameters to define automatic defense techniques. This

approach is interesting as the classification helps describe the

attack and allows defense mechanisms aggregation. However,

types of target are not taken into account. Besides, blended and

complex attacks are difficult to classify and thus to counter.

In [7], Dasgupta & Gonzalez describe a decision support

for IDS system that uses multi-level parameter monitoring. The

system observes user, system and process information levels

using them in a Genetic classifier-based IDS. It is an adaptive

learning system that evolves ruleset to cope to the environment.

Rules are generated from a general knowledge base. Genetic

algorithms are used following natural evolution metaphor. It

follows the principle of survival of the fittest to provide

appropriate rules. This system is interesting as it can perform

real-time monitoring, analyzing and providing appropriate

response. However, modifying parameters to fit defined

security policies is not an obvious task. Golling et al. [11]

propose multi-layered detection system. This system uses a

manager that communicates with different types of IDS/IPS:

flow-based, protocol-based, statistical-based and DPI-based

ones. Each IDS is used based on the data stream to monitor.

The manager has an important role within the system as it

helps find indications, rate them, investigate them in more

details, evaluate result and eventually react to malicious traffic.

The architecture is built in such a hierarchical manner that

allows reducing costs by being deployable on commodity

hardware. It is also adapted to high speed networks as the most

appropriate detection system is used, thus attack detection is

faster. However, policy definition in such hierarchical system

is not obvious to set up.

B. Attack and Security Languages

As cyber-attacks have become widespread, a need to

represent them has emerged. Attack languages are needed to

recognize an attack given a manifestation, to react to it and to

analyze relationships between attacks in order to identify

scenarios and provide the appropriate response. In [14], Vigna

et al. classify attack languages into six different classes:

exploit, event, detection, correlation, reporting and response.

Exploit languages describe the steps of an intrusion. Event

languages define the format of the event used. Detection

languages express the manifestation of an attack. Correlation

languages analyse alerts from different sources to find a

relationship between them. Reporting languages describe the

format of alerts raised by security devices. Finally, response

languages express defense mechanisms used to counter the

attack after its detection.

There exist many security tools using diverse languages to

describe attacks and security policies. If we take into

consideration the different security languages used in existing

solutions, three major language categories come up: Misuse

detection, Anomaly detection and Policy Specification

Languages.

Most of existing languages are Misuse detection based.

These languages look for pattern or predefined sequences of

events defining a known attack. The language allows

describing computer penetrations as sequences of actions that

an attacker performs to compromise a computer system.

STATL [14] and IDIOT [15] are examples of such a language.

The first one considers an attack scenario as series of states and

transitions using State Transition Diagrams and the second one

uses Colored Petri-Nets to model attacks. Other languages in

this category that describe attacks from different perspectives

are Lambda [16] and Adele [17]. Lambda intends to describe

all aspects of a cyber-attack. It is at the same time an exploit,

detection and alert correlation language. It takes into account

attack precondition, post-conditions, scenario, detection and

verification. Unlike Lambda, which uses a declarative

approach, Adele provides similar functionalities with an

imperative approach using XML language.

 Another language category is Anomaly detection that

detects deviations from normal behavior i.e. specifies normal

and abnormal behaviors of a process as logical assertions about

an application program’s sequence of system calls and their

argument values. One good candidate is ASL [18] and S

language [19].

The last category contains Policy Specification Languages.

Such language describes the intended behavior of programs

using arbitrary events. Usually the policy is specified in term of

Patten- Action or Condition - Pattern - Action combinations.

One good example is BMSL [20]. Several works have been

done to propose different languages to describe attack from

different points of view (manifestation, impact, correlation,

scenario…). They were able to provide a good background to

define an attack in order to detect and describe it. But, they

have different level and no language covers the different level

from solution integration to attack/misuse detection and

response to policy description.

Researchers have done promising works in the field of

attack detection and automated intrusion response.

Nevertheless, no model that covers attack detection and

response issue from integration to policy description is entirely

practicable and widely accepted. As mentioned above, many

challenges need to be faced to have a complete, expressive,

easy-to-use and manage detection system able to detect

complex attacks.

III. CONTRIBUTION

The challenge is how to guarantee a good detection of

attacks while providing architecture modularity, rule writing

simplicity in order to be able to detect complex attacks and

respond automatically according to a user defined security

policy. To overcome these problems, we present in this section

AIDD (Attack Identification Description and Defense) system.

This solution should satisfy a set of criteria that will be

mentioned at first. Then, we describe our proposal that is

composed of two complementary parts: a functional part and a

communication part. We present the functional part of our

architecture, its different modules and how it works. Then, we

introduce the communication part with our new composed

language to write detection rules and describe attack scenarios.

After that, we explain the interaction sequence between them.

A. AIDD Criteria

In our architecture, a module is an element of the system

that performs a predefined function and is able to communicate

with other modules. These modules are reusable and

interconnected to create a system global function. Our modules

and solution should satisfy different criteria:

• Flexibility and Reusability: Our system is independent

of the runtime environment, topology and security

devices and probes used. It can be reused in different

network architectures and contexts, though a period of

adaptation is needed.

• Expressiveness: the used language guarantees a high

power of expression for describing attacks, writing

commands or detection rules to help non security

experts.

• Availability: Working also as security monitor, in case

of a denial of service attacks, certain links may be no

longer available. Nevertheless, our system is still

available for monitoring and attack visualization

purposes. Our system is proactive as it helps the other

areas of the network be aware of what is happening

globally.

• Extensibility: User can define its own module to

upgrade the system services and extend the

architecture. He can also update detection rules, attack

scenarios and security policy without modifying what

already exists.

• Multi-criteria: Our proposal is adapted to different

devices. Specification of input from each device is

needed. It can handle security tools from different

constructors, open source or not.

Taking into consideration these different characteristics, we

define the AIDD architecture modules and language in addition

to their interaction.

B. AIDD Architecture

As exposed in [26], the attack detection and response

system, shown in Fig. 1, is responsible of flow analysis, attack

detection and response. It is composed of the following

modules:

• Dissection Module: Input (logs/session/event/alert) is

transformed, normalized and dissected according to a

user defined configuration. A hook system (a hook is

an event that will trigger a rule) is closely related to the

dissection mechanism. Indeed, hooks are placed and

appropriate rules (rule schemes) are associated to

evaluate security rules for each dissected field.

• Analysis Module: Input can be a dissected network

traffic, system/applicative logs or alert. The attack

signature or the malicious behavior is described within

the detection rules. Seen from another angle, these

rules can be considered as a signature database. The

detection engine that is used is IDS/IPS/WAF-like

system. The analysis can be based on one or many

events coming from one or many probes. The analysis

can be either offline (log file) or continuous (events,

traffic, etc.). This analysis raises an alert or reacts to

eventual attack detection.

• Classification Module: The originality of our work

consists on adding classification to detection.

Detection is no longer Attack-centric but based on

attack categories having generic patterns or behavior

for each class. This classification will help detect

attacks whose signatures are not available but whose

behavior or related collected data allows classifying it

into a certain category of attack. Information needed to

classify the attack are: source, target, vector and result

of the attack. This approach allows to aggregate

defense mechanisms. If given events or alerts from the

same or different sources, it will match them with

predefined attack scenarios so that the system is able to

respond to complex attacks.

Fig. 1. AIDD Architecture

• Defense Matching Module: This module matches

each attack category with the appropriate classification

and hence to the appropriate defense mechanism(s).

Defense mechanisms are classified into different

categories (detection, prevention, response (mitigation,

remediation), tolerance, etc.). To tackle with altered

attack signature, this module uses approximate

matching (often referred to as Fuzzy Matching [21]).

• Response Module: According to the defense matching

module, different reactions to attacks can be defined.

The reaction can be responsive

(mitigation/remediation) or passive (tolerance) or

informative (alert/log/awareness). After response, data

(events/alerts) can be resent to analysis module for

further review.

• Detection Database: It contains all the information

needed by our system: attack classification scheme

and detection rules. In fact, we propose a generic

approach to define Attack categories based on our

attack classification [2]. These categories will be the

base of our detection process. Detection rules (basic

and orchestrated) and known complex attack scenarios

are also stored. They can be updated by the user.

Orchestration rules are predefined and assigned to

specific queries. Our system is able to get updated

information by accessing online vulnerability

databases such as Open Source Vulnerability Database

(OSVDB) [12], MITRE Corporation’s Common

Vulnerabilities and Exposures (CVE) list [13], etc.

This architecture focuses on the concept of detecting

attacks predefined classes and proposing the appropriate

defense mechanisms. Our solution provides security by

operating in the following way: (1) evaluation of the queries

(events), (2) attack identification, (3) extraction of the scenario

and the category that are relevant to the identified attack, (4)

assessment of candidate defense mechanisms and (5) relevant

ones execution. Our solution accepts different types of input.

Data come from logs generated by operating systems and

applications, information from the network and even alerts

generated by IDS or WAF (traffic analysis systems in general).

As shown in Fig. 2, the system interacts with sensors and

actuators. These sensors can be system, network, application,

firewall, IDS or WAF. The actuators can be a firewall or a

reverse-proxy based WAF, able to alert, accept, drop or log.

The sensors feed the information to the decision system which

identifies the attack in question. The knowledge system is

composed by the basic rule database and the orchestration rules

that describe the policy defined by the user. It also includes

attack schemes that need to be detected. When detected, the

attack information is sent to AIDD to assess the attack and

provide the attack class in order to select the optimal defense

mechanism(s).

C. AIDD Language

Given the complexity of the existing formalisms, our

original idea, as mentioned in [26], is to define a formalism

based on three languages:

• Atomic Rules Language: Contains single action rules.

Different rule types can be found: Action, Alert,

Comparison, Detection, Log, Transformation and

Normalization rules.

• Composition Rules Language: Composes the basic

rules defining the scheme of rules to follow at the

detection engine. Different operators can be used to

compose these rules: Algebraic, Logic, Correlation and

Synchronization operators.

• Orchestration Language: In our detection

architecture, the communication between the different

modules and within each one is handled by a

composed language. This language helps define a

simpler formalism, give it a high power of expression

and bring modularity to security controls.

Fig. 2. AIDD Architecture In Context

To this end, in our system we use Compose Language.

The use of DSL Compose, a new DSL introduced in

[22] allows a clear division and separation of concerns

regarding the different aspects of the aforementioned

system. Furthermore, it allows a separation of roles

between the different actors involved in the system.

For instance, a security specialist defines rules for

actions to be taken in case of attacks, while a system

architect integrates the various modules (analysis,

classification ...) In fact, compose can be used for two

purposes: Orchestration and coarse grain executable

security policy i.e. to express and trigger the actions to

be conducted in case of complex attacks (usually actual

attacks are composed of a series of fine gained

attacks). Compose is based on Spring Expression

Language of Spring Framework [23]. Hence, many

expressions can be used to handle the description and

the countermeasures of complex attacks such as Literal

Expressions, Boolean and Relational Operators,

Regular Expressions, Class Expressions, Calling

Constructors, Relational Operators and User Defined

Functions. The architect of the system that integrates

the various modules (dissection, analysis,

classification...) uses the DSL Compose for its ability

to integrate heterogeneous applications. The architect

compose the different modules via the DSL Compose,

while the exchange of messages between the different

modules and their integration in the system is

supported by the integration framework underlying

Compose. This framework provides the following

features:

o Transformer to convert in a message from one

format to another

o Filter to transmit messages to modules under

certain conditions

o Router that sends a message to multiple modules

o Splitter that divides a message into multiple

messages to multiple modules

o Aggregator that combines several message

between them

o Adapter that connects the system to the outside

(files, database, message broker, protocols (ftp,

http...)

Furthermore, Compose integrates natively with any Remote

Code Deposit which supports its APIs. This helps in the

automatic deployment of new countermeasure codes and

provide a continuous integration server that performs

regression testing for each deployment of a new version of the

application (in the case where the security is provided as a

service SEcaaS).

IV. FEASIBILITY

 In this section, we illustrate how our model architecture

works in a heterogeneous environment. We highlight how

AIDD architecture can bring a higher level of abstraction to

better aggregate attacks. Then, we provide an implementation

example of our proposition.

A. Use case

For more clarity, we present a use case that explains how

our security system architecture guarantees security,

availability, flexibility, easy interaction and adaptation to

heterogeneous environment. To achieve automated security

control and management, we will apply our proposed vision to

classical network architecture. In this scenario, as shown is

Fig. 3, users are connected via internet to certain

heterogeneous servers that provide different services: web

applications, mailing, database, etc. These servers are

protected by different security devices: WAF, IDS firewall.

Security Devices
Servers and devices

to protect

Launch attack

AIDD System

Launch attack

These devices are from different constructors and have

different behaviors and detection mechanisms.

Fig. 3. AIDD Architecture In Context

An attacker intercepts internet traffic, bypasses the firewall

to attack the servers as shown in the Fig. 3. He executes

different attacks several times: SQL injection, XSS, Malware

injection, DoS. The nature of the attack is not the aim of this

example, but the attacks diversity and number is to take into

account. Some devices detect few attacks and either alert or

block them. Alerts and reports are sent back to the system

administrator. Other attacks reach their final goals.

Fig. 4. Architecture Components Interaction

Security architecture in such a topology has several

drawbacks. Before attacks occur, maintenance problem can be

faced. As used tools are different, system administrator must

have high knowledge of different security solutions from

different constructors. Detection rules for certain devices like

mod security are complicated and need expertise. During

attacks, security issues are faced as no overview of the attack

scenario, intentions are provided and the attacker can exploit

the fact that different deployed security devices do not

communicate. After attacks occur, as security devices are

different, each one has its own syntax for alert (complicated or

not). At the end, security or system administrator will end up

with hundreds lines alert log at least for a complex attack that

is not easy to handle or to understand.

In order to avoid these drawbacks and to offer an easy to

use interface for the system administrator, we introduce our

AIDD system as show in Fig. 4. It considers the security

devices as a whole and it is connected to each one of them to

get its input. It receives the different outputs from the different

security component (IDS, WAF, probe, Firewall…) and

considers them as a unique interacting system.

Our system analyses their outputs, correlates them,

aggregates attacks according to a predefined classification,

assigns appropriate defense mechanisms to the detected attack

category and communicates it to the actioners (firewall WAF)

to either block the attack or update rules. By doing so, an

overview of the attacks is possible and even anticipating the

final attack strike is conceivable.

B. Workflow diagram

Fig. 5 shows how our solution handles events to be able to

figure out attack categories and provides appropriate response.

Our solution takes as an input a raw event. This event can

come from different types of security devices as mentioned

above. This event is then transformed and normalized (1) to a

standard form (IDMEF-like event) so that our systems can

handle several events with different types and syntaxes. Then,

this normalized event is analyzed (2) to check for patterns able

to help classify the attack. Events may be aggregated according

to similar patterns at this level. When these parameters are

retrieved, the classification (3) is done. The first case is when

the attack is known. There will be a check if this attack is a part

of an already defined attack scenario (4). Threat Scenarios are

predefined by an expert after a risk analysis. These scenarios

are modeled using enhanced attack trees [24]. The second case

is when the attack is not known. There will be a similarity

check test (4’), to verify if the event reported is close enough to

an attack behavior. Then, it goes through the scenario check

entity (4). After that, we verify if one or several rules related to

this attack is available. If yes, appropriate rule is retrieved (5)

and then response is executed (6). In fact, the rule retrieving

module and the policy enforcement module are part of the

same entity which is the Policy Manager. This policy manager

handles defense matching and response choice. If the rules are

not available, new rules are generated (5’). The rules are then

executed by the policy enforcement module. These new rules

can be used to update rule database within rule retrieving

module (7’). As attacks are evolving, the classification should

evolve. Thus, a classification update can be done by the policy

enforcement module (8’).

Working as described above, our proposal offers answers to

the challenges mentioned before. In fact, it is flexible as it

adapts to the changes of topology. Hence, if a new probe or a

detection system is added, AIDD can easily be updated to

handle this. It is also independent from the type of security

devices deployed. Besides, the system stays available to

inform the administrator of security state even during a DoS

attack to inform user about the state of the secured perimeter.

In addition, the predefined rules are simple to define and alerts

are aggregated. Thus, when having a lot of attacks, they are

classified and the end user is not overwhelmed with alerts.

Fig. 5. Architecture Workflow

The advantage of our work is that defense mechanisms are

related to the class of the detected attack which allows defense

mechanisms aggregation. Furthermore, the modular

architecture can be used in several contexts and can use other

detection device output as an input. Finally, with its composed

language, writing security policies has become easier

especially for non-security experts.

C. Language implementation

Our system is build using our Domain Specific Language

named Compose [22] (used as orchestration language in our

context). Basically Compose is a generic and a multipurpose

integration language. It hides enterprise integration patterns

behind simple instructions. Thus it addresses any domain,

providing modularity and modelling abilities like Business

Process Management Notation or UML does. Nevertheless,

unlike BPMN, Compose is also a programming language. The

architecture of our system (Fig. 5) has been designed and also

implemented with Compose. In addition, Compose can be

easily customized, adapted and extended to be getting used to

another domain. One of these domains is security. The next

section introduces the use of Compose as the design language

of our system while the following presents its adaptation to

security.

1) System building with Compose

Our system can be connected and used by many

applications and devices. It provides a number of Channel

Adapters out of the box to support various transports, such as

JMS, File, HTTP, Web Services, Mail… These adapters are

used at the first step to deal with the normalization of input

data (see step 1 in Fig. 5). So the first instruction written in

Compose for our system is:

Compute normalization with data imported from

http://datasecurity.com/..., ftp://...

Normalization allows our system to support many inputs

each having its own format, so it has to accommodate and

resolve the differences between the varying formats. Message

Translator patterns are included into each input data flow. The

right translator is picked automatically according to the data

flow payload. To aggregate data from many sources and

devices, normalization uses the integration pattern Aggregator.

Thus, normalization defined by the instruction above is

composed of many instructions, each one also coded with

Compose:

Compute normalize as code1 with data imported from

http://datasecurity.com/...

Compute normalize as code2 with data imported from ftp://...

When code1 terminates with [expression] and code2

terminates with [another expression] Then compute Analysis

Normalize is integrated after each translator associated to

each data source. Normalize is coded with any languages

supported by message brokers like ActiveMQ (C, Python,

PHP…). Exchanges between Compose and external programs

like normalize use Java Messaging Service.

Compose offers the clause When expressing events on a

code computation (like terminates with). The clause Then

allows to indicate which action should be done when the event

occurs. As mentioned above in the given example, clauses can

use expressions. Expressions are written in several languages

(Javascript, Ruby or Groovy). They describe conditions on

computed data. The next example adds a condition on the

terminates event:

When code1 terminates with “code1.result.value < 10”

Expressions are evaluated at run time. Besides, scatter-

gather pattern implementation [22] is used to allow compare

algorithm and select the best one:

Compute code2 with data1

Compute code3 with data1

When code2 terminates and code3 terminates Then Store

code2.result.value<code3.result.value ? code2.result :

code3.result into file

2) Domain Specific Language adaptation for security

In this subsection, we focus on rules language that will be

used by our system and handled by compose language. On a

more integration level, the proposed language is used to events

transformation, attack classification, attack scenarios detection

and defense mechanisms definition. It deals with events, event

sequences (order, repetition, non-occurrence, time constraints),

constraints (contextual) and defense mechanisms. The two

different rules’ types are defined as following:

• Atomic Rules are functions: Atomic_Rule_Type

(Param1, Param2, Param3…)

• Composition Rules are lists: Composition_Rule

{Hook1, Rules_composition1, Hook2,

Rules_composition2… Options}

Attack components are retrieved from the received events.

These components are parameters indicating some aspect of

the system, malfunction or failure. They are composed of

various anomalies which are observed by sensors.

a) Atomic rules

The different rules that are taken into consideration by our

language are:

• Transformation Rules: Trans_Rule (Event, trans1).

One transformation per rule. Transformations are used

to unify the structure of an event or the pattern of an

attack (alert)

• Control Rules: Control_Rule (Event, normal

behaviour, Score): check for anomalous flow.

Control_Rule (Parameter1, verification): for

contextual information

• Match Rules: Match_Rule (event, attack signature) /

Match_Rule (parameter1, parameter2) : match 2

parameters: IP address, for example

• Log Rules: Log_Rule (Event)

• Alert Rules: Alert_Rule (Event, Alert type)

• Action Rules: Action_Rule (Parameter, Action),

parameter variable is not mandatory, i.e: Action_Rule

(Reporting)/Action_Rule (IP,Filtering)

b) Composition Rules

They define the way atomic rules are executed. For

example C_Rule (Hook, R1 & R2), where a hook is the area

where the control is done. This is meant to optimize rules

memory calls. Several operators may be used to combine

atomic rules:

• R1 and R2

• R1 or R2

• R1 || R2: 2 Rules executed in parallel

• R1 oand R2: Ordered and

• If R1 then R2 else R3: Condition

• While R1 do R2: Loop

These operators are used also to define attack scenarios and

to create a more complete composition rule.

Both Atomic Language and Composition Language are our

system’s knowledge base components. User composes his

rules according to his policies. These rules are handled by

compose language to offer and easy-to-use framework for a

non-experts in security

V. CONCLUSION

So far, few rule based attack detection systems have taken

into account the extensibility of the architecture, the simplicity

of rules writing and a Fuzzy Matching attack response. In this

paper, we have proposed a novel rule-based attack detection

system that is easy to configure. It offers modular and flexible

architecture which is able to learn from previous detected

attacks. The system can handle altered attack signature using

Fuzzy Matching mechanism. It can also handle complex

attacks thanks the incremental rules expression languages. It

can be adapted to new topologies and can include new attack

techniques.

Our can be used by system and network administrator and

people that are necessarily security experts to provide

information about attacks and how to respond to them. Our

system can be ameliorated by including encrypted information

handling and defining metrics to enhance the attack-defense

matching process.

In this paper, we focused on the architectural aspect of the

solution. The next step is to specify the attack classification

mechanisms and to study the performance of the system in

heterogeneous environments such as multiservice providers

and Cloud Computing.

REFERENCES

[1] Dhanakoti Vennila, R.Nedunchezhian “Correlated Alerts and

Non-Intrusive Alerts”, Department of Computer Science, Anna

University of Technology/Sri Ramakrishna Engineering

College, INDIA, International Journal of Soft Computing, 7:

302-309, 2012.

[2] Samih Souissi, Ahmed Serhrouchni « AIDD: A novel generic

attack modeling approach », Télécom ParisTech, Proceedings of

HSPC Conference, Bologne-Italy, 2014.

[3] Snort IDS, available at http://www.snort.org

[4] Vern Paxson, “Bro: A System for Detecting Network Intruders

in Real-Time”, Lawrence Berkeley National Laboratory,

Berkeley, CA, in the Proceedings of the 7th USENIX Security

Symposium San Antonio, Texas, January 26-29, 1998.

[5] Ivan Ristic: ModSecurity Handbook: The Complete Guide to the

Popular Open Source Web Application Firewall, 2010.

[6] Naxsi (Nginx Anti Xss & Sql Injection) Available at:

https://www.owasp.org/index.php/OWASP_NAXSI_Project

[7] D. Dasgupta, F. A. Gonzalez, “An Intelligent Decision Support

System for Intrusion Detection and Response”, the International

Workshop on Information Assurance in Computer Networks:

Methods, Models, and Architectures for Network Security,

Springer, Vol. 2052, Jan. 2001.

[8] Chris Simmons, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta,

Qishi Wu, “AVOIDIT: A Cyber Attack Taxonomy”, University

of Memphis, 9th Annual Symposium on Information Assurance

(Asia’14), Albany, Ny, 2014.

[9] Chris B. Simmons, Sajjan G. Shiva, Harkeerat Bedi, Vivek

Shandilya “ADAPT: A Game Inspired Attack-Defense And

Performance Metric Taxonomy”, University of Memphis,

Proceedings of 28th IFIP 11th International Conference SEC

2013, Auckland, New Zealand, 2013.

[10] Zheng Wu, Yang Ou, Yujun Liu, “A Taxonomy of Network and

Computer Attacks Based on Responses”, Proceedings of

International Conference on Information Technology, Computer

Engineering and Management Sciences (ICM), 2011.

[11] Mario Golling, Robert Koch, Rick Hofstede “Towards Multi-

layered Intrusion Detection in High-Speed Networks”,

Universität der Bundeswehr München Neubiberg, Germany,

University of Twente Enschede, Netherlands, Proceedings of 6th

International conference on cyber conflict, 2014.

[12] Open Source Vulnerability Database OSVBD, available at:

http://www.osvdb.org

[13] Common Vulnerabilities and Exposures CVE, available at:

http://www.cve.mitre.org

[14] S. Eckmann, G. Vigna and R. Kemmerer, “STATL: An Attack

Language for State-based Intrusion Detection”, University of

California Santa Barbara, 2000.

[15] S. Kumar and E. H. Spafford, “A pattern-matching model for

misuse intrusion detection”, Proceedings of the national

computer security conference, 1994.

[16] F. Cuppens and R. Ortalo, “LAMBDA: A Language to Model a

Database for Detection of Attacks”, ONERA / NEURECOM,

France, Recent Advances in Intrusion Detection, 2000.

[17] C. Michel and L. Mé, “Adele: an attack description language for

knowledge-based intrusion detection”, Proceedings of 16th

International Conference on Information Security (IFIP/SEC),

2001.

[18] Ravi Shankar Vankamamidi “ASL: A specification language for

intrusion detection and network monitoring”, Master’s Thesis,

Iowa State University, 1998.

[19] Khaled Labib and V. Rao Vemuri, “Anomaly Detection Using S

Language Framework: Clustering and Visualization of Intrusive

Attacks on Computer Systems”, University of California,

Proceedings of Fourth Conference on Security and Network

Architectures, 2005.

[20] R. Sekar V. N. Venkatakrishnan Samik Basu Sandeep Bhatkar

Daniel C. DuVarney, “Model-Carrying Code: A Practical

Approach for Safe Execution of Untrusted Applications”, Stony

Brook University, Proceedings of SOSP Conference, 2003.

[21] N. Bashah , I. B. Shanmugam, “Novel Attack Detection Using

Fuzzy Logic and Data Mining”, Proceedings of the 2006

International Conference on Security & Management, SAM

2006, Las Vegas, Nevada, USA, June 26-29, 2006. CSREA

Press 2006.

[22] B. Charroux, L. Sliman and Y. Stroppa, “Compose: a Domain

Specific Language for Scientific Code Computation”.

Proceedings of CFIP-NOTERE, IEEE, Paris, 2015.

[23] K. Srinivasan, Introduction to Spring Expression Language,

Spring Framework, 2011. Available at:

http://www.javabeat.net/introduction-to-spring-expression-

language-spel/

[24] S. A. Camtepe, B. Yener, “Modeling and detection of complex

attacks”, SecureComm, 2007.

[25] Scatter-gather pattern implantation. Available at:

http://www.enterpriseintegrationpatterns.com/patterns/messagin

g/BroadcastAggregate.html

[26] S. Souissi, L. Sliman, B. Charroux, “A Novel Security

Architecture Based on Multi-level Rule Expression Language”,

Proceedings of Hybrid Intelligent systems Conference, Nov.

2015.

