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Abstract. The most popular programming languages, such as C++
or Java, have libraries and data structures designed to automatically
address concurrency hazards in order to run on multiple threads. In
particular, this trend has also been adopted in the memory manage-
ment domain. However, automatic concurrent memory management also
comes at a price, leading sometimes to noticeable overhead. In this paper,
we experiment with C++ smart pointers and their automatic memory-
management technique based on reference counting. More precisely, we
study how we can use hardware transactional memory (HTM) to avoid
costly and sometimes unnecessary atomic operations. Our results sug-
gest that replacing the systematic counting strategy with HTM could
improve application performance in certain scenarios, such as concur-
rent linked-list traversal.

1 Introduction

With the increasing degree of concurrency in nowadays hardware, lock-free im-
plementation of applications or data structures gained extensive attention in
the last few years. In this context, using classical synchronization mechanisms
based on locks (such as mutexes, barriers, etc.) tends to become more and more
complex and error-prone. Transactional memory (TM) [8] offers an elegant solu-
tion for implementing lock-free synchronization. Until recently, TM algorithms
were mostly reserved to the research environment, since the considerable over-
head generated by software transactional memory (STM) implementations made
them unsuitable for real-life applications. However, the emergence of hardware
transactional memory (HTM) in mainstream processors overcame the perfor-
mance pitfall, while conserving the benefits in scalability and correctness.

Automatic memory management mechanisms often suffer from performance
drops due to their synchronization strategies. A notable example is represented
by the smart pointer implementation in the C++ standard library. This uses
reference counting to protect a raw pointer from being illegally deallocated and
to avoid any other memory hazards. Smart pointers are thread-safe and the



operations on the shared reference counter are atomic. This provides adequate
and safe memory management for multi-threaded programs. Nonetheless, the
reference counting strategy is costly and sometimes unnecessary, e.g., when ma-
nipulating copies of a smart pointer with a reference count that never drops
below 1 and hence never needs to release memory.

In this paper, we explore possible scenarios where HTM could improve the
performance of applications that use C++ smart pointers. Specifically, we re-
place the original reference counting logic based on atomic operations with hard-
ware transactions. The hardware transaction protects the raw pointer against
invalid accesses. In this manner, we avoid executing the unnecessary atomic op-
erations required by the reference counting strategy. On the one hand, we expect
HTM to improve the performance of smart pointers over the original implemen-
tation. On the other hand, by adding this low abort-rate HTM fast-path, we
are also addressing some concurrency problems related to smart pointer han-
dling. Gottschlich et al. [7] show that template-based generic structures, such as
C++ smart pointers, are deadlock-prone, among other synchronization issues,
and they also propose the use of TM in their implementation.

Our contribution consists of an extensive study on the benefits of HTM
for C++ smart pointers. We added transactional support for smart pointers,
and tested their performance on: (1) micro-benchmarks, with mono- and multi-
threaded settings, with and without batching multiple pointers in a single trans-
action, on two different architectures (Intel Haswell and IBM POWER8); and a
(2) concurrent data structure, with and without batching. The results are gen-
erally encouraging and we observe performance improvements in most, but not
all scenarios: in some cases there are no or negligible gains (e.g., multi-threaded
micro-benchmark with batching enabled), whereas in others the execution time
is improved by 50% (e.g., concurrent lookup operation over a linked-list, with
batching enabled).

2 Background and Related Work

Automatic memory management is split into two representative approaches: ref-
erence counting and tracing. Tracing algorithms are most often used in high
performance settings, while the reference counting strategy is usually avoided
due to its major drawbacks. A critical downside is represented by its consider-
able overhead over tracing, estimated at 30% in average [11]. The concept of
reference counting is simple: it keeps track of the number of references for each
object, updating a counter when references are removed or new ones are added.
The object is destroyed only when the count reaches zero. However, this means
that each pointer mutation has to be tracked and intercepted, making a naive im-
plementation of reference counting very expensive. Recently, reference counting
techniques were reconsidered and optimized, becoming comparable to tracing in
terms of performance [11, 1, 12]. A noteworthy memory management mechanism
that depends on reference counting is illustrated by C++ smart pointers.
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Fig. 1. C++ smart pointer components and reference counting mechanism.

2.1 C++ Smart Pointers

A smart pointer is an abstract data type that encapsulates a pointer while pro-
viding additional features, such as automatic memory management or bounds
checking. These features were added to classical pointers in order to reduce pro-
gramming bugs (created by manually managing the memory), while keeping the
same efficiency. Smart pointers can prevent most memory leaks and dangling
pointers.

In C++, smart pointers are implemented on top of traditional (raw) point-
ers, but provide additional memory management algorithms. We focus on the
std::shared ptr implementation located in the <memory> header. A shared ptr

represents a container for a raw pointer, for which it maintains reference counted
ownership (Fig. 1). The object referenced by this pointer will be destroyed when
there are no more copies of the shared ptr.

The smart pointers are implemented as a C++ template that uses a reference
counting strategy for memory management. The increments and decrements of
the counts are synchronized and thread-safe. The default synchronization mecha-
nism for C++ smart pointers employs atomic operations (increment/decrement).

2.2 Hardware Transactional Memory

Transactional memory (TM) [8] is a synchronization mechanism that can provide
lock-freedom by encapsulating blocks of instructions in transactions and execut-
ing them atomically. In order to keep track of the changes, TM typically records
the write set and applies it to memory atomically if the transaction succeeds;
otherwise updates are discarded. There is no moment in time when an intermedi-
ate state can be observed. The most common cause for aborting a transaction is
upon memory conflict, that is when two threads try to access the same memory
areas. An abort can also be deliberately triggered by the application.

Transactional memory was first implemented in software (STM). Even though
the benefits of TM over classical synchronization methods are significant, notably
in terms of ease of use, STM was the subject of long debates whether it is only a
research toy [3, 6]. The most important issues are the significant overhead due to
the instrumentation of the application, and the limitation to “weak atomicity”
(i.e., it identifies conflicts only between two transactional accesses). Starting in
2013, Intel made available for public use its “Haswell” processor with fully in-
tegrated hardware transactional memory (HTM) support. HTM overcomes the
aforementioned problems of STM. However, it has its own disadvantages: first,



the size of the transactions is limited. Careful planning for the contents of the
transaction is needed in order to both avoid overflows and amortize the cost of
starting and committing the transaction. Moreover, transactions can be aborted
at any time by interrupts, faults and other specific instructions, such as debug
or I/O. HTM requires a non-transactional fallback path in case of abort, to en-
sure progress for the transactions that cannot commit. HTM is therefore a very
powerful tool in a multi-core environment, although not suitable for all types of
applications because of the aforementioned limitations. Nonetheless, it appears
to be a suitable solution for tackling specialized concurrency problems, such as
concurrent memory management.

2.3 Related Work

Considering the ever increasing interest in transactional memory in the last few
years, a reasonable amount of effort has been focused on integrating TM with
mainstream programming languages, such as C++. Crowl et al. [4] present a
general design that would permit the insertion of transactional constructs into
C++. They identify the main issues that need to be addressed and propose
a new syntax that could be incrementally adopted in the existing code base.
Ni et al. [10] go even further and implement a fully working STM system that
adds language constructs for transactional programming in C++. The system
includes new C++ language extensions, a compiler and an STM runtime library.
They conduct an extensive evaluation on 20 parallel benchmarks ported to use
their C++ language extensions. The results show that the STM system performs
well on all workloads, especially in terms of scalability. A more focused work is
presented by Gottschlich and Boehm [7] regarding the need for transactional
memory in generic programming. They give as example C++ shared pointers
and similar constructs, and indicate that implementing them with transactions
would avoid deadlocks and other synchronization issues. In this case, the authors
do not explore the performance of a potential transactional implementation, but
the correctness of such a strategy.

In what concerns the synchronization of concurrent data structures with
HTM, opinion is divided on the performance benefits of transactions. For ex-
ample, David et al. [5] report an increase in throughput of at most 5% when
using HTM for concurrent search data structures, considering the improvement
as negligible. On the other hand, Bonnichsen et al. [2] present a concurrent or-
dered map implementation with HTM that performs up to 3.9 times faster than
the state of the art.

In this paper, we apply the guidelines that recommend enhancing C++ smart
pointers with transactional support, thus avoiding specific concurrency issues,
and evaluate the potential performance improvement when using HTM on con-
current data structures.



3 Transactional Pointers

We call transactional pointer a C++ smart pointer that protects an object with
a hardware transaction and does not modify its reference count. The goal is
to avoid the execution of undesired atomic operations on the shared reference
counter of an object. The transaction intercepts hazardous accesses to the object
(e.g., a non-transactional access trying to release a pointer still in use) and a
safe path is chosen.

3.1 Algorithm

The original algorithm for C++ smart pointers is straightforward: when the
pointer is created, it contains a raw pointer and a control block for this reference.
The reference count is initialized with 1. As seen in Fig. 1, when a new copy of the
same pointer is created, they will have in common the reference and the reference
count field, which is updated by atomic increment. Every time when a copy of
the pointer is destructed, the shared reference count is atomically decreased by
one, and the rest of the object destroyed. If there is only one reference left,
then the memory is automatically freed. This allows the application to function
without any risk of incorrect accesses, dangling pointers or memory leaks.

Our goal was to eliminate the atomic operations on the shared reference
count, while keeping the reference protected from memory hazards. In order to
do that, we defined a constructor that initializes the reference count with 0 and
tries to start a hardware transaction. Inside the transaction, we read a shared
field of the transactional pointer, called state. In this way, state is added
to the read-set of the transaction and automatically monitored in hardware.
Any other thread that tries to modify this field will cause an abort. If there
is no abort, the application will continue its execution, using the transactional
pointer protected by the transaction. If a conflict or another event causes the
currently running transaction to abort, the transactional pointer will follow a
fallback path corresponding to the original implementation of the smart pointers,
i.e., the reference count is initialized with the number of references of the smart
pointer that we are copying and atomically incremented, or with 1 if it is a new
smart pointer. When the transactional pointer is destroyed by the application, we
check if there is a transaction running: if yes, the transaction commits; otherwise,
the object is destroyed in the same way as a normal smart pointer.

Further on, we modified the algorithm to support batching. More specifically,
multiple transactional pointers can be added to an already started transaction,
without having their reference count modified and without starting a transac-
tion on their own. In order to achieve this, the constructor exploits an additional
parameter indicating whether the transactional pointer in question is the first
one in the batch (or a single pointer that needs to be protected) or it needs
to be added to an already existing transaction. In the former case, the algo-
rithm follows the steps described above. In the latter, we take advantage of the
fact that all initializations happen inside the transaction. Thus, we do not need
to specifically read the state field anymore. Finally, we add a supplementary



Algorithm 1 Transactional pointer implementation
1: function tx ptr::Init(boolean add to tx, smart ptr ptr)
2: this.ptr ← ptr
3: this.refcount← 0
4: this.state← ptr.state
5: this.add to tx← add to tx
6: if this.add to tx ∧ is fallback then
7: Fallback(ptr)
8: end if
9: if ¬this.add to tx then
10: if Tx Start() then
11: Read(this.state)
12: is fallback ← false
13: else
14: is fallback ← true
15: Fallback(ptr)
16: end if
17: end if
18: end function

19: function tx ptr::Destroy()
20: Write(this.state)
21: if ¬this.add to tx ∧ Tx Test() then
22: Tx End()
23: end if
24: end function

check in the destructor of the transactional pointer: we only try to commit the
transaction when the pointer that started it is destroyed. This design assumes a
scenario in which:

– either all pointers die at once (e.g., at the end of a function in which they
have been created), in which case they are destroyed in the reverse order of
creation, thus making the first pointer to be destroyed last and keeping the
transaction that protects all pointers running until it is safe to commit; or,

– the pointers added to the transaction are explicitly destroyed before the
pointer that started the transaction.

This is particularly convenient for applications using well-delimited groups of
pointers, such as some operations on classical data structures.

The above steps are summarized in Algorithm 1. We call tx ptr the data type
that enhances C++ smart pointers with hardware transactions. The construc-
tor creates a transactional pointer from an already existing smart pointer, which
is passed as a parameter. We use this to designate the current transactional
pointer being created. We cover in this pseudo-code the extended algorithm
suitable both for batching pointers as well as for single transactional pointers.
Therefore, the constructor features a boolean parameter add to tx that indicates
whether the current pointer has to be added to a running transaction or start a
new one by itself. If it is the first pointer (Line 9), it tries to start a transaction.
All subsequent transactional pointers will be monitored by the same transac-
tion and will not attempt to start a new one. If the transaction starts, we read
the state field, as mentioned; otherwise, the algorithm takes the fallback path.
The call to a generic function READ() (Line 11) stresses the idea of reading the
field inside the transaction, without entering into implementation details. The
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Fig. 2. Class structure of std::shared ptr, with the additional fields for tx ptr in
dashed lines.

variable is fallback is a thread-local variable, set when the first pointer takes
the fallback path. When a transaction aborts, all changes are rolled back and
the execution is restarted. This means that all the added pointers will run their
constructor from the beginning, following the path in Line 6. In other words, all
transactional pointers will take a non-transactional path, similar to a classical
C++ smart pointer. While the transaction is running correctly, is fallback re-
mains false. We claim that the presented algorithm correctly implements a smart
pointer structure, while aiming to reduce the overhead of atomic operations.

3.2 Implementation

We built our transactional pointers on top of the std::shared ptr structure
in C++. In particular, we extended the std::shared ptr class with a new
constructor and modified several internal methods in order to accommodate the
transactional logic. As such, a tx ptr can simulate the normal behaviour of a
classical smart pointer and tx ptrs can be created from std::shared ptrs.

The std::shared ptr class is implemented as a C++ template, with the
raw pointer (of generic type Tp) and a variable of type shared count (Fig. 2)
as the main fields. The latter is the class that implements the shared reference
count object. The reference count object contains a pointer to two counters:
use count and weak count. The role of the latter is out of the scope of this
work. The former contains the number of references a pointer has throughout
the execution. We added in the diagram with dashed lines the necessary fields
for implementing tx ptr:

– A boolean variable in the main class, with the aim of indicating which point-
ers are to be added to the existing transactions or start a new one. This infor-
mation is critical in the destructor when using batching, since the transaction
must be committed only when all pointers in the group have been destroyed.

– The shared state field in the reference count class. This field is initialized
in the constructor and read inside the transaction, in order to be monitored
in hardware. It is further modified in the destructor. Thus, if any other copy
of the same pointer tries to destroy the pointer and deallocate the memory,
writing the state field forces the transaction to abort and the tx ptr to
restart as a normal smart pointer.



We implement the transactional memory operations on two different archi-
tectures: Intel Haswell and IBM POWER8. While there are several subtle differ-
ences in the APIs and the underlying HTM implementations, most of our code
is common to both architectures.

4 Evaluation with Micro-benchmarks

In order to have a preliminary idea of the benefits of our transactional pointer
implementation over the original C++ smart pointers, we devised two micro-
benchmarks. This enabled us to test both implementations in mono-threaded
and multi-threaded scenarios, with or without batching, on two different archi-
tectures: Intel Haswell and IBM POWER8.

4.1 Mono-threaded Scenario

We want to evaluate the possible gains of replacing atomic operations with hard-
ware transactions. We developed a mono-threaded micro-benchmark for studying
how many transactional pointers have to be packed in a transaction in order to
improve the performance over a pair of atomic operations, when the application
runs on a single thread. The micro-benchmark consists of the scenarios presented
in Algorithm 2. By tx shared pointer we refer to a tx ptr implementation. In the
first scenario, starting at Line 1, we measure the time it takes to repeatedly cre-
ate and destroy a normal C++ shared pointer, for a fixed number of iterations.
As previously mentioned, when the pointer is created, an atomic increment is
performed on the shared reference count; likewise, an atomic decrement is per-
formed when the pointer is destroyed. This strategy reflects the performance
when using a pair of increment/decrement atomic operations for num iter it-
erations. The second scenario, starting at Line 7 replaces the pair of atomic
operations in each iteration with a hardware transaction. The third scenario
(Line 15) groups multiple create/destroy operations (i.e., multiple iterations) in
a transaction. It behaves identically to the second scenario when m = 1.

We implemented and tested the micro-benchmark on two different platforms:
a 4-core (2 threads per core) Intel Haswell@3.40GHz machine with 12GB RAM
and a 10-core (8 threads per core) IBM POWER8@3.42GHz with 30GB RAM,
both with fully integrated HTM support. For the third scenario at Line 15, we
varied m from 2 to 5, since for values greater than 5 the performance was visibly
better than the original implementation of shared pointers. We observed that
the measured time was varying during the first executions of the benchmark. In
order to have accurate results, we first ran the benchmark 50 times until the
results were stable (standard error deviation less than 1%). Subsequently, we
considered the average value per iteration over another ten runs for each version
of the benchmark. We tested for 103, 106 and 109 iterations. The execution time
of one iteration is measured with the system’s high resolution clock. Figure 3
shows the performance in all scenarios for the mentioned values of m and number
of iterations, both on the Haswell machine and on POWER8. On the Y axis we
have the time in nanoseconds per iteration. We made the following observations:
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Fig. 3. Mono-threaded performance (time per iteration) for repeated create/destroy of:
original shared pointer (Algorithm 2, Line 1), transactional pointer with one transaction
per iteration (Algorithm 2, Line 7) and transactional pointer with one transaction per
m iterations (Algorithm 2, Line 15) with m = 2, 3, 4, 5.

Algorithm 2 Scenarios for the mono-threaded micro-benchmark

1: function Scenario1

2: for i← 1, num iter do
3: p← new shared pointer
4: delete p
5: end for
6: end function

7: function Scenario2

8: for i← 1, num iter do
9: begin-tx
10: p← new tx shared pointer
11: delete p
12: commit-tx
13: end for
14: end function

15: function Scenario3

16: for i← 1, num iter/m do
17: begin-tx
18: for i← 1,m do
19: p← new tx shared pointer
20: delete p
21: end for
22: commit-tx
23: end for
24: end function

1. When running on a single thread, using a single hardware transaction per
iteration results in better performance than a pair of atomic operations. In
other words, the second scenario (Line 7) performed better than the first
(Line 1) for any number of iterations on both platforms.

2. The performance improves when m increases (up to a certain threshold when
the group of instructions becomes too large and the transaction overflows).

In conclusion, according to the presented mono-threaded benchmark, a hard-
ware transaction should be able to replace a single pair of atomic operations
without affecting the performance of the application. The application would
gain if multiple pairs of atomic operations were replaced by a single hardware
transaction.



4.2 Short-Lived Pointers

Consider now the following common scenario where a smart pointer is copied
to a local variable inside a function, i.e., the copy of the smart pointer has the
lifespan of that function. Generally, when creating such a copy, the reference
counter is atomically incremented, while at the end of the function, there is an
atomic decrement. If the pointer is not accessed concurrently in the meantime,
then the increment/decrement operations are unnecessary. We aim to replace
this pair of atomic operations with one transaction spanning the entire function.
In order to obtain this behaviour, we use the tx ptr pointer defined in Sect. 3.

We created a micro-benchmark that starts multiple threads which share an
array of smart pointers. Each thread picks a random element from the shared
array and calls a function. In the function, the thread creates a tx ptr copy of the
element. Then, it executes several constant-time operations. These operations
are meant to simulate a computational workload that accesses the pointer value.
If transactional pointers are used, these operations will be executed inside a
transaction. Finally, the thread exits the function (which calls the destructor of
the transactional pointer, thus committing the transaction). We measure how
many iterations of this function are done by each thread in a certain amount
of time (customizable by the user). We compare the total number of iterations
(i.e., the sum of iterations over all threads) of our tx ptr implementation with
the original implementation of smart pointers. We configured our experiments as
follows: shared array of 1,000 smart pointers, run time of 5 seconds, 100 constant-
time operations. The experiments consist of running the micro-benchmark 10
times for an increasing number of threads on both platforms and taking the
average over the total number of iterations in each case.

Figure 4(a) shows our first results with this implementation on the Haswell
machine. On the X axis we show the number of threads, while on the Y axis we
have the number of iterations performed divided by 106 (higher values are bet-
ter). We tested on up to 16 threads. We observe that starting with 4 threads, our
implementation performs better than the original. However, the improvement is
less than 4% (on 16 threads). Moreover, on the POWER8 server (Fig. 4(c))
there is almost no performance gain on more than 4 threads, indicating that the
transactional implementation on this architecture suffers more from contention
than the atomic operations. This result led us to the conclusion that, in a multi-
threaded environment where many operations are involved, the creation of a
single tx ptr does not bring an improvement over a pair of atomic operations.
As an optimization, we enabled batching in the micro-benchmark, i.e., the cre-
ation of multiple pointers in a single transaction. The idea was that, if a pair of
atomic operations has almost the same overhead as a transaction, then replacing
multiple pairs of atomic increment/decrement with a single transaction would
improve the performance.

We modified the benchmark as follows: instead of a single random element,
each thread now picks several random elements from the shared array (number
defined at runtime). It creates a new array with these elements and calls the
specific function having this array as a parameter. The function makes tx ptr
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Fig. 4. Number of iterations for one or multiple short-lived tx ptr pointer copies (TSX)
and smart pointer copies (Orginal) in a function.

copies of all pointers, using the additional boolean parameter in the constructor
in order to indicate which pointers will be added to the running transaction.

Figures 4(b) and 4(d) show the results of this strategy with a group of 5
pointers per transaction. In this scenario, however, contrary to our expectations,
the performance actually suffers. We tested on up to 8 threads, pinned to the
cores. We conclude that, by trying to optimize the previous results with batching,
we also increased the overhead of the transaction with extra operations. This
explains why in this setting we could not observe any improvement over the
version with one pointer. Given the negligible performance gain of the latter,
we deduce that in this scenario using transactional pointers does not have a
significant advantage over the original C++ smart pointers.

5 Evaluation with Shared Data Structures

We implemented a simple data structure to showcase the possible performance
improvement of tx ptrs over the original implementation of C++ smart point-
ers. We chose to build a simply-linked list because of the natural occurrence of
pointers with a reference count ≥ 1 (they will always be referenced by at least
one other pointer until they are removed or the list is destroyed). That allows
us to exploit the design of tx ptr and the benefits of transactions for repeated
concurrent traversals of the list.



5.1 Implementation

The shared list was implemented in two steps. First, we designed a concurrent
liked-list structure only based on shared pointers and compare and swap (CAS)
operations. For simplicity and reproducibility of our tests, we only inserted ele-
ments at the end of the list and we always removed the first element. Basically,
in this experiment the implementation behaved like a concurrent queue, with an
additional lookup function.

We implemented the data structure using a classical lock-free queue algo-
rithm [9]. The use of C++ smart pointers for the nodes guarantees the correct-
ness when accessing and manipulating elements. We use CAS operations specif-
ically defined for shared pointers in the C++ standard library libstdc++-v3,
included in the GCC5 release.4 The result of a CAS operation is repeatedly
checked in a loop, until it confirms that the desired operation took place. The
insert and delete operations are easily implemented with shared pointers and
CAS, by changing atomically the first element with the new node, respectively
the last element with the next node in the queue. The lookup function iterates
over the list sequentially until it finds the requested value or reaches the end of
the list. We considered that the list traversal could benefit the most from our
implementation of tx ptrs. The next step was to change the above implemen-
tation to use transactional pointers. The only modification needed in the code
is replacing the constructor of the pointer that will iterate over the list with the
customized constructor defined in Sect. 3.

Our goal was to encapsulate each iteration of the loop in the lookup function
in a hardware transaction. In the original implementation, when the pointer
iterating over the list passes from a node to the next, it creates and destroys a
copy of a smart pointer. As previously mentioned, this is equivalent to a pair
of atomic operations. Thus, we replace a pair of atomic increment/decrement
with a hardware transaction. In order for the transactional pointers to work
transparently in this case, we also extended the overloaded ‘=’ (assignment)
operator of C++ smart pointers. More precisely, the first transaction is started
when the iterator is initialized in the tx ptr constructor. Then, each time the
iterator moves to the next node, the transaction commits and a new one is
started (which will last until the move to the next node and so on). If there is a
conflict, the transaction aborts and takes the fallback path described in Sect. 3.

Finally, we implemented support for batching multiple pointers in a single
transaction. In the case of list traversal, this means that a hardware transaction
will span the traversal of multiple nodes. The size of the group of nodes included
in a single transaction is customizable. In order to maintain the transparency
of the implementation, we could not reuse in this case the batching strategy
described in Sect. 4.2. Rather, we implemented an internal counter for tx ptr

and modified the ‘=’ operator to commit and start a new transaction when the
counter indicates the end of a batch. Whenever the transaction aborts due to a

4 In C++11 the operation atomic compare exchange weak(p, expected, desired)

checks if p has the same value as expected: if so, the value desired is atomically
assigned to p; otherwise, expected becomes equal to p.
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Fig. 5. Execution time per operation for a concurrent queue implemented with smart
pointers and transactional pointers, with (a) a transaction per iteration during lookup
and (b) multiple iterations grouped in a single transaction.

conflict, all the changes made to the group of pointers are rolled back and all
pointers are recreated as common C++ smart pointers with reference counting.

5.2 Evaluation

We developed a benchmark for comparing the performance of smart and transac-
tional pointer implementations of the concurrent queue. The benchmark works
as follows: we initialize the queue and populate it with elements. We start a
number of threads that share the queue. Each thread applies insert, delete and
lookup operations on the shared queue by a given ratio. We measure the time
it takes each thread to finish the associated operations. In order for all threads
to have comparable workloads, we generate the workloads before starting the
threads. Specifically, we generate a random succession of operations according
to the proportions given for each type of operation. Then, we generate a list of
elements that will be inserted in the queue, and a list of elements that will be
looked up, based on the elements that are inserted. Given the dynamic character
of the benchmark (a large number of concurrent insert and delete operations),
not all the elements in the lookup list will be found in the queue at the moment
when the operation is performed.

First, we experimented with the implementation based on the original C++
smart pointers and our simple transactional version (without batching). We
tested on a 4-core Intel Haswell server, on up to 8 threads pinned to the cores. We
set the list to be initially populated with 1,000 elements. Each thread had to ex-
ecute 106 operations on the shared list, out of which 20% insert, 20% delete and
60% lookup operations. We measured the time with the high resolution clock

C++ function. We ran each test 10 times, after first observing that the results
were stable, with negligible variations from a run to another. For each run we
took the maximum between the times reported by each thread, then computed
the average over the 10 runs. The results for this test are shown in Fig. 5(a). We



observe that our implementation does not perform notably better than the orig-
inal. However, this result indicates that even if we replace a single pair of atomic
operations with a hardware transaction, we already start gaining in performance.

We then tested the transactional version with batching enabled. Since the
only difference between the two implementations of the concurrent queue (i.e.,
with shared ptr and with tx ptr) is in the way in which the lookup function
works, we focused on stressing and comparing strictly this operation. Thus, we
modified the previous configuration to run a workload of 100% lookup opera-
tions, for 106 operations per thread, on a 104-element shared array. At least half
of the elements that will be looked up by the benchmark are found in the initial
shared array. Figure 5(b) shows the results in this scenario for the implementa-
tion with the original C++ smart pointers, as well as transactional pointers with
one transaction per pointer, one transaction for a group of 3 pointers, and one
transaction for a group of 5 pointers. We make the following observations: first,
when grouping 5 pointers in a transaction, i.e., replacing 10 atomic operations
with a hardware transaction, we see an improvement of up to 50% in the execu-
tion time. Second, we observe that the performance increase is more spectacular
when passing from no batching to a group of 3 pointers than from a batch of 3 to
one of 5 pointers. While the batch size increases, the performance improvement
will reach a plateau and start degrading when the batch becomes too large for
being handled properly by a hardware transaction. Finally, we remark that the
improvement is less noticeable on 8 threads, because of contention.

6 Conclusion and Future Work

Concurrency and automatic memory management are two key components of
today’s complex multi-core systems. While the number of cores per CPU keeps
increasing, the attention of developers seems to turn more and more towards
lock-free algorithms and implementations. Transactional memory, and especially
its hardware implementation (HTM), represents a suitable non-blocking solution
for concurrency hazards. At the same time, reference counting is a useful form of
memory management with interesting properties and synchronization features,
where each object is protected from invalid accesses by keeping a shared reference
counter. Sometimes the atomic increment/decrement operations on the shared
counter prove to be unnecessary and expensive. We considered this to be a
promising opportunity for improvement with HTM.

We designed a transactional pointer structure on top of the C++ shared ptr,
which uses reference counting for correctly managing the memory. Our goal was
to replace the atomic operations needed for the creation/destruction of the smart
pointer with a hardware transaction. We experimented with micro-benchmarks,
in mono- and multi-threaded settings, on two different architectures and with the
possibility of batching multiple pointers in a transaction. We also compared the
performance of the original and transactional implementations on a concurrent
queue of smart pointers. We believe that the results provide valuable insights
into which scenarios would benefit most from using a transactional pointer.



Given the promising results for the concurrent queue (up to 50% improve-
ment on the execution time for lookup operations), we plan to further pursue
this idea and implement more complex data structures with transactional point-
ers. A future objective could be the implementation of a transactional pointer
specialized for concurrent data structure traversal.
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