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aLAAS - CNRS, Université de Toulouse, CNRS, UPS, 7 avenue du Colonel Roche, 31077 Toulouse, France.
(e-mail: aseuret,fgouaisb,baudouin@laas.fr).

Abstract

This manuscript presents a recent overview of time-delay systems as described in the proposal of the ANR project SCIDIS.
After a brief description of the various problems arising in the study of such a class of infinite dimensional systems, we
recall the main tools employed in the literature to address stability using a time domain approach, mainly the Lyapunov-
Krasovskii theorem. The report lists, for instance, the class of delay systems that have been mainly dealt with in the literature,
possible selections for the Lyapunov-Krasovskii functional candidate, and some integral and matrix inequalities that have been
mainly provided by the participant to the SCIDIS project. Finally, several examples of time-delay systems are considered and
demonstrate the potentials of the recent advances in this field.

1 Introduction

1.0.1 Particularities of time-delay systems

Unlike more classical systems governed by ordinary differential equations, time-delay systems represent a particular
class of infinite dimensional systems that can be modeled for instance by the coupling of an ordinary differential
equation and a partial differential equation. This particularity has several implications on the properties of the
time-delay system under consideration

This section introduces some of the basic particularities of time-delay systems in terms of mathematical considera-
tions through a simple example. More particularly, this section exposes some reasons for which researches are still
investigating in the topic. To have a better understanding and reading of this section, we will focus on a simple
example. The goal is to help the reader to understand the most relevant aspects of time-delay systems. Let x ∈ R
be a variable whose evolution is governed by:

∀t > t0, ẋ(t) = −x(t− h) (1)

where h > 0 is a positive scalar which represents a constant delay. If one considers the delay-free case, i.e. h = 0,
it is well known that the solutions of the system are stable and are of the form x(t) = x(t0)et0−t. In the following,
particular aspects of this equation with delay will allow us pointing out the major difficulties of time-delay systems
and the difference with the delay-free case.

Initial conditions and functional state: Consider the case where h = −π/2. The two functions x1(t) = sin(t) and
x2(t) = cos(t) are trivial solutions of (1), which are depicted in Figure 1. In this figure, one can find a contradiction
with the Cauchy theorem. In the delay free case, if two solutions of this linear differential equation cross, then the two
solutions are the same. In this simple example, it is clear that the two solutions x1 and x2 cross each other infinitely
many times but are, by definition, not equal. This problem comes from the fact that the state of a time-delay system
is not only a vector considered at an instant t, as it is in the delay free case, but is function taken over an interval
(or a window) of the form [t − h, t]. Consequently, it is not sufficient to initialize the state of the system by only
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Fig. 1. Possible solution for h = π/2
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Fig. 2. Solution for h = 0, 1 and constant initial conditions

including the initial position of the state at time t = 0. It is required to define a vector function φ : [−h, 0] → R
such that x(θ) = φ(θ) for all θ lying in the first delay interval [−h, 0].

Note, however, that the Cauchy theorem still holds. It is rewritten as follows: If two solutions are equals over an
interval of length h, then the solutions are equals over the whole simulation time.

Infinite dimensional systems: Consider h = 1 and the initial conditions φ(θ) = 1, for all θ in [t0 − h, t0]. The
solutions are shown in Figure 2.

As expected, in the non delay case, the solution is a exponential decreasing function. In the delay case, the solution
are not always of this form anymore. First the solution have an oscillatory behavior around 0. Those oscillations are
the usual and expected effects when introducing a delay in a dynamical system. For small values of the delay, those
oscillations can of very low amplitude and thus negligible. However, for greater values of h (for instance h = 2), the
oscillations become of large amplitude and the solution are unstable.

Considering h = 1 and the same initial conditions, it is possible to construct the solution of the system by integrating
interval by interval:

t ∈ [−1, 0], x(t) = 1,

t ∈ [ 0, 1], x(t) = 1− t,
t ∈ [ 1, 2], x(t) = 1/2− t+ t2,

. . .

Thus, the solution of the system is a polynomial functions whose degree increases with time. One can then see the
time-delay system as an infinite dimensional system since the solutions of this time-delay system with a constant
initial condition are a polynomial of infinite dimension.
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Fig. 3. Solution for h = 0, 1 and constant and zero initial conditions

Another property of time-delay systems to understand that this class of systems is of infinite dimension, is to consider
the Laplace transform of equation (1). The characteristic equation is

s+ e−hs = 0

This characteristic equation, evein though it is quite simple, has an infinite number of complex roots as shown in
Figure 3. This remark also illustrates that time-delay systems are infinite dimensional systems.

Remark 1 The stability conditions based on the location of roots of the characteristic equation still holds, i.e. the
stability is ensured if its roots have a negative real part (see [GKC03] or [Nic01] for more detailed explanations).
These methods will not be discussed in this manuscript.

1.1 System and delay models

In this part, we will present the different types of delay systems encountered in the literature. We do not expose the
Cauchy problem, initially studied by Mishkis [Mys51]. The reader is referred to the works [BC63], [KM99] or [Ric02]
on the existence and uniqueness of solutions.

1.1.1 General representation of delayed systems

As we have said, delayed systems are dynamical systems governed by functional differential equations bearing both
on current and past values in time. If we assume that the derivative of the state vector can be expressed at each
time t, such systems are governed by differential equations of the form:

ẋ(t) = f(t, xt, ut),

xt0 = φ(θ), ∀θ ∈ [t0 − h, t0],

ut0 = ζ(θ), ∀θ ∈ [t0 − h, t0],

(2)

where h > 0 and the functions xt and ut emploies the Shimanov notation [Shi60], which consits of the following
definition

xt :

{
[−h, 0]→ Rn,
θ 7→ xt(θ) = x(t+ θ),

(3)

3



ut :

{
[−h, 0]→ Rn,
θ 7→ ut(θ) = u(t+ θ).

(4)

We will denote in the sequel C = C0([−h, 0],Rn), the set of continuous functions from [−h, 0] to Rn. The function
xt ∈ C represents the state of the delay system a time t, ut is the (control or disturbance) input of the system. The
initial conditions, denoted as φ and ζ at time t0, are functions from [t0−h, t0] to Rn and are generally assumed to be
continuous or piecewise continuous. Due to these features, delay systems belongs to the class of infinite dimensional
systems, since the state function xt belongs to an infinite dimensional state.

1.1.2 Linear delay systems

In this chapter, we will focus on the case of linear delay systems. These systems can be seen as the linearized version
of the general nonlinear class of systems presented in (2) around a local equilibrium. The most usual class of linear
systems with delays is described by the following functional differential equation{

ẋ(t) = Ax(t) +Adx(t− h), ∀t ≥ 0,

x(t) = φ(t), ∀t ∈ [−h, 0],
(5)

where x(t) ∈ Rn denotes the instantaneous state vector, φ is a function defined on the interval [−h, 0] and represents
the initial conditions of the system. The matrices A and Ad are, in the simplest case, assumed to be constant matrices.

Equation (5) refers to the case of linear continuous-time systems subject to a discrete delay, in the sense that only
a discrete value of the state function xt, i.e. x(t − h) affects the dynamics of the system. As mentioned in the
previous chapter, this class of systems appears in Networked Control Systems [HNX07, Zam08], among many other
application fields such as Biology, Traffic Control (see [Fri14, Nic01, Ric03, SNA+11] for more information). In this
formulation, the delay h may be a constant scalar of a time-varying function. The usual assumption on the delay
will be discussed in the next section. One may also face systems where several discrete values of the state function
affect the current dynamics. In this situation, we are used to say that the system has multiple delays. The reader
may refer to [CSC98, CGL05, DLSW09, OES05, SO05] to cite only few, in order to have an overview of the various
methods for the stability analysis and control of this class of systems.

Another class of time-delay systems is the so-called distributed delay systems. It consists of dynamics where the
whole state function xt affects the current dynamics of the system. These systems can be modeled as follows ẋ(t) = Ax(t) +

∫ 0

−h
AD(θ)x(t+ θ)dθ, ∀t ≥ 0,

x(t) = φ(t), ∀t ∈ [−h, 0],

(6)

where x(t) ∈ Rn is the state vector, φ ∈ C([−h, 0]→ Rn) is a continuous function, representing the initial conditions,
A is constant matrix and AD denotes a known continuous function of L2([−h, 0]→ Rn×n) and represents the kernel
of the distributed delay. Several applications follows this clas of dynamics such as combustion in rocket motor
chambers in [DLSW09], population dynamics with gamma-distribution [CG82], etc... This class of systems has been
studied in a large number of papers (see [CZ07, FL12, FT09, Mor06, MNG07, SGA15, SF13, XFS01] to cite only
few).

In order to cope with a larger class of systems, some uncertainties or disturbances may affect the previous dynamics.
In this situation, the matrices A and Ad are not assumed to be know nor to be constant. The most common classes
of uncertainties that have been considered in the literature are described below

Norm Bounded Uncertainties: In this situation, the matrices A and Ad are unknow and/or time-varying pa-
rameters but are assumed to satisfies the following condition

A = EΘ(t)F,Ad = EdΘ(t)Fd,
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where the matrices E,F,Ed, Fd, of appropriate dimension, are known and the uncertainties are captured in the
uncertain matrix Θ, which verifies

Θ>(t)Θ(t) ≤ εI,
where ε is a given parameter. This last equation justifies the name of norm-bounded uncertainties.

Polytopic Uncertainties: In this situation, the matrices A and Ad are assumed to belong to a polytope given by[
A Ad

]
∈ Coi=1,...m

{[
Ai Aid

]}
where m is a positive integer, and the matrices Ai and Aid, where i = 1, . . . ,m are constant and known. This
formulation implicitly refers to the existence of weighting scalar functions λi, for i = 1, . . . ,m that maps R to
[0, 1], and such that

∑m
i=1 λi(t) = 1 and

[
A Ad

]
=

m∑
i=1

λi(t)
[
Ai Aid

]
.

In general, assessing stability of such classes of uncertain time-delay systems can be performed by simple tricks trans-
forming stability conditions for a nominal linear delay system (5) to cope with these uncertainties. This manipulation
relies generally on the convexity of the stability conditions with respect to the matrices A and Ad.

1.2 Usual assumptions on the delay functions

In this section, we will successively expose the various model of delays that can be found in the literature.

a) Constant delay functions: The first studies of time-delay systems concerned indeed the case of constant delay
functions and was mainly carried out using frequency domain approaches. Indeed, one may look at several stability
criteria applied to the Laplace transfer function (the reader may refer to the following books [GKC03, Nic01].
Concerning the time-domain approach and the second Lyapunov method, numerous studies have been provided,
see for instance [Fri14, Kha12] to assess stability of linear systems with constant and known/unknown delays. Some
of them are said delay-independent (see for instance [Bli01a, Bli01b, DLZ14, LGG16, NG12, XSW16] among many
others), meaning that the conditions does not depend on the value of the delay, or are delay-dependent (see for
instance [FL12, Fri01, Fri02, FS04, FS03, GP06a, HWLW05, MPKL01, XL05] among many others), meaning here
that the condition may be guaranteed only for some values of the delay. Since the 90’s, an explosion of the number
of stability criteria within the time domain approach have been made possible thanks to the developments of
semi-definite programming, allows to find solutions to Linear Matrix Inequalities in a simple and efficient manner,
for instance on Matlab [EGN00, GA94, LPH02, Löf04, RZ00, HL03, Pac94, VB00]. For instance, one may have a
look at [KNR99, LdS97] and [Nic01, GKC03] to find the first contributions in this direction.

b) Bounded time-varying delays: In practical application, the assumption of having constant delays becomes to
restrictive. In particular in Networked Control Systems applications (see for instance [HNX07, LPA+06, Zam08]),
delay may arise from the communication through unreliable (wireless) networks. For instance, congestion in the
network and the packet loss phenomenon may lead to non negligible variations on the delay functions.

In such situations, researchers consider delay functions that verify the following assumption [J.H97]. There exists
a positive scalar h2 > 0 such that :

0 ≤ h(t) ≤ h2. (7)

Some authors also include some additional conditions on the derivative of the delay functions in order to ensure
causality and regularity. This will be described in the next paragraph. If no additional constraints on the derivative
of the delay function is required, several authors denotes this class of delay function as fast-varying delays [FSR04].
This class of delay functions are of particular interests, notably for sampled-data and/or networked control systems.

c) Interval or Non small delays: Again, in the context of networked control systems or in some application such
as in [ASRR07], the previous assumption may be too restrictive, since the delay functions are allowed to reach
zero (i.e. system without delay), while, from the application point of view, this would be that the transport of the
information or more generally of the quantity of interest may be achieved with a arbitrarily fast velocity. However
in some applications, this velocity is limited and therefore, there is a minimal time before the current quantity of
interest is available to the controller or to the system.

Hence, the assumption saying that the delay functions belong to an interval of the form [0, h2] becomes too
restrictive and the associated stability analysis may lead to inherent conservatism. One can then define interval
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or non small delay functions that prevent the delay functions to be equal or too close to zero. The assumption on
the delay functions is related to the existence of two positive scalars 0 < h1 ≤ h2 such that:

0 < h1 ≤ h(t) ≤ h2. (8)

The first results in this direction were developed in [Fri04, Fri06, FS00], or in [JH05, JH06]. The method
proposed in these papers consists in rewriting the delay function as the sum of a constant and known delay equal,
for instance h1 or (h1 + h2)/2 and of the residual time-varying function. The first constant delay term can be
seen as the nominal delay while the second term represents the variation or the disturbance with respect to this
nominal constant delay.

d) Delay functions with constrained derivatives A large number of papers addressing the stability systems
subject to time-varying delays require additional assumptions on the delay functions. It generally comes from the
differentiation of integral terms considered over interval of the form [t, t− h(t)] or [t− h(t), t− h2]. Historically,
the first contributions in this direction require the following condition (see for instance [FS03, FS02b]

ḣ(t) ≤ d < 1. (9)

Looking more into the details of this assumption, the previous condition imposes that the function f(t) = t−h(t),
representing the evolution of the delayed information with respect to time, is strictly increasing and consequently
bijective. From the engineering point of view, this assumption means that the delayed information or the quantity
of interest affect the systems following a chronological order.

Another usual assumption arising from the recent developments on the stability analysis of systems subject to
time-varying delays is provided below.

d1 ≤ ḣ(t) ≤ d2. (10)

Here, the upper bound d2 is not necessarily strictly smaller than 1 [SG13]. This assumption is required when
the resulting stability conditions depends linearly on the derivative of the delay functions. Thus this assumption
is considered to include more constraints to the allowable delay function.

e) Piecewise continuous delay functions: This situation is relevant when one has to face with networked control
systems where the information may travel among several communication channels. In this situation, the delay
function may be affected by a brutal modification of channel, leading to a discontinuity in the delay function.
Another relevant motivation of this class of delay functions is concerned with the stability analysis of sampled-data
systems (see [FSR04]) where the effects of a periodic or aperiodic sampling can be modeled as a discontinuous
delay function, which, in addition, verifies the following constraint on its derivative

ḣ(t) ≤ 1. (11)

Coming back to the comments provided on assumption d), this assumption makes that the function f(t) = t−h(t)

can be constant. This means that the information is held while the delay verifies ḣ(t) = 1, which corresponds
indeed to the effect of a sampling.

f) State-dependent delay functions: A less usual class of time-delay systems concerns the case of state depen-
dent delay functions.

2 Stability of time-delay systems using the Second Lyapunov Method

In this section, we recall some results assessing the asymptotic stability of delay systems by focusing on a time-domain
approach related to the second method of Lyapunov .

2.1 Second Lyapunov method

Let us consider the generic time-delay system given by

ẋ(t) = f(t, x(t), xt), ∀t ≥ 0

x0(θ) = φ(θ), ∀θ ∈ [−h, 0],
(12)

for which we assume the existence and uniqueness of solutions and, without loss of generality, the solution xt = 0 is
an equilibrium
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2.2 Lyapunov-Razumikhin approach

In this approach, the goal is to consider a classical Lyapunov function V (t, x(t)), as the one employed for the delay-
free case (i.e. for ordinary differential equations). The main idea of the Lyapunov-Krasovskii theorem is that it

is not necessary to ensure the negative definiteness of V̇ (t, x(t)) along all the trajectories of the system. Indeed,
it is sufficient to ensure its negative definiteness only for the solutions that tend to escape the neighborhood of
V (t, x(t)) ≤ c of the equilibrium. This idea is formalized in the following theorem [KM99].

Theorem 2 let u, v and w : R+ → R+ be nondecreasing functions such that u(θ) and v(θ) are strictly positive for
all θ > 0. Assume that the vector field f of (12) is bounded for bounded values of its arguments.

If there exists a continuous and differentiable function V : R× Rn → R+ such that:

a) u(‖φ(0)‖) ≤ V (t, φ) ≤ v(‖φ‖),

b) V̇ (t, φ) ≤ −w(‖φ(0)‖) for all trajectories of (12) satisfying:

V (t+ θ, φ(t+ θ)) ≤ V (t, φ(t)), ∀θ ∈ [−h, 0], (13)

then the solution xt = 0 is uniformly stable for (12).

Moreover, if w(θ) > 0 for all and is there exists a strictly increasing function p : R+ → R+ such that p(θ) > θ for
all θ > 0 and:

i) u(‖φ(0)‖) ≤ V (t, φ) ≤ v(‖φ‖),

ii) V̇ (t, φ) ≤ −w(‖φ(0)‖), for all trajectories of (12) verifying:

V (t+ θ, x(t+ θ)) ≤ p(V (t, x(t))), ∀θ ∈ [−h, 0], (14)

then such a function V Lyapunov-Razumikhin function and solution xt = 0 is uniformly asymptotically stable for
system (12).

In practice, the functions p are usually considered as p = qθ where q is a constant strictly greater than 1. Moreover,
the Lyapunov functions more commonly employed in the Razumikhin approach are of the forme:

V (t) = x>Px(t), (15)

where P is a symmetric positive definite matrix of dimension n, the dimension of x(t). Equation (14) thus becomes:

x>(t+ θ)Px(t+ θ) ≤ qx>(t)Px(t), ∀θ ∈ [−h, 0], and q > 1. (16)

Although the Lyapunov-Razumikhin approach generally leads to more conservative results than those based on the
Lyapunov-Krasovskii theorem, presented in the next paragraph, it allows taking into account variable delays without
restriction on derivative of the delay function (9) and generally leads to delay-independent stability conditions. It
has also been shown that for constant delays, the existence of a Lyapunov-Razumikhin function is equivalent to the
existence of a Lyapunov-Krasovskii functional [Dri77].
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2.3 Lyapunov-Krasovskii approach

The Lyapunov-Krasovskii method is an extension of the second Lyapunov method dedicated to the stability analysis
of functional differential equations. It consists in selecting “energy” functionals, i.e. (functions of the functional
state xt) of the form V(t, xt), that are positive definite and decreasing along the trajectories of system (12). The
Lyapunov-Krasovskii theorem is stated below [KM99]

Theorem 3 let u, v and w : R+ → R+ be continuous and increasing functions such that u(θ) et v(θ) are strictly
positive for all θ > 0 and u(0) = v(0) = 0. Assume that the vector field f of (12) is bounded for all bounded values
of its arguments.

If there exists a continuous and differentiable functional V : R× C → R+ such that :

a) u(‖φ(0)‖) ≤ V(t, φ) ≤ v(‖φ‖),

b) V̇(t, φ) ≤ −w(‖φ(0)‖) for all t ≥ t0 along the trajectories of (12), where V̇(t, φ) denote here the derivative of V

in the Dini sense, i.e. V̇(t, φ) = limε→0+ sup V(t+ε,xt+ε)−V(t,xt)ε .
Then the solution xt = 0 of (12) is uniformly stable.

Moreover, if w(θ) > 0 for all θ > 0, then the solution xt = 0 is uniformly asymptotically stable for system (12).

Such a functional is called a Lyapunov-Krasovskii functional.

The main idea behind the statement of this theorem is to determine a positive definite functional V, such that its
derivative with respect to time along the trajectories of the system (12) is negative definite. The main problem
within the application of this theorem is the design functional and then to provide some conditions that guarantee
its positive definiteness and the negative definiteness of its derivative

The derivation of stability conditions using Lyapunov-Krasovskii functionals usually involves quite elaborate de-
velopments. To give an idea of the procedure involved in this approach and to provide a glimpse of its technical
flavor, we present here some basics on the procedure to follow in order to derive asymptotic stability criteria for
time-delay systems expressed in terms of Linear Matrix Inequality (LMI). Based on elementary considerations, we
expose the main difficulties and the most relevant tools. The basic steps for deriving constructive stability conditions
are illustrated as follows.

Step 1. Propose a candidate Lyapunov-Krasovskii functional V . The Lyapunov-Krasovskii functional that is necessary
and sufficient for the stability of LTI systems with delay has a rather complex form, even for the case of constant
delays [KM99]. Let us provide a non-exhaustive list of usual terms that are employed in the literature

• Complete Lyapunov-Krasovskii functionals:

V(t, xt) = x>t (0)Pxt(0) + 2x>t (0)

(∫ 0

−h
Q(s)xt(s)ds

)
+

∫ 0

−h

∫ 0

−h
x>t (s)T (s, θ)xt(θ)dsdθ +

∫ 0

−h
x>t (s)(S + (h+ s)R)xt(s)ds,

(17)

where the matrices P = P>, R = R> and S = S> and the matrix functions Q and T are matrices of appropriate
dimension. The matrices function T also verifies T (s, θ) = T>(θ, s).

Behind the complexity of the formulation, there are several interests of employing such a functionals. First
of all, it is easy to see that when the delay h tends to zero, one recovers the classical quadratic function usually
employed for linear time invariant systems. A second and notable interest of this functional has been demonstrated
in [KZ03]. In this paper, it is shown that a linear system subject to a constant delay is asymptotically stable if
and only if it admits a Lyapunov-Krasovskii functional that have exactly the same form as in (17), where the
parameters P,Q, R, S, T are derived from the solution of matrix partial differential equations. Unfortunately, this
notable result only provides the existence of the Lyapunov-Krasovskii functional but does not provide a method
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to construct those parameters from a numerical point of view. Therefore this method can not be directly applied
to assess stability of time-delay systems.

An attempt in this direction was proposed by K. Gu in [Gu97, Gu01, GKC03] using a discretization process
on the delay interval in which the parameters are, to stay short, affine functions of the integration variables. The
resulting stability conditions are expressed in terms of LMI.

In [PPN07, PB11, PPL09], another method was proposed based on polynomial parameters, that successfully
address the asymptotic stability of time-delay systems through the SoS of Squares framework [Par00, Par04,
PPP02].

A notable aspect of these two methods is that the objective is finally to derive a numerical test to approximate
the parameters of the Complete Lyapunov-Krasovskii functionals. Since in both methods, letting the number of
discretization or the degree of the polynomials tend to infinity lead to a good approximation of those parameters.
Notably, a discussion on the conservatism of the polynomial method was discussed in [PB11], leading potentially
to a non conservative test.

Nevertheless, these two resulting stability conditions have drawbacks. Their complexity in terms of implemen-
tation and of number of decision variables dmade these method not “user-friendly” and many researchers of the
fields were looking for simpler Lyapunov-Krasovskii functionals (see for instance [KS96]), leading to simplified
stability conditions.
• Delay-independent Lyapunov-Krasovskii functionals:

V0(xt) = x>t (0)Pxt(0) +

∫ 0

−h
x>t (s)Sxt(s)ds.

This functional can be compared with (17), by setting the parameters Q, T and R to zero. The specifications
delay-independent comes from the fact that, when deriving stability conditions from this functional, the resulting
conditions does not depend on the value of the delay h. Hence, if the condition holds, it implies that the system
remains stable for any values of the delay.

Of course this functional leads to conservative results since a large class of the delay systems may be stable
only for some values of the delay. This is the reason why several study have considered functionals leading to
delay-dependent conditions
• Delay-dependent Lyapunov-Krasovskii functionals:

V (xt, ẋt) = x>t (0)Pxt(0) +

∫ 0

−h
x>t (s)Sxt(s)ds+ h

∫ 0

−h

∫ 0

θ

ẋ>t (s)Rẋt(s)dsdθ (18)

or equivalently

V (xt, ẋt) = x>t (0)Pxt(0) +

∫ 0

−h
x>t (s)Sxt(s)ds+ h

∫ 0

−h
(h+ s)ẋ>t (s)Rẋt(s)ds

where the matrices P, S and R are symmetric positive definite. This class of functionals, introduced in in [FS02a], is
richer than the delay-independent functional and includes many types of functionals. The novelty in the definition
of this functional relies on the last terms, which depends on ẋt(s) = d

dtx(t+ s). This functional does not exactly
meets the requirement of the Lyapunov-Krasovskii theorem since this theorem does not mention the possibility for
a functional to have ẋt as an argument. Nevertheless, extensions of the Lyapunov-Krasovskii theorem including
this particularity has been investigated and is now admitted (see, for instance [Fri14, Section 3.1.2]).
• Multiple integral functionals:

Vm(ẋt) =
h2

2

∫ 0

−h

∫ 0

θ1

∫ 0

θ2

ẋ>t (s)Rmẋt(s)dsdθ2dθ1 (19)

or equivalently

Vm(ẋt) =
h2

2

∫ 0

−h
(h+ s)2ẋ>t (s)Rmẋt(s)ds

where the matrix Rm is positive definite. This functional was considered. This class of functionals, introduced in
[SLCR10] provided new possibilities to enrich the functional by many terms. In order to be efficient, from the
numerical point of view, these functionals require generally the introduction of an additional quadratic term which
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depends on
∫ 0

−h xt(s)ds or on
∫ 0

−h
∫ 0

θ
xt(s)dsdθ. Many extensions to more general multiple integral functional have

been considered in the literature and have led to some numerical improvements (see, for instance, [FP13, PKPL11],
among many others).
• Delay partitioning/decomposition functionals:

Vm(xt) = h

∫ 0

−h/2

[
xt(s)

xt(s− h/2)

]>
Rm

[
xt(s)

xt(s− h/2)

]
ds (20)

Following the idea of the discretization method provided by K. Gu in [Gu97, Gu01, GKC03], several researches
turns to enrich the functional with intermediate values of the state function. Indeed in the previous functional, one
can see the introduction of the term xt(−h/2). As for the discretization method, this method allows to refines the
resulting stability conditions by taking into account more and more information on the state function xt. Several
contributions towards this direction were proposed [GP07, Han08, ZH09, ZHWZ11, FLY15] among many other.
It is worth mentioning that the analysis of reduction of the conservatism was studied in [Bri11, GP07].

To conclude on the selection of the candidate for being a good Lyapunov-Krasovskii functionals, the previous
discussion show that much efforts have been dedicated to the construction of more and more evolved functionals.
Except for the discretization and the delay partitioning methods, in most of the case, the main procedure is to follow
the paradigm “try and check”, meaning that researchers were developing and introducing more and more terms to
be included in the functional and have followed the procedure to derived “good” stability conditions. There was no
clear vision and explanation on what is a good functional for a time-delay system. This question consisting in finding
a good candidate still represents an open question, on which we are trying to provide an answer.

Step 2. Compute the derivative of V .

For the functional (18) this leads to

V̇ (xt, ẋt) = 2ẋ>t (0)Pxt(0) + x>t (0)Sxt(0)− x>t (−h)Sxt(−h)

+h2ẋ>t (0)Rẋt(0)− h
∫ t

t−h
ẋ>(s)Rẋ(s)ds.

(21)

The idea is then to rewrite this expression as a quadratic form expressed using all the relevant information on the
state function, corresponding to the “LMIzation” of the expression of V̇ (xt, ẋt). The relevant information are in this
situation composed by xt(0), ẋt(0) and xt(−h). First, we note that there exists a redundancy in these three vectors
by noting that ẋt(0) = Axt(0) + Adxtt(−h), in the case of a linear delay systems. One can either replace ẋt(0) by
its expression or one may also keep this information and use the descriptor formulation [FS02a] or introduce slack
variables [HWXL07b]. Note that in the case of constant and know matrices A and Ad, all these approaches lead to
equivalent results (see [GP06a] for more details).

Step 3. Over-approximate the integral terms.

Note that in (21), the last integral term cannot be straightforwardly converted in the quadratic formulation described
above. Indeed the problem comes from the last negative integral term

−
∫ 0

−h
ẋ>t (s)Rẋt(s)ds,

which is an impediment to the analysis of the sign of (21). Such terms are common in the derivative of Lyapunov-
Krasovskii functionals and they need to included using over-approximation methods. This procedure is applied in
order to replace the integral terms by more simple expressions, that can be expressed in a quadratic form to be
included in the previous formulation.

In the sequel, we will call this procedure as the use of integral inequalities. Unavoidably, using such integral inequalities
introduces some conservatism in the analysis and consequently in the resulting stability conditions. In the next
section, we will review the existing methods, which have been employed in the literature.
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3 Integral inequalities and time-delay systems

Following the discussion on the methodology to derive stability conditions for time-delay systems and the steps of
the procedure described in the previous section, the objective of this section is to provide generic tools that enable
the “LMIzation” process, which consists, again, in transforming the previous expression in a more appropriate form
to obtain an LMI formulation of the stability conditions. Indeed this step is crucial and, consequently, has to be
studied carefully. In the following, we will consider the problem of providing integral inequalities which deliver a
lower bound of an integral quadratic term of the form∫ 0

−h
x>t (u)Rxt(u)du or

∫ 0

−h
ẋ>t (u)Rẋt(u)du

where h is a positive scalar. In the sequel, a review of existing integral inequalities that have been recently employed
in the context of time-delay systems will be provided.

Remark 4 For simplicity, the next developments will mainly focus on the derivation of lower bounds for the left-
hand side integral of the previous equation. We will also show methods to extend these first results to the right-hand
side integral.

3.1 Jensen’s inequality

The first method to treat this problem is based on the Jensen’s inequality formulated in the next lemma

Lemma 5 For a given n × n-matrices R � 0 and for any piecewise continuous function x in [−h, 0] → Rn, the
following inequality holds: ∫ 0

−h
x>(u)Rx(u)du ≥ 1

h
Ω>0 (x)RΩ0(x) (22)

where

Ω0(x) =

∫ 0

−h
x(u)du.

The proof is omitted and can be found in several reference books [GKC03].

Naturally, Jensen’s inequality is likely to entail some inherent conservatism. Several works have been devoted to the
reduction of associated conservatism using the discretization of the delay interval [Bri11, GP07].

In the next section we propose to use an alternative solution to reduce the inherent conservative of this inequality
using two class of well-established inequalities. The first one refers to the so-called Wirtinger’s inequalities issues
from the Fourrier analysis. The second one is a particular interpretation of the Bessel’s inequality on Hilbert space.

3.2 Wirtinger-based integral inequality

3.2.1 Wirtinger inequalities

In the literature [Kam07], Wirtinger’s inequalities refer to inequalities which estimate the integral of the derivative
function with the help of the integral of the function.

Wirtinger’s inequality have already been widely used in Automatic Control. To cite only few works, one may look at
[Krs09, Chapter 15], and at [FO09] in the context of Distributed Parameter Systems or in [LF12] for Sampled-Data
Systems.

Often proved using Fourier analysis, it exists several versions which depend on the characteristics or constraints we
impose on the function. Let us focus on the following Wirtinger’s inequality adapted to our purpose.
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Lemma 6 Consider a given n × n-matrix R � 0. Then, for all function z in C1([−h, 0] → Rn) which satisfies
z(0) = z(−h) = 0, the following inequality holds∫ 0

−h
ż>(u)Rż(u)du ≥ π2

h2

∫ 0

−h
z>(u)Rz(u)du, (23)

Proof : The proof is omitted but can be found in [Kam07]. ♦

It is worth noting that this inequality is not related to the Jensen’s inequality in its essence. Indeed, the function
z has to meet several constraints whereas the function x is assumed to be a continuous function in the Jensen’s
inequality. The next section shows how to create a relation between them.

3.2.2 Application of the Wirtinger’s inequalities: First version [SG12]

The objective of this section is twofold. On the first hand, we aim at providing new tractable inequalities based
on Lemma 6, which can be easily implemented into a convex optimization scheme. On the other hand, we propose
an inequality which is proved to be less conservative than Jensen’s one. Thus a first step consists in defining an
appropriate function z such that this integral appears naturally in the developments. Thus a necessary condition is
that the function z has the following form

zW (u) =

∫ u

−h
x(s)ds− y(u), (24)

where x is a continuous function in [−h, 0]→ Rn as defined in the Jensen’s inequality and y is a function of u to be
defined and are chosen so that the function z meets the different constraints imposed by Lemma 6.

Following this idea, the next lemma is provided ([SG12]).

Lemma 7 Let R be a positive definite matrix of Sn. Then, for any continuous function x in [−h, 0] → Rn the
following inequality holds:

∫ 0

−h
x>(u)Rx(u)du ≥ 1

h

[
Ω0(x)

Ω1(x)

]> [
R

π2

4 R

][
Ω0(x)

Ω1(x)

]
(25)

where

Ω0(x) =

∫ 0

−h
x(u)du

Ω1(x) =

∫ 0

−h
x(u)du− 2

h

∫ 0

−h

∫ u

−h
x(s)dsdu

Proof : For any continuous function x from [−h, 0] to Rn, define the function zW1 given by

zW1(u) =

∫ u

−h
x(s)ds− u+ h

h

∫ 0

−h
x(s)ds =

∫ u

−h
x(s)ds− u+ h

h
Ω0(x), ∀u ∈ [−h, 0].

The second term is a polynomial of degree 1 which compensates the first term when u = 0. By construction, the
function zW1(u) meets the conditions of the Wirtinger’s inequality given in Lemma 6, that is zW1(−h) = zW1(0) = 0.
We also note that the function zW1 admits a continuous derivative with respect to the variable u, which is given by

żW1(u) = x(u)− 1

h
Ω0(x), ∀u ∈ [−h, 0].
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This function zW1 has also been defined such that the computation of żW1 makes appear the original function x as
suggested in equation (24). The computation of the left-hand-side of the inequality stated in Lemma 6 leads to:∫ 0

−h
ż>W1(u)RżW1(u)du =

∫ 0

−h
x>(u)Rx(u)du− 1

h
Ω>0 (x)RΩ0(x) (26)

Remark 8 At this step, one can already find an alternative proof of the Jensen’s inequality. Indeed, since the
matrix R is assumed to be symmetric positive definite, the left-hand-side of (26) is positive definite, which ensures
the following inequality

0 ≤
∫ 0

−h
ż>W1(u)RżW1(u)du =

∫ 0

−h
x>(u)Rx(u)du− 1

h
Ω>0 (x)RΩ0(x).

We already note that this inequality is exactly the Jensen’s inequality in Lemma 5.

Consider now the right-hand side of the inequality (23). Applying the Jensen’s inequality, we have

π2

h2

∫ 0

−h
z>W1(u)RzW1(u)du ≥ π2

h3

(∫ 0

−h
zW1(u)du

)>
R

(∫ 0

−h
zW1(u)du

)
, (27)

where simple calculations show that∫ 0

−h
zW1(u)du =

(∫ 0

−h

∫ u

−h
x(s)dsdu− h

2

∫ 0

−h
x(u)du

)
= −h

2
Ω1(x).

The proof is concluded by application of the Wirtinger’s inequality provided in Lemma 6 which ensures∫ 0

−h
x>(u)Rx(u)du− 1

h
Ω>0 (x)RΩ0(x) ≥ π2

4h
Ω>1 (x)RΩ1(x),

as to be demonstrated. ♦

Several comments on this new inequalities can already be done. In light of Remark 8, the Wirtinger inequality
provides a method to obtain a more accurate lower bound of the integral∫ 0

−h
x>(u)Rx(u)du.

Indeed, since R is positive definite, the term π2

4hΩ>1 (x)RΩ1(x) is also positive, showing that Lemma 7 is less conser-
vative than the Jensen’s inequality. A second comment concerns the introduction of a new information Ω1(x) which
depends on the function x. As shown in [SG12] (and latter on in this chapter), a particular attention has to be paid
on this term when one wants to use in inequality to derive stability condition for time-delay systems.

3.2.3 Application of the Wirtinger’s inequalities: Second version

In this section, we propose to refine and precise this first Wirtinger-based integral inequality. To do so, we will
consider again a function z as defined in (24). This will lead to the following Lemma which was presented in [SG13].

Lemma 9 Consider a given matrix R � 0. Then, for all continuous function x in [−h, 0] → Rn the following
inequality holds: ∫ 0

−h
x>(u)Rx(u)du ≥ 1

h

[
Ω0(x)

Ω1(x)

]> [
R

3R

][
Ω0(x)

Ω1(x)

]
(28)
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where

Ω0(x) =

∫ 0

−h
x(u)du

Ω1(x) =

∫ 0

−h
x(u)du− 2

h

∫ 0

−h

∫ u

−h
x(s)dsdu

Remark 10 This new lemma takes the same formulation as in Lemma 7 but only a coefficient in the right-hand
side has been modified. Inded compared to Lemma 7, the coefficient π2/4 is replaced by a greater value, 3. Therefore,
the lower bound of the integral provided in this new version is less conservative.

Proof : Following the proof of Lemma 7, we introduce a new function zW2 defined for any continuous function x,
given by define the function z given by

zW2(u) =

∫ u

−h
x(s)ds− u+ h

h
Ω0(x)− u(u+ h)

h2
Θ, ∀u ∈ [−h, 0]. (29)

where Θ is a constant vector of Rn to be defined. The difference between z and the one proposed in [SG12] appears
in the third term. This last term is a polynomial term of degree 2, which becomes zero when u = −h and u = 0.
Again, by construction, the function zW2(u) meets the requirements conditions of the Wirtinger’s inequality given
in Lemma 6, that is z(a) = z(b) = 0.

Then following the same procedure as in Lemma 9, we first note that the derivative of z with respect to u is given
by

żW2(u) = x(u)− 1

h
Ω0(x)− h+ 2u

h2
Θ, ∀u ∈ [−h, 0].

Then we expand the expression of

∫ 0

−h
ż>W2(u)RżW2(u)du and on the other side we apply the Jensen inequality to∫ 0

−h
z>W2(u)RzW2(u)du. After performing several calculations of integral and integrations by parts (the details can

be found in [SG13]), the following inequality is derived∫ 0

−h
x>(u)Rx(u)du− 1

h
Ω>0 (x)RΩ0(x)− 3

h
Ω>1 (x)RΩ1(x) ≥(

π2−12
36h

)
(Θ− 3Ω1(x))>R(Θ− 3Ω1(x)).

Since 12 ≥ π2 and R � 0, the right-hand side of the previous inequality is non positive independently of the choice
of Θ. Hence, its maximum is reached and is zero when selecting Θ = 3Ω1(x), which concludes the proof. ♦

3.3 Extension of the Wirtinger-based inequalities

Compared to the existing contributions within the stability analysis of time-delay systems, the Wirtinger-based
integral inequality can be seen as an alternative solution of the discretization or the partition of the delay interval.
The main interests of this inequality are described below.

• Wirtinger-based inequality instead of Jensen’s inequality: Since the Wirtinger-based integral inequality
has a similar structure as the Jensen’s inequality, it is somehow easy to extend the analysis of various classes of
time-delay systems, for instance, uncertain systems, fuzzy systems, Lur’e systems, neural networks, systems with
input saturations, or various classes of control problems such as exponential stability, stabilization, optimal control,
etc...
• Futher improvements on integral inequalities: The conservatism of stability conditions for time-delay sys-

tems employing the Jensen’s inequality was already pointed out in the 2000’s. For a long time, the only method to
reduce the conservatism of these analysis was to employ a discretization method, a delay-partitioning approach, to

14



augment the model a state augmentation or to introduce additional terms in the Lyapunov-Krasovskii functional
in a heuristic manner (i.e. ”try and check”). The Wirtinger-based integral inequality provides a new direction for
the reduction of the conservatism. Several researches turn out to provide less conservative integral inequalities
that refines this new results. On a first hand, one may look at the Auxiliary-function based integral inequality
in [PLL15], the free-matrix-based integral inequality in [ZHWS15], the Wirtinger-based double integral inequality
[PKP+15] or in [Kim16, CXC+16] and the Bessel-Legendre inequality [SG14, SG15, SGA15, GT16]. Details and
explanation on the last method will be provided in the following section, that gives an alternative and more
accurate vision of this inequality and also generalizes its concept.
• Summation inequalities for discrete systems with delays: On the other hand, a summation version of the

Jensen’s inequality has been widely employed in the literature to assess stability of discrete-time systems with time-
delay. Therefore, the Wirtinger-based integral inequality gave also a motivation to translate this integral inequality
into the discrete-time domain. Indeed new summation inequalities have been derived in [SGF15, ZH15, GKNT15,
NTP15] or in [CLX16] and have led to less conservative stability conditions on various class of discrete-time-delay
systems.

3.4 Bessel-Legendre inequality on Hilbert spaces

In the previous section, we have shown that increasing the degree of the polynomial function in zW1 allows a reduction
of the conservatism of the resulting integral inequality. In this section, we aim at providing a method that pursues
this idea of increasing the degree of the polynomial terms. However, at this stage, there is no obvious method that
allows generalizing this method and to select in an accurate manner a “good” sequence of polynomials and the right
“additional signals”, which will be denoted as Ωi(x), for i = 2, 3, . . . .

In this section, we aim at presenting a method to extend, in a generic manner, the Wirtinger-based integral inequality
and to provide less and less conservative integral inequalities. This method is based on the Bessel’s inequality on
Hilbert Space and on the sequence of Legendre polynomials. A motivation of this solution is provided hereafter.

3.4.1 Preliminaries

In this section, we will present an general integral inequality that can be interpreted as the Bessel inequality on
Hilbert spaces. In order to fully understand this vision, let us recall a technical detail in the proof of the first
Wirtinger-based integral inequality presented in Lemma 7. In this proof, a remark on equation (26) mentioned that
an alternative proof of the Jensen’s inequality than the usual one. Let us first recall this equation with the particular
selection of R = I to simplify the next developments. After some calculations we obtained the following equation

∫ 0

−h
|z0(u)|2du =

∫ 0

−h
|x(u)|2du− 1

h

∣∣∣∣∫ 0

−h
x(u)du

∣∣∣∣2 (30)

where

z0(u) = x(u)− 1

h

∫ 0

−h
x(u)du, ∀u ∈ [−h, 0].

The function z0 can be interpreted as the difference between the function x under consideration and its average over
the interval [−h, 0]. It can be also rewritten in the following form

z0(u) = x(u)− L∗0(u)

∫ 0

−h
L∗0(u)x(u)du, ∀u ∈ [−h, 0],

where L∗0(u) =

(∫ 0

−h
1ds

)−1/2
= h−1/2 is the constant function of C([−h, 0], which is normalized with respect to

the inner product defined on the set of C([−h, 0],Rn) by

〈f, g〉 :=

∫ 0

−h
f(u)g(u)du
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for any continuous functions f and g in C([−h, 0],Rn). In light of this expression, one can see that the vector z0
represent the difference between the function x and its projection, in the sense of the integral inner product to the
set of constant function. The norm associated to this inner product is defined by

‖x‖2C =

∫ 0

−h
x>(s)x(s)ds, ∀x ∈ C([−h, 0],Rn). (31)

and we can rewrite (30) as follows

‖x− L∗0(u) 〈L∗0, x〉 ‖2C = ‖z0‖2C = ‖x‖2C − 〈L∗0, x〉
2 ≥ 0 (32)

with the light abuse of notation consisting in denoting

〈L∗0, x〉 =

∫ 0

−h
L∗0(u)x(u)du =

√
1

h

∫ 0

−h
x(u)du

(
=

√
1

h
Ω0(x)

)

Following this framework, the Jensen’s inequality, which can be summarized as follows

‖x‖2C − 〈L∗0, x〉
2 ≥ 0,

can be interpreted in two manners. The first one is related to the Cauchy-Schwartz inequality. Another and more
interesting interpretation relies on graphical considerations. It consists in noting that the inequality ‖x‖2C ≥ 〈L∗0, x〉

2
,

means that the norm of the infinite dimensional vector x is greater than its projection over the set of constant
functions.

Let us see how this framework includes the Wirtinger-based integral inequality. In equation (29), we have considered
the following function

z1(u) = x(u)− 1

h
Ω0(x)− 3

h

(
h+ 2u

h

)
Ω1(x), ∀u ∈ [−h, 0].

where we already include the fact that the best slection for Θ is Θ = 3Ω1(x). Let us denote L1 the polynomial of

degree 1 given by L1(u) = h+2u
h and its normalized version denoted as L∗1(u) = L1(u)/

√
〈L1,L1〉 for all u in [−h, 0].

Simple calculations show that

〈L1,L1〉 =
h

3
, 〈L1, x〉 = Ω1(x),

and that these two polynomials L∗0 and L∗1 interestingly satisfies the following equalities

〈L∗0,L∗1〉 = 0, 〈L∗0,L∗0〉 = 〈L∗1,L∗1〉 = 1,

which means that the functions L∗0 and L∗1 represent an orthonormal sequence of C([−h, 0],Rn) associated to the
inner product 〈·, ·〉. Following the previous discussion, we can rewrite the Wirtinger-based integral inequality as
follows

‖z1‖2C =

∥∥∥∥∥x−
1∑
k=0

L∗k 〈L∗k, x〉

∥∥∥∥∥
2

C

= ‖x‖2C −
1∑
k=0

|〈L∗k, x〉|
2 ≥ 0,

which can be interpreted graphically as an inequality relating again the norm of the infinite dimensional function
x to its projection over the set of polynomials of degree less than 1. This inequality can also be interpreted as the
Bessel’s inequality on Hilbert space with the sequence of orthonormal polynomials {L∗0,L∗1}.

This discussion drive us to find a direct solution to the problem stated at the beginning of this section. Indeed it
suffices to design a sequence of orthonormal (or orthogonal) polynomials with respect to the inner product under
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consideration and to apply gives the directions to derive less conservative integral inequalities. More generally, the
problem has become the selection an appropriate orthonormal sequence (or basis) of the Hilbert space composed by
C([−h, 0],Rn) associated to the inner product 〈·, ·〉.

Hopefully, this problem has been widely investigated in Mathematics and there exists many works on orthogonal
basis on this particular Hilbert space. One may look at trigonometric functions or at polynomials functions such
as Legendre’s polynomials among many other functions. As induced by the notation L0 and L1 to denote the
polynomials of degree of 0 and 1, we will exploit, in the next paragraph, the properties of the Legendre polynomials
in order to derive efficient and less conservative integral inequalities. Latter, we will show how these inequalities can
be included in the stability analysis of time-delay systems.

3.4.2 Basics on Legendre polynomials

In the following, a brief recall of the Legendre polynomials and their relevant properties is proposed.

Definition 1 The Legendre polynomials considered over the interval [−h, 0] are defined by

∀k ∈ N, Lk(u) = (−1)k
k∑
l=0

pkl

(
u+ h

h

)l
.

with pkl = (−1)l
(
k
l

) (
k+l
l

)
.

The sequence of Legendre polynomials {Lk, k ∈ N} forms an orthogonal sequence with respect to the inner product:

〈f, g〉 =

∫ 0

−h
f(u)g(u)du, ∀f, g ∈ C. (33)

These polynomials satisfy the following properties:

Property 2 The Legendre polynomials verify the following properties

P1 Orthogonality:

∀(k, l) ∈ N2,

∫ 0

−h
Lk(u)Ll(u)du =

 0, k 6= l,
h

2k + 1
, k = l.

(34)

P2 Boundary conditions:
∀k ∈ N, Lk(0) = 1, Lk(−h) = (−1)k.

P3 Differentiation:

d

du
Lk(u) =


0, k = 0,
k−1∑
i=0

(2i+ 1)

h
(1− (−1)k+i)Li(u), k ≥ 1.

3.4.3 Bessel-Legendre inequality

Based on the Legendre polynomials, the following lemma, presented in [SG14, SG15] is derived.

Lemma 11 Let x ∈ C([−h, 0],Rn) and R ∈ S+n and h > 0. Then, the inequality

∫ 0

−h
x>(u)Rx(u)du ≥ 1

h


Ω0(x)

Ω1(x)
...

ΩN (x)



>
R

3R

. . .

(2N + 1)R




Ω0(x)

Ω1(x)
...

ΩN (x)

 (35)
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holds for all N ∈ N, where Ωk(x) =

∫ 0

−h
Lk(u)x(u)du, k = 0, . . . N .

Proof : Consider a function x in C([−h, 0],Rn), a matrix R in S+n and h > 0. Define the function zN by

zN (u) = x(u)−
N∑
k=0

∫ 0

−h
Lk(u)x(u)du∫ 0

−h
L2
k(u)du

Lk(u) = x(u)−
N∑
k=0

2k + 1

h
Ωk(x)Lk(u)

Clearly, zN is in C([−h, 0],Rn) and represents the approximation error between x and its projection to the polynomial

set {Lk, k = 0, . . . , N} with respect to the inner product (31). The integral

∫ 0

−h
z>N (u)RzN (u)du exists and the

orthogonal property P1 yields∫ 0

−h
z>N (u)RzN (u)du =

∫ 0

−h
x>(u)Rx(u)du

−2

N∑
k=0

2k + 1

h

(∫ 0

−h
Lk(u)x(u)du

)>
RΩk(x)

+

N∑
k=0

(
2k + 1

h

)2(∫ 0

−h
L2
k(u)du

)
Ω>k (x)RΩk(x).

From their definition, we have

Ωk(x) =

∫ 0

−h
Lk(u)x(u)du,

(
2k + 1

h

)2 ∫ 0

−h
L2
k(u)du =

2k + 1

h
,

which yields ∫ 0

−h
z>N (u)RzN (u)du =

∫ 0

−h
x>(u)Rx(u)du−

N∑
k=0

2k + 1

h
Ω>k (x)RΩk(x). (36)

Finally, inequality (35) is obtained by noting that

∫ 0

−h
z>N (u)RzN (u)du > 0 since R � 0. ♦

Remark 12 Considering the BL inequality with N = 0 and N = 1 leads to the celebrated Jensen’s Inequality and
the Wirtinger-based integral inequality [SG13] and the auxiliary function-based integral inequality [PLL15] .

Remark 13 It is well known that the set of polynomial is dense in C([−h, 0],Rn), Therefore the sequence of poly-
nomial {Lk}k≥0 represents a basis of C([−h, 0],Rn). Then, when N tends to infinity, the Bessel-Legendre inequality
tends to an equality and ∫ 0

−h
x>(u)Rx(u)du =

1

h

∞∑
k=0

(2k + 1)Ω>k (x)RΩk(x).

3.4.4 Optimality of the Bessel-Legendre inequality

In the previous lemma, we have used the Legendre polynomials because of their orthogonal properties with respect
to the integral inner product. This choice of polynomials has shown some interests since the results inequality has a
diagonal structure.
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The selection of the Legendre polynomials is interesting not only for this diagonal structure. From the approximation

theory, the polynomial
∑N
k=0

2k+1
h Ωk(x)Lk(u) is the best polynomial approximation of degree N of the function x

in the sense of the inner product, since it minimizes the distance between x with the set of polynomials of degree
less than or equal N . In other words, the minimization

min
P∈Rn

N
[u]

∫ 0

−h
(x(u)− P (u))>R(x(u)− P (u))du

where RnN [u] is the set of polynomials of Rn of degree less than N , is obtained with

P (u) =

N∑
k=0

〈x,Lk〉
〈Lk,Lk〉

Lk(u) =

N∑
k=0

2k + 1

h
Ωk(x)Lk(u).

where we used a light abuse of notation. Therefore, the Bessel-Legendre inequality provided in Lemma 11 is optimal.
To see this optimality, let us consider the canonical basis of the polynomials. Following the same procedure as in the
previous lemma, the following lemma is derived

Lemma 14 Let x ∈ C([−h, 0],Rn) and R ∈ S+n and h > 0. Consider a sequence of polynomials {pk}k=0,...,N

representing a basis of the set of polynomials of degree less than N and a sequence of real numbers {βk}k=0...,N .

Then, the inequality

∫ 0

−h
x>(u)Rx(u)du ≥


Θ0(x)

Θ1(x)
...

ΘN (x)



>
α00R α01R . . . α0NR

α01R α11R . . .
...

...
...

. . .
...

α0NR . . . . . . αNNR




Θ0(x)

Θ1(x)
...

ΘN (x)

 (37)

holds for all N ∈ N, where, for i, k = 0, . . . N

αik =


−βkβi

∫ 0

−h
pk(u)pi(u)du, if i 6= k,

2βk − β2
k

∫ 0

−h
p2k(u)du, if i = k,

and Θk(x) =

∫ 0

−h
pk(u)x(u)du.

Proof : The proof is similar to the one of Lemma 11. Consider a function x in C([−h, 0],Rn), a matrix R in S+n and
h > 0. Define the function zN by

yN (u) = x(u)−
N∑
k=0

βkpk(u)

∫ 0

−h
pk(s)x(s)ds = x(u)−

N∑
k=0

βkpk(u)Θk(x).

The integral

∫ 0

−h
y>N (u)RyN (u)du exists and we have

∫ 0

−h
y>N (u)RyN (u)du =

∫ 0

−h
x>(u)Rx(u)du− 2

N∑
k=0

βk

(∫ 0

−h
pk(u)x(u)du

)>
RΘk(x)

+

N∑
k=0

N∑
i=0

βkβi

∫ 0

−h
pk(s)pi(s)dsΘ

>
k (x)RΘi(x).
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Noting that Θk =

∫ 0

−h
pk(u)x(u)du, it yields

∫ 0

−h
y>N (u)RyN (u)du =

∫ 0

−h
x>(u)Rx(u)du−

N∑
k=0

(2βk − β2
k)Θ>k (x)RΘk(x)

+2

N∑
k=1

N∑
i=k+1

βkβi

∫ 0

−h
pk(s)pi(s)dsΘ

>
k (x)RΘi(x).

(38)

Finally, inequality (37) is obtained by noting that

∫ 0

−h
y>N (u)RyN (u)du > 0 since R � 0. ♦

This lemma presents another integral inequality, which can be used to obtain a new stability condition. However,
on the one hand, the matrix [αik]i,k=0,...,N is not necessarily positive definite. This means that this new inequality

may be really conservative. On a second hand, following the discussion above, the polynomial
∑N
k=0

2k+1
h ΩkLk(u)

minimizes the distance between the infinite dimensional function x and the set of polynomials of degree less than
N . This means that, the inequality ∫ 0

−h
y>N (u)RyN (u)du ≥

∫ 0

−h
z>N (u)RzN (u)du

and the equality occurs only if yN = zN . Finally, the two expressions provided in (36) and (38) implies the following
inequality 

Θ0

Θ1

...

ΘN



>
α00R α01R . . . α0NR

α01R α11R . . .
...

...
...

. . .
...

α0NR . . . . . . αNNR




Θ0

Θ1

...

ΘN

 ≤


Ω0

Ω1

...

ΩN



>
R

3R

. . .

(2N + 1)R




Ω0

Ω1

...

ΩN

 ,
where the argument “(x)” has been omitted for the sake of simplicity.

This demonstrates that the Bessel-Legendre inequality is the less conservative inequality that can be derived, of
course, when one considers the projection of polynomials sets.

Remark 15 This results can also be related to the “sum of squares” framework that has been developed and employed
in similar contexts of automatic control in [HLL09, Par00, PPP02, PPN07, PAV+13, VAP14]. In this framework,
the objectives often relies on the optimization of the coeffiecients βk, k = 0, . . . , N , that delivers the best inequality.
Lemma 11 only says that the optimal integral inequality for this inner product is related to the Legendre polynomials.

3.4.5 Further comments on the approximation of infinite dimensional state function.

Another interesting comments on this framework is related to the interpretation of the function zN which is recalled
for the sake of simplicity

zN (u) = x(u)−
N∑
k=0

2k + 1

h
Ωk(x)Lk(u).

As we mentioned earlier in this chapter, this function can be interpreted that error of approximation of the infinite

dimensional function x by a finite dimensional polynomial function
∑N
k=0

2k+1
h Ωk(x)Lk(u). In other words, we have

x(u) ≈
N∑
k=0

2k + 1

h
Ωk(x)Lk(u) =

1

h

[
L0(u)I L1(u)I . . . LN (u)

]


Ω0(x)

Ω1(x)
...

ΩN (x)

 .
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In general, the series
∑N
k=0

2k+1
h Ωk(x)Lk(u) does not converge point to point to x(u). It only converge to x in the

sense of the norm associated to the inner product. However, if the function x is infinitely differentiable over the
interval (−h, 0), then we have

x(u) =

∞∑
k=0

2k + 1

h
Ωk(x)Lk(u), ∀u ∈ (−h, 0).

Coming back to the Lyapunov analysis and the stability analysis of time-delay systems, the convergence of the
projections Ωk(xt), for all k ≥ 0 and where xt is the state of a time-delay system, to zero implies the convergence of
x to zero as well. This will be taken into account in the Lyapunov analysis developed in the next section.

Moreover, we will show that if we can prove the converge to zero of Ωk(xt), for all k = 0, . . . , N , then the remainder
of the projections, Ωk(xt), for all k ≥ N + 1, also converge to zero.

To conclude, the Bessel-Legendre inequality introduces additional information on the delay system brought by the
projection vectors Ωk(xt), for k = 0, . . . N , where xt is the state of a time-delay system. The objective, when Including
these terms in a Lyapunov analysis finally consists in taking into account more and more information on the system
state xt.

3.4.6 A suitable corollary for the stability analysis of time-delay systems

As it was mentioned in the introduction, the problem is often to derive a lower bound of
∫ 0

−h ẋ
>(u)Rẋ(u)du. The

next corollary addresses this particular problem.

Corollary 16 Let x be such that ẋ ∈ C, R ∈ S+n and h > 0. Then, the integral inequality

∫ 0

−h
ẋ>(u)Rẋ(u)du ≥ 1

h
ξ>N

[
N∑
k=0

(2k + 1)ΓN (k)>RΓN (k)

]
ξN , (39)

holds for all integer N ∈ N where

ξN =


[x>(0) x>(−h)]>, if N = 0,[
x>(0) x>(−h)

1

h
Ω>0 (x) . . .

1

h
Ω>N−1(x)

]>
, if N > 0,

ΓN (k) =


[
I −I

]
, if N = 0,[

I (−1)k+1I γ0NkI . . . γ
N−1
Nk I

]
, if N > 0.

γiNk =

{
−(2i+ 1)(1− (−1)k+i), if i ≤ k,
0, if i > k.

and where Ωk is defined in Lemma 11.

Proof : Applying Lemma 11 to the order N leads to

∫ 0

−h
ẋ>(u)Rẋ(u)du ≥ 1

h

N∑
k=0

(2k + 1)Ω>k (ẋ)RΩk(ẋ), (40)
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where we recall that Ωk(ẋ) =
∫ 0

−h Lk(u)ẋ(u)du, for all k = 0, 1, . . . , N . An integration by parts ensures that, for all
k ≥ 0

Ωk(ẋ) = Lk(0)x(0)− Lk(−h)x(−h)−
∫ 0

−h

(
d

du
Lk(u)

)
x(u)du.

Thanks to properties P2 and P3 of the Legendre polynomials, the following expression is derived

Ωk(ẋ) = x(0)− (−1)kx(−h) +

k−1∑
i=0

γiNk
h

Ωi(x) = ΓN (k)ξN . (41)

Replacing Ωk(ẋ) by its expression using Ωi(x), i = 0, . . . , k and the matrices ΓN (k), k = 1, . . . , N leads to (39) and
concludes the proof. ♦

4 Applications to linear systems with a single constant delay

4.1 Stability theorem

In this paragraph, a first stability result for time-delay systems is provided by the use of the Bessel-Legendre
inequality developed in the previous section. We will study the stability of the following linear system subject to a
constant delay {

ẋ(t) = Ax(t) +Adx(t− h), ∀t ≥ 0,

x(t) = φ(t), ∀t ∈ [−h2, 0],
(42)

where x(t) ∈ Rn is the state vector, φ is the initial conditions and A and Ad, are constant matrices. The following
stability theorem, presented in [SG15], is provided by the use of Corollary 16 with an arbitrary N .

Theorem 17 For a given integer N and a constant delay h, assume that there exist a matrix PN ∈ S(N+1)n and

two matrices S,R ∈ S+n such that the LMI

ΘN (h) =



PN � 0, if N = 0,

PN + 1
h


0

S

. . .

(2N − 1)S

� 0, if N > 0,

ΦN (h) = ΦN0(h)−


ΓN (0)

...

ΓN (N)


>

R

3R

. . .

(2N + 1)R




ΓN (0)
...

ΓN (N)

 ≺ 0,

(43)
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hold, where ΓN (k), for all k = 0, . . . , N , are defined in Corollary 16 and

ΦN0(h) = He
(
G>N (h)PHN

)
+ S̃N + h2F>NRFN ,

S̃N = diag{S,−S, 0Nn},

SN = diag{S, 3S, . . . , (2N + 1)S},
FN =

[
A Ad 0n,nN ,

]
,

GN (h) =

[
I 0n 0n,nN

0nN,n 0nN,n hInN

]
,

HN =
[
F>N Γ>N (0) Γ>N (1) . . . Γ>N (N − 1)

]>
.

Then the time-delay system (42) is asymptotically stable for the constant delay h.

Proof : Guided by the B-L inequality (39) and the signals involved, we consider the following extra-states x̃N (t)
defined by:

x̃N (t) =


xt(0)∫ 0

−h L0(s)xt(s)ds
...∫ 0

−h LN−1(s)xt(s)ds

 =


xt(0)

Ω0(xt)
...

ΩN−1(xt)

 ,
if N ≥ 1 and x̃0(t) = xt(0), if N = 0. The augmented vector x̃N is composed by the instantaneous state xt(0) and
the projections of the state function xt to the N first Legendre polynomials. Following the proof of Corollary 16 and
equation (41), an integration by parts allows expressing the time derivative of x̃N as follows

˙̃xN (t) = HNξN (t), (44)

where

ξN (t) =



xt(0)

x>t (−h)

1
h

∫ 0

−h L0(s)xt(s)ds
...

1
h

∫ 0

−h LN−1(s)xt(s)ds


, N ≥ 1,

and, if N = 0, ξ>0 (t) =
[
x>t (0) x>t (−h)

]
. It appears that this augmented system is the interconnection of the

original delay system and a LTI system defined by the states
∫ 0

−h Lk(s)xt(s)ds, for k = 0, . . . , N − 1. It is also

worth mentioning that the only delayed term in (44) is xt(−h). Then, a natural choice for the Lyapunov-Krasovskii
functional is

VN (xt, ẋt) = x̃>N (t)PN x̃N (t) +

∫ t

t−h
x>(s)Sx(s)ds+ h

∫ t

t−h

∫ >
θ

ẋ>(s)Rẋ(s)dsdθ, (45)

On a first hand, following the procedure provided in [GKC03], the condition S � 0 allows applying Lemma 11 to
the second term of VN to give a more accurate lower bound of the functional. In order to be consistent with the
definition of x̃N , Lemma 11 is considered with the order N − 1. It thus yields

VN (xt, ẋt) ≥ x̃>N (t)ΘN (h)x̃N (t) + h

∫ t

t−h

∫ >
θ

ẋ>(s)Rẋ(s)dsdθ.

Then the positive definiteness of VN results from the conditions S � 0, R � 0 and ΘN (h) � 0. This also implies
that there exists a sufficiently small ε1 > 0, such that ΘN (h) �

[
ε1I 0
0 0

]
. It follows that VN (xt, ẋt) ≥ ε1|xt(0)|2.
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Furthermore, there exists a sufficiently large scalar λ > 0 such that PN ≺ λdiag(I, I, 3I, 5I, . . . , (2N − 1)I). It thus
holds

VN (xt, ẋt) ≤ λ|xt(0)|2 + λ

N−1∑
i=0

(2i+ 1)Ω>i Ωi

+

∫ t

t−h
x>(s)Sx(s)ds+ h

∫ t

t−h

∫ >
θ

ẋ>(s)Rẋ(s)dsdθ.

Thanks to Lemma 11, we obtain

VN (xt, ẋt) ≤ λ|xt(0)|2 +
∫ t
t−h x

>(s)(λhI + S)x(s)ds+ h

∫ t

t−h

∫ >
θ

ẋ>(s)Rẋ(s)dsdθ,

which guarantees that there exists a scalar ε2 > 0, such that VN (xt, ẋt) ≤ ε2 |x̄t|2h, for all t > h, where x̄t =
[ xt
ẋt

]
.

Then it holds
ε1 |xt(0)|2 ≤ VN (xt, ẋt) ≤ ε2 |x̄t|2h . (46)

Consider now the derivative of VN , for all t ≥ h. We obtain

V̇N (xt, ẋt) = 2x̃>N (t)PN ˙̃xN (t) + x>t (0)Sxt(0)− x>t (−h)Sxt(−h) + h2ẋ>t (0)Rẋt(0)

−h
∫ 0

−h
ẋ>t (s)Rẋt(s)ds.

(47)

By noting that x̃N (t) = GN (h)ξN (t), ˙̃xN (t) = HNξN (t) and ẋt(0) = FNξN (t), it yields

V̇N (xt, ẋt) = ξ>N (t)ΦN0(h)ξN (t)− h
∫ 0

−h
ẋ>t (s)Rẋt(s)ds. (48)

Finally, applying Corollary 16 to the order N and injecting the resulting inequality into (48) leads to V̇N (xt, ẋt) ≤
ξ>N (t)ΦN (h)ξN (t). Hence, if the LMI (43) are satisfied, there exists a scalar ε3 > 0 such that ΦN (h) ≺

[−ε3I 0
0 0

]
. We

finally obtain
V̇N (xt, ẋt) ≤ −ε3|xt(0)|2, ∀t ≥ h. (49)

The end of the proof is taken from the proof of Theorem 1 from [FSR04]. Integrating (49) we have

VN (xt, ẋt)− VN (xh, ẋh) ≤ −ε3
∫ >
h

|xs(0)|2ds (50)

and, hence, (46) yields
ε1|xt(0)|2 ≤ VN (xt, ẋt) ≤ VN (xh, ẋh) ≤ ε2|x̄h|2h.

Since |xh|h ≤ c1|φ|h, c1 > 0 (cf. [HL93] p. 168) and ẋ, defined by the right-hand side of (42), satisfies |ẋh|h ≤
c2|φ|h, c2 > 0, we obtain that

|xt(0)|2 ≤ VN (xh, ẋh)/ε1 ≤ c3|φ|2h, c3 > 0.

Hence, (42) is stable. To prove asymptotic stability we note that, for any initial condition φ, x is uniformly continuous
on [0,∞) (since ẋ defined by the right-hand side of (42) is uniformly bounded). Moreover, (50) yields that |xt(0)|2
is integrable on [h,∞). Then, by Barbalat’s lemma, xt(0)→ 0 as t→∞. Consequently, if the LMI of Theorem are
satisfied, the delay system (42) is asymptotically stable for the constant delay h. ♦

Remark 18 Taking N = 0 in Theorem 17 allows retrieving one of the most classical delay-dependent stability con-
ditions based on Jensen’s inequality and LMI [GP06b]. Additionally, choosing N = 1 leads to the stability conditions
from [SG13].
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Remark 19 An interpretation of the BL inequality and the associated stability analysis is provided in the context
of robust analysis in [GAS13, GASP16]. In this second paper, we have notably showed that the same LMI conditions
presented in Theorem 17 imply

det(sI −A−Ade−hs) 6= 0, ∀s ∈ C, s.t. Re(s) ≥ 0,

which brings the link between this Lyapunov analysis and the frequency analysis of the time-delay system.

4.2 Remark on the choice of the Lyapunov-Krasovskii functional

A comment on the Lyapunov-Krasovskii functional, VN , and its relation with the class of functionals studied in
[Gu01, PPL09] is highlighted here. Indeed by considering the functional (45) and by defining the polynomial matrix
D(s) = diag(0n,L0(s)I, L1(s)I, . . . ,LN (s)I) and the matrices

P̃ =

[
I

0nN,n

]>
PN

[
I

0nN,n

]
, S(s) = S

Q(s) =

[
I

0nN,n

]>
PND(s), T (s, ξ) = D>(s)PND(ξ).

Therefore, the functional VN can be rewritten as

VN (xt, ẋt) = x>(t)P̃ x(t) + 2x>(t)

∫ 0

−h
Q(s)xt(s)ds+

∫ 0

−h

∫ 0

−h
x>t (s)T (s, ξ)xt(ξ)dsdξ

+

∫ 0

−h
x>t (s)S(s)xt(s)ds+ h

∫ 0

−h

∫ 0

θ

ẋ>t (s)Rẋt(s)dsdθ.

(51)

The three first terms of VN are similar to the ones presented in equation (17) and employed in [PPL09] and in
[Gu01]. In [PPL09], the degree of freedom comes from the degree of the polynomial matrices Q(s), S(s) and R(s, ξ),
denoted as Dp. In [Gu01], the degree of the polynomial is always 1 but the degree of freedom comes from the degree
of discretization, denoted latter on as Dd.

A first difference with respect to these two approaches is that in our setup, the polynomial matrix S(s) is constant.
The consequence is that our method requires less parameters to define the functional when increasing Dp or Dd.
Another difference relies on the last integral quadratic term of VN which depends on ẋt. Finally, the previous theorem
does not need to enter into the sum of squares framework which generally requires the use of additional decision
relaxation variables when testing the stability conditions.

Remark 20 Note that in [SG14] or in [SGA15], similar theorems were deployed based on the complete representation
of Lyapunov-Krasovskii functionals, as employed in, for instance, [PPL09] and [Gu01]. It simply consists in a light
modification in 51 where the last integral term depends on xt instead of ẋt.

4.3 Hierarchy of LMI stability conditions

This section is devoted to proving that the previous stability conditions form a hierarchy of LMI conditions. This is
formulated in the following theorem based on the stability conditions of Theorem 17.

Theorem 21 For any time-delay system (42), define the set HN by

HN :=
{
h ∈ R+ s.t. ΘN (h) � 0, ΦN (h) ≺ 0, PN , S(N) � 0, R(N) � 0

}
Then, it holds

HN ⊂ HN+1, ∀N ≥ 0.
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Proof : Let N ∈ N. If HN is empty, the inclusion is trivial. If HN is not empty, then consider an element h ∈ HN .
From the definition of HN , there exist symmetric matrices PN , S(N) � 0 and R(N) � 0 such that ΘN (h) � 0
and ΦN (h) ≺ 0. Taking advantages of the construction of the Lyapunov-Krasovskii functional (45), we suggest the
matrices

PN+1 =

[
PN 0

0 0

]
,

{
S(N + 1) = S(N) = S,

R(N + 1) = R(N) = R,

where ε is a scalar to be chosen. Then the matrix ΘN+1(h) can be rewritten as

ΘN+1(h) =

[
ΘN (h) 0

0 2N+1
h S

]
.

The assumptions ΘN (h) � 0 and S � 0 thus ensures ΘN+1(h) � 0.

Concerning the second LMI condition ΦN , we first note that

HN+1 =

[
HN 0Nn,n

ΓN+1(N)

]
,

GN+1(h) =

[
GN (h) 0Nn,n

0n,Nn hI

]
,

S̃N+1 =

[
S̃N 0Nn,n

0n,Nn 0n

]
,

FN+1 =
[
FN 0n

]
.

From these expressions, the matrix ΦN+1(h) can be expressed using the matrix ΦN (h) as follows

ΦN+1(h) =

[
I 0

ΓN+1(N + 1)

]> [
ΦN (h) 0

0 −(2N + 3)R

][
I 0

ΓN+1(N + 1)

]
.

Since ΦN (h) ≺ 0, R � 0 and by noting that the matrix

[
I 0

ΓN+1(N + 1)

]
is non singular, the first term of the previous

expression is negative definite.

Therefore, h belongs to HN+1. Finally, since h is any element of HN , it implies that HN ⊂ HN+1. ♦

Theorem 21 proves that, the stability conditions provided in Theorem 17 at the order N + 1 delivers, at least, the
same result the same condition taken at the order N . Since Theorem 17 only provides sufficient stability condition,
the set HN , for a given N ∈ N represents an inner approximation of the stability pockets.

Moreover, the previous proof also show that

HN+1

∣∣∣∣PN+1=
[
PN 0
0 0

] = HN ,

where the set on the left-hand-side stands for the restriction of HN+1 to matrices PN+1 of the corresponding form.
A brief recursive reasoning allows us to obtain that

HN+1

∣∣∣∣PN+1=
[
P0 0
0 0

] = H0, P0 ∈ Sn
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This equality of sets can be interpreted as follows. If one uses the Bessel-Legendre (or the Wirtinger-based) inequality,
without augmenting the size of the matrix PN , or, again, without enriching the functional by the projection Ωk,
with k ≤ N − 1, then the result is strictly equivalent to the one obtained using the Jensen’s inequality (i.e. N = 0).
Therefore the augmentation of the size of the matrix PN is crucial to derive less conservative numerical results.

Finally, Theorem 17 provides a hierarchy of LMI conditions for the analysis of time-delay systems. This means that
increasing N potentially helps to reduce the conservatism of the conditions, and potentially to detect greater and
greater stability regions. Nevertheless, Theorem 17 does not prove that the conditions of Theorem 17 will converge
to the analytical bounds of the delay. In other words, Theorem 17 does not answer to the question

“If the system is asymptotically stable for a given delay h,
does there exist a integer N such that the LMI conditions provided in Theorem 17 holds?”

As it will be exposed in the next section, where numerical examples are treated, the conditions of Theorem 17 are
very efficient from the numerical point of view and also and its complexity is very competitive with respect to other
stability conditions from the literature. Through these examples, we have always been able to obtain an encouraging
result, even for non trivial systems.

We have not been able to answer to this question yet. However, we strongly believe that the properties of the
Legendre polynomials together with the existence of a complete Lyapunov-Krasovskii functionals will lead the way
to a positive answer.

5 Numerical applications and extensions

5.1 Examples of linear systems with a single discrete delay

The purpose of the following section is to illustrate on academic and non trivial examples how the inequalities given
in Section 3 lead to a relevant reduction of conservatism in the stability condition.

5.1.1 Example 1:

Consider the same linear time-delay system (42) presented in (70) with the matrices

A =

[
−2 0

0 −0.9

]
, Ad =

[
−1 0

−1 −1

]
. (52)

This system is a well-known delay dependent stable system, that is the delay free system is stable and the maximum
allowable delay hmax = 6.1725 can be easily computed by delay sweeping techniques. The results are reported in
Table 1. Many recent papers give the same result since they are intrinsically based on the same Lyapunov-Krasovskii
functional and use the same bounding cross terms technique i.e. Jensen inequality. Some papers [SLCR10],[SLC09]
which use an augmented Lyapunov, based on the addition on a triple Integral term on the Lyapunov-Krasovskii
functional can go further but with a numerically increasing burden, compared to our proposal. The partitioning
approach proposed by [Han09] based on the discrete delay decomposition gives an upperbound which tends to the
analytical value even if the numerical complexity remains important. The robust approach [KR07] gives a very good
upper-bound with a similar computational complexity than our present result. The discretized Lyapunov-Krasovskii
functional proposed by [Gu01] as well as the sum of square optimization scheme developed by Peet et al [PPL09]
give a delay upperbound very closed to the maximum allowable delay with an increasing numerical complexity.

5.1.2 Example 2:

This example is provided to illustrate Theorem 21. Note that this system has not been studied in the literature of
time-delay system using the Lyapunov-Krasovskii Theorem and LMI conditions. It is extracted from the dynamics
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Theorems hmax number of variables Methods

Theoretical bound 6.1725 - Frequency approach

[GP06b, HWXL07a] 4.472 1.5n2 + 1.5n L-K functional + Jensen

[SLCR10] 5.02 18n2 + 18n L-K functional + Jensen

[Kim11] 4.97 69n2 + 5n L-K functional + Jensen

[SLC09] 5.30 8.5n2 + 3.5n L-K functional + Jensen

[SG12] 5.901 3n2 + 2n L-K functional + Wirtinger-based

[KR07] 6.1107 1.5n2 + 9n+ 9 IQC + filter

[AGJ10] 5.120 7n2 + 4n QS + filter

[AG09a] 5.120 6.5n2 + 3.5n QS + Augmentation

[Han09], Dd = 2 5.71 4n2 + 2n L-K functional + Jensen + Partition

[Han09], Dd = 3 5.96 6.5n2 + 2.5n L-K functional + Jensen + Partition

[Han09], Dd = 4 6.05 10n2 + 3n L-K functional + Jensen + Partition

[Gu01], Dd = 1 6.053 7.5n2 + 3.5n L-K functional + Discretization

[Gu01], Dd = 2 6.165 10.5n2 + 4.5n L-K functional + Discretization

[Gu01], Dd = 3 6.171 14.5n2 + 4.5n L-K functional + Discretization

[Gu01], Dd = 4 6.171 20.5n2 + 5.5n L-K functional + Discretization

[PPL09], Dp = 1 5.19 7n2 + 3n L-K functional + SOS

[PPL09], Dp = 2 5.90 12.5n2 + 4.5n L-K functional + SOS

[PPL09], Dp = 3 6.10 21n2 + 6n L-K functional + SOS

Th.17, N = 0 4.472 1.5n2 + 1.5n L-K functional + Bessel

Th.17, N = 1 6.059 3n2 + 2n L-K functional + Bessel

Th.17, N = 2 6.168 5.5n2 + 2.5n L-K functional + Bessel

Th.17, N = 3 6.1725 9n2 + 3n L-K functional + Bessel

Table 1
Results for Example (70) for constant delay h. The degree of discretization Dd and the degree of the polynomial Dp are
defined in subsection 4.2.

of machining chatter [ZKT01, SNA+11] and is given by{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

with

A =


0 0 1 0

0 0 0 1

−10 10 0 0

5 −15 0 −0.25

 , B =


0

0

1

0

 , C =


1

0

0

0


>

.

A delayed static output feedback controller is proposed:

u(t) = −Ky(t) +Ky(t− h),

where K is the gain of the controller and h is an unknown constant delay. The resulting dynamics is thus modeled
by a time-delay system:

ẋ(t) = A0x(t) +A1x(t− h),

with A0 = A−BKC and A1 = BKC.
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Fig. 4. Stability region in the plan (K,h), obtained using Theorem 17 for N = 0, . . . , 7.

The results are summarized in Figure 4 which shows the stability regions in the (K,h) plane. The blue region
represents the instability region which have been calculated using a griding over K along with the allmargin function
of the Control Toolbox of Matlab c©. Then, Theorem 17 provides inner approximations of the stability region delimited
by colored curves. The curve N = 0 perfectly detects the independent of the delay stability region (for K ≤ 0.3) as
well as a first delay dependent stability pocket. It corresponds to the maximal allowable delay when Jensen’s Lemma
is used when establishing the stability criterion. Taking N = 1 allows retrieving the same results as in [SG13] which
uses Wirtinger’s Lemma. Clearly, increasing N (N = 0, 1, . . . , 7) allows reducing the pessimism and discovering new
stability pockets. This figure illustrates the implication of Theorem 21 on the inclusions H0 ⊂ H1 ⊂ · · · ⊂ H7.
Another important remark is that increasing N can improve significantly the inner approximations of the stability
region. For instance, H4\H3, H5\H4 or even H7\H6 are surprisingly large sets.

5.1.3 Example 3:

Consider the system with pointwise delay taken from [Fre00] given by

ẍ(t) +

[
0 1

−1 0

]
ẋ(t− h) +

[
4 0

0 16

]
x(t) = 0

The analysis provided in [Fre00] based on a frequency method ensures that this systems has exactly three stable
delay intervals [0.4108, 0.7509], [2.054, 2.252] and [3.697, 3.754]. Figure 5 shows the inner approximations obtained
with similar conditions as the ones presented in Theorem 17 (according to the modifications explained in Remark
20) for several values of N . The first interval is detected at N = 4 and a good 1 estimation of the first stable interval
is first obtained at N = 7. First values of the delay h in the second stable interval are detected with N = 9 and a
good estimation of the whole interval is obtained at N = 11. Delay values in the third and last stable interval, which
is more difficult to detect are found with N = 14 and a good estimation of the interval is provided with N = 16.

1 with a precision of 10−4
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Fig. 5. Stability region in the plan (N,h), obtained using Theorem 17 (and Remark 20 for Example 4.

This example shows the efficiency of our method to detect stability intervals even for systems with discrete delay
and with dimension that are not small unlike usual examples. In addition, The example and Figure 5 also illustrate
Theorem 21. Indeed, Figure 5 shows that the stability regions become larger when N increases. The stability
conditions are able to assess stability of the system for all the values of the delay which belongs to the stable
intervals.

5.2 Examples of linear systems with multiple discrete delays

Through this example we aim at showing that the proposed approach can address the case of linear systems with
multiple delays. The associated analysis, presented in [SBS16a] is omitted here for simplicity. However, and to be
short, the method consists in extending the Lyapunov-Krasoskii functionals to cope with the several delays using a
coupled PDE-ODE systems and a homogeneous delay representation.

5.2.1 Example 4:

Let us consider one of the most classical example of systems with multiple delays, which was studied in [SNA+11],
using a frequency domain analysis. This system is governed by the following equation

ẋ(t) = −1.3x(t)− x(t− h1)− 0.5x(t− h2)
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Fig. 6. Stability regions in the plan (h1, h2) obtained in [SBS16b] for Example 5 (Left) and Example 6 (right).

The conditions proposed in Theorem 17 can be extended to the case of multiple delays as proposed in [SBS16b]
addresses also the stability of systems that may be unstable for a very high speed of transport as it is illustrated
with this example. For this example, Fig. 6 gives the stability regions for different values of h1 and h2. We can
remark that increasing N allows us to broaden the stability region of the coupled system. This example prove also
Theorem 21 where H1 ⊂ H3 ⊂ ... ⊂ H9 and if we have stability for N = 1 with a given h1 and h2, we ensure stability
for the same pair of transport speed with N > 1.

5.2.2 Example 5

Consider the linear system with cross-talking multiple delays, studied in [SNA+11] and governed by the following
delay differential equation

ẋ(t) =

[
0 1

−20 −1

]
x(t)−

[
0 0

3 2

]
x(t− h1)−

[
0 0

4 1

]
x(t− h2)−

[
0 0

1 0

]
x(t− h1 − h2). (53)

For this example, Fig. 6 gives the stability regions for different value of h1 and h2 with N = 10. Again, this figure
shows that the method based on the Bessel-Legendre inequality is able to assess stability of linear systems with
multiple delays in a efficient manner.

5.3 Examples of linear systems with a distributed delay

In [SGA15], we have extended the analysis, which have led to Theorem 17 to the class of distributed delay systems
of the form {

ẋ(t) = Ax(t) +Ad
∫ 0

−h f(θ)x(t+ θ)dθ, ∀t ≥ 0,

x(t) = φ(t), ∀t ∈ [−h, 0],
(54)

where x(t) ∈ Rn is the state vector, φ is a continuous function, representing the initial conditions, A and Ad are
constant matrices and f denotes a known continuous function of L2([−h, 0]→ R) and represents the kernel of the
distributed delay. The delay h is assumed to be constant. This class of systems can be seen as a particular case
of (6), where the most general case of kernel matrix AD(θ) is replaced by f(θ)Ad. The goal was here to provide
a generic analysis which is able to assess stability of system (54) for any continuous scalar kernel f and to derive
sufficient stability conditions based, again on the properties of the Legendre polynomials.

For the sake of simplicity, the detailed analysis will not be presented in this manuscript but the reader may refer to
[SGA15] to have a better understanding of how the Bessel-Legendre inequality is applied to this problem.
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Theorems hmax number of variables

[BMV09] (“analytical” bound) 1.498 −

[SF13] 1.03 3

Th.17 (N = 0) 0.95 5

Th.17 (N = 1) 1.45 8

Th.17 (N = 2) 1.497 12

Th.17 (N = 3) 1.498 17

Table 2
Maximal allowable delay hmax for system (55).

Theorems first interval second interval nv

[BMV09] [0, 0.964] [1.372, 2.105] −

[SF13] [0, 0.964] − 3

Th.17 (N = 1) [0, 0.91] − 8

Th.17 (N = 2) [0, 0.963] [1.382, 2.100] 12

Th.17 (N = 3) [0, 0.964] [1.372, 2.103] 17

Th.17 (N = 4) [0, 0.964] [1.372, 2.105] 23

Table 3
Intervals of stability w.r.t. h for system (56). The notation “nv” denotes the number of decision variables.

5.3.1 Example 7:

Let us consider the following scalar example

ẋ(t) = −x(t) +

∫ 0

−h
e−θ sin(θ)x(t+ θ)dθ. (55)

Using a numerical method [BMV05, BMV09], system (55) is shown to be asymptotically stable for all delays less
than 1.498. Table 2 shows results obtained with Theorem 17. As expected, better results are obtained as the degree
of the polynomial N increases. Moreover, the theoretical upper bound of the delay is recovered with N = 3.

5.3.2 Example 8:

Consider the distributed delay system

ẋ(t) = −2x(t) +

∫ 0

−h
(θ + 3 cos θ)x(t+ θ)dθ. (56)

This example is interesting because it is stable for all h in [0 , 0.964] and in [1.372 , 2.105] and unstable otherwise
[BMV09]. Table 3 shows results obtained with Theorem 17. Note that even if [SF13] provides a very good estimation
of the first interval of stability, it is not able to detect the second one.

5.3.3 Example 9:

Consider the distributed delay system

ẋ(t) = −ax(t)−
∫ 0

−h
γ(k, α,−θ)x(t+ θ)dθ, (57)

where a is a positive scalar and γ the scalar kernel function of the truncated Gamma Distribution defined by

γ(k, α, θ) =
θk−1e−θ/α

(k − 1)!αk
, ∀(k, α, θ) ∈ N× (0, ∞)× [−h, 0],
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Fig. 7. Stability regions in the plan (a, h) for system (57), obtained using Theorem 17 for several values of N .

and such that
∫ 0

−∞ γ(k, α, θ)dθ = 1. From the theoretical point of view, Gamma distributions are often considered

over the interval (−∞, 0]. Since the kernel γ contains an exponential term, it is reasonable to consider the truncated
interval [−h, 0] because the main contribution to the distributed term relies on this first interval. Figure 7 represents
the stability regions obtained by solving Theorem 17 for several values of N when α = 1 and k = 1. The dashed
black line represents the theoretical limits resulting from the eigenvalue analysis issued from [BMV09]. Figure 7
shows that from small values of a in (0, 0.6], Theorem 17 with N = 0, 1 delivers good estimations of the stability
regions. However for larger values of a, Figure 7 shows that Theorem 17 with N = 0, 1 is conservatism since the
stability regions do not match with the theoretical limits drawn by the dashed blue line. However, increasing N in
Theorem 17 allows reducing this conservatism and one can see that for N = 4, the estimation of the stability region
is very close to the theoretical region. This example illustrates the potential of our hierarchical approach to reduce
the conservatism by increasing the LMI parameter N , of course at the price of increasing the complexity of the
conditions, showing the tradeoff between conservatism and complexity.

5.4 Examples of linear systems with a time-varying delay

Consider a linear time-delay system of the form:

{
ẋ(t) = Ax(t) +Adx(t− h(t)), ∀t ≥ 0,

x(t) = φ(t), ∀t ∈ [−h2, 0],
(58)

where x(t) ∈ Rn is the state vector, φ is the initial condition and A, Ad ∈ Rn×n are constant matrices. There exist
positive scalars h2 ≥ 0 and d1 ≤ d2 ≤ 1 such that

h(t) ∈ [0, h2], ∀t ≥ 0,

ḣ(t) ∈ [d1, d2], ∀t ≥ 0,
(59)

5.5 From Constant to time-varying delays: an overview

In Section 4, a first stability analysis based on Legendre-based Lyapunov-Krasovskii functionals has been provided
to cope with linear systems subject to constant time-delay, following the contribution of [SG15]. We recall that this
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analysis is based on the following functional

VN (xt, ẋt) = x̃>N (t)PN x̃N (t) +

∫ t

t−h
x>(s)Sx(s)ds

+h

∫ t

t−h

∫ t

θ

ẋ>(s)Rẋ(s)dsdθ,

(60)

where N is a non negative integer, PN ∈ S(N+2)n, S,R ∈ Sn+ and where we recall that the augmented vector x̃N is
given by

x̃N (t) =


xt(0)∫ 0

−h L0(s)xt(s)ds
...∫ 0

−h LN−1(s)xt(s)ds

 ,
if N ≥ 1 and x̃0(t) = xt(0), if N = 0. Guided by this functional (60) dedicated to the analysis of systems with a
constant delay, we propose to consider the following extension which aims at considering the case of time-varying
delays. It consists in using the following Lyapunov-Krasovskii functional

VN (xt, ẋt) = x̄>N (t)PN x̄N (t) +

∫ t

t−h(t)
x>(s)Sx(s)ds+

∫ t−h(t)

t−h2

x>(s)Qx(s)ds

+h2

∫ t

t−h2

∫ t

θ

ẋ>(s)Rẋ(s)dsdθ,

(61)

where, in this case, the matrix PN is now in S(2N+3)n and where S,Q,R are in Sn+. This new functional is defined
using the augmented vector x̃N defined by

x̄N (t) =



xt(0)∫ 0

−h(t) L0(s)xt(s)ds
...∫ 0

−h(t) LN−1(s)xt(s)ds∫ −h(t)
−h2

L0(s)xt(s)ds
...∫ −h(t)

−h2
LN−1(s)xt(s)ds


,

if N ≥ 1 and x̄0(t) = xt(0), if N = 0.

This functional generalizes the one that has been defined in (60) ([SG15]) for time-varying delay systems. Indeed
selecting N = 0 in (61) allows retrieving the same functional as in [SG15]. The proposed extension to time-varying
delay consequently is not an easy task since the time-varying delay appears in the definition of x̄N (t). Hence the
following developments aim at providing stability conditions expressed in terms of LMIs using such a class of
functionals.

Remark 22 It would also be possible to replace the last term of VN ,

VdN (ẋt) = h2

∫ t

t−h2

∫ t

θ

ẋ>(s)Rẋ(s)dsdθ,

by

V̄dN (ẋt) = h2

∫ t

t−h(t)

∫ t

θ

ẋ>(s)Rẋ(s)dsdθ + h2

∫ t−h(t)

t−h2

∫ t

θ

ẋ>(s)Rẋ(s)dsdθ,

but this will not be described in this manuscript.
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While the computation of the derivative of the functional is standard (even if highly technical), the last term
generates some notable complication with respect to the constant case. Indeed, what is usually done in the literature
is described by the following steps.

Computation of the derivative: Differentiating the last term of VN leads to

V̇dN (ẋt) = h22ẋ
>(t)Rẋ(t)− h2

∫ t

t−h2

ẋ>(s)Rẋ(s)ds.

Decomposition : In order to include the intermediate information xt(−h), the integral is split into parts, which
make appear the intermediate value t− h(t):

V̇dN (ẋt) = h22ẋ
>(t)Rẋ(t)− h2

∫ t

t−h(t)
ẋ>(s)Rẋ(s)ds− h2

∫ t−h(t)

t−h2

ẋ>(s)Rẋ(s)ds.

Application of integral inequalities: Then we can use, for instance and for simplicity, Corollary 16 with N = 1,
which corresponds to the use of the Wirtinger-based integral inequality on this quadratic integral on ẋt, to obtain

V̇dN (ẋt) ≤ h22ẋ
>(t)Rẋ(t)− h2

h ξ
>
1 (t)

[
R 0

0 3R

]
ξ1(t)− h2

h2−hξ
>
2 (t)

[
R 0

0 3R

]
ξ2(t)

where

ξ1(t) =

[
x(t)− x(t− h)

x(t) + x(t− h)− 2
h

∫ t
t−h x(s)ds

]
,

ξ2(t) =

[
x(t− h)− x(t− h2)

x(t− h) + x(t− h2)− 2
h2−h

∫ t−h
t−h2

x(s)ds

]
or equivalently, in a more compact form

˙VdN (ẋt) ≤ h22ẋ
>(t)Rẋ(t)− ξ>(t)

[
W1

W2

]> [
1
α R̃ 0

0 1
1−α R̃

][
W1

W2

]
ξ(t)

where

α =
h

h2
∈ [0, 1], R̃ =

[
R 0

0 3R

]
,

W1 =

[
I −I 0 0 0

I I 0 −2I 0

]
, W2 =

[
0 I −I 0 0

0 I I 0 −2I

]
,

ξ(t) =

[
x>(t) x>(t−h(t)) x>(t−h2)

∫ t

t−h(t)

x>(s)

h(t)
ds

∫ t−h(t)

t−h2

x>(s)

h2−h(t)
ds

]>
.

Remark 23 In the previous developments we have use the Wirtinger-based integral inequality (Corollary 16 with
N = 1) but a similar reasoning can be achieved for any N . The general case N leads to several technical difficulties
that may distrub the reader of this section. The reader may refer to [SG16b] to find the generalized version of the
following developments.

Apply matrix inequality: After applying the integral inequalities, one may see that the resulting term is not
convex with respect to the delay h (or α). Several methods have then be deployed to encompass this difficulty and
to allow us for some numerical tests.

Among the most popular methods, one may refer to the Moon et al inequality [MPKL01], presented in the following
lemma
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Lemma 24 For given positive definite matrix R̃ in S2n and matrices W1,W2 in R2n×5n, the inequality[
W1

W2

]> [
1
α R̃ 0

0 1
1−α R̃

][
W1

W2

]
≥ He


[
N1

N2

]> [
W1

W2

]− αN>1 R̃−1N1 − (1− α)N>2 R̃
−1N2,

holds for any matrices N1, N2 ∈ R5n×2n and for all α in (0, 1).

Proof : The proof of this lemma results from the expansion of the two following squares

(R̃W1 − αN1)>
R̃−1

α
(R̃W1 − αN1) + (R̃W2 − (1− α)N2)>

R̃−1

1− α
(R̃W2(1− α)N2) ≥ 0.

♦

This lemma has been widely used in the literature in different (and some hidden) forms. It is numerically efficient
but at the price of a notable increase of the number of decision variables, in this case 20n2.

Recently, a efficient method, called the reciprocally convex combination lemma has been proposed in [PKJ11], and
has shown its efficiency on stability theorem based on the Jensen’s inequality. Indeed it allows retrieving the same
numerical results as the ones issued from the application of Lemma 24 but with a lower number of decision variables.
This lemma is stated below

Lemma 25 Given a matrix R̃ ∈ S2n+ , and two matrices W1 and W2 in Rn×m, then the improved reciprocally convex
combination guarantees that if there exists a matrix X in R2n×2n such that[

R̃ X

X> R̃

]
� 0,

then the following matrix inequality holds for all α ∈ (0, 1)[
1
α R̃ 0

0 1
1−α R̃

]
�

[
R̃ X

X> R̃

]
.

Proof : A proof can be found in [PKJ11] to consider a larger class of reciprocally convex combination. A simpler

and more dedicated proof is provided here. Define the scalar β =
√

1−α
α . Then, we have, by congruence

0 �

[
βI 0

0 −β−1I

][
R̃ X

X> R̃

][
βI 0

0 −β−1I

]
=

[
1−α
α R̃ −X
−X> α

1−α R̃

]
=

[
1
α R̃ 0

0 1
1−α R̃

]
−

[
R̃ X

X> R̃

]
,

which concludes the proof. ♦

Note that in the case of the same matrix inequality but resulting from the Jensen inequality instead of the Wirtinger-
based inequality, an interpretation of this lemma has been provided in [SGL16]. The combination of the Jensen
inequality with the reciprocally convex combination lemma can be seen as a discretized version of Jensen’s inequality.

While both Lemma 24 and 25 lead to the same level of conservatism when employing the Jensen inequality, it has
been revealed in [] that the second one leads to more conservative result than the first one when employing the
Wirtinger-based inequality. Therefore, a refined version of this lemma has been provided in [] and is stated below

36



Lemma 26 Let R̃ be a positive definite matrix in S2n for a given integer n > 0. If there exist two matrices X1, X2

in S2n and Y1, Y2 in R2n×2n such that[
R̃ 0

∗ R̃

]
−

[
X1 Y1

∗ 0

]
� 0,

[
R̃ 0

∗ R̃

]
−

[
0 Y2

∗ X2

]
� 0, (62)

then the following inequality holds for all α ∈ (0, 1)[
1
α R̃ 0

∗ 1
1−α R̃

]
�

[
R̃ 0

∗ R̃

]
+

[
(1−α)X1 αY1+(1−α)Y2

∗ αX2

]
. (63)

Proof : If inequalities (62) are verified, then a convex combination of these two equations leads to the inequality[
R 0

∗ R

]
−

[
αX1 αY1 + (1− α)Y2

∗ (1− α)X2

]
� 0,

for all α ∈ [0, 1]. Pre- and post-multiplying this inequality by the matrix
[
βI 0

0 β−1I

]
, where β =

√
1−α
α , leads to

[
1−α
α R 0

∗ α
1−αR

]
−

[
α(1−α)

α X1 αY1 + (1− α)Y2

∗ α(1−α)
1−α X2

]
� 0,

for all α ∈ (0, 1). Finally noting that 1−α
α = 1

α − 1 and α
1−α = 1

1−α − 1, the previous inequality can be rewritten as

[
1
αR 0

∗ 1
1−αR

]
−

[
R 0

∗ R

]
−

[
(1− α)X1 αY1 + (1− α)Y2

∗ αX2

]
� 0,

which concludes the proof. ♦

The particular selection in the previous lemma with X1 = X2 = 0 and Y1 = Y2 = Y leads to the original reciprocally
convex combination lemma.

These two results will be employed in the remainder of the paper. As shown in [SG16a], Lemma 26 refines the original
convex combination lemma since it allows obtaining a lower bound which depends explicitly on α which refers to
the time-varying delay h(t).

Based on the previous discussions, an example of stability conditions for time-varying delay is provided below and
exploit the Wirtinger-based inequality of Corollary ?? and the delay-dependent reciprocally convex combination
lemma presented in Lemma26.

5.6 Examples of stability conditions

Based on the previous developments, the following stability theorem is provided.

Theorem 27 Assume that there exist matrices P in S3n+ , S1, S2, R in Sn+, X1, X2 in S2n and two matrices Y1, Y2 in
R2n×2n, such that the conditions [

R̃−X1 Y1

∗ R̃

]
� 0,

[
R̃ Y2

∗ R̃−X2

]
� 0, (64)
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Φ(0,d1)≺ 0, Φ(h2,d1)≺ 0, Φ(0,d2)≺ 0, Φ(h2,d2)≺ 0, (65)

are satisfied where

Φ(θ, η) = Φ0(θ, η)−G>2 Ψ(θ)G2

Φ0(θ, η) = He
{
G>1 (θ)PG0(η)

}
+ Ŝ(η) + h22g

>
0 Rg0,

Ŝ(η) = diag(S1, (1− η)(S2 − S1),−S2, 02n),

R̃ = diag(R, 3R),

Ψ(θ) =

[
R̃+ h2−θ

h2
X1

θ
h2
Y1 + h2−θ

h2
Y2

∗ R̃+ θ
h2
X2

]
,

(66)

and where

g0 =
[
A Ad 0 0 0

]
,

G0(η) =


A Ad 0 0 0

I −(1− η)I 0 0 0

0 (1− η)I −I 0 0

 ,

G1(θ) =


I 0 0 0 0

0 0 0 θI 0

0 0 0 0 (h2 − θ)I

 ,

G2 =


I −I 0 0 0

I I 0 −2I 0

0 I −I 0 0

0 I I 0 −2I

 .

(67)

Then, system (58) is asymptotically stable for all time-varying delay h satisfying (59).

5.7 Reduction of the number of decision variables

In the previous theorem, the number of decision variables can be reduced by introducing some constraints in the slack
variables introduced by application of the reciprocally convex combinason Lemma 25. This relaxation is proposed
in the following corollary.

Corollary 28 Assume that there exist matrices P in S3n+ , S1, S2, R in Sn+, X in S2n and a matrix Y in R2n×2n,
such that conditions (64) and (65) are verified with

X1 = X2 = X and Y1 = Y2 = X.

Then system (58) is asymptotically stable for all time-varying delay h satisfying (59).

Remark 29 The reduction of the computational complexity of the resulting stability conditions leads obviously to
an increase of the conservatism of the stability conditions, as it will be showed in the example section. This shows
again the traditional tradeoff between computational complexity and conservatism.

The success of the reciprocally convex combination lemma over the Moon inequality relies on the fact that when
employing it for stability theorem based on the Jensen inequality, equivalent results were obtained with a significantly
reduced number of decision variables. In the following paragraph we will present a similar result to Theorem 27,
which is based on the application of Moon’s inequality instead of Lemma 24. This leads to the following result:
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Th. No. of variables Th. No. of variables

[AG09b] 480n2 + 8n [FS02a] 5.5n2 + 1.5n

[HWXL07a] 3n2 + 3n [PK07] 11.5n2 + 4.5n

[SG13] 10n2 + 3n [ZHWS15] 54n2 + 9n

[ZHWX13] 17n2 + 5n - -

Th. 27 18n2 + 5n Cor. 28 12n2 + 4n

Th. 30 26n2 + 3n

Table 4
Number of decision variables involved in several conditions from the literature and in Theorem 27 and its corollaries

Theorem 30 Assume that there exist matrices P in S3n+ , S1, S2, R in Sn+, and a matrix Y in R5n×4n, such that the
conditions

Φ̄(0,d1)≺ 0, Φ̄(h2,d1)≺ 0, Φ̄(0,d2)≺ 0, Φ̄(h2,d2)≺ 0, (68)

are satisfied where

Φ̄(θ, η) =


Φ0(θ,η)−He {[Y1Y2]G2} θ

h2
Y1

h2−θ
h2

Y2

∗ θ
h2
R̃ 0

∗ ∗ h2−θ
h2

R̃

 (69)

and where the matrices Φ0(θ, η), R̃ and G2 are given in (67). Then, system (58) is asymptotically stable for all
time-varying delay h satisfying (59).

Recently, a novel contribution based on Free-Weighting Matrix Inequality was proposed in [ZHWS15]. It has been
showed in this paper that an alternative presentation of the Wirtinger-based integral inequality (Lemma 9) can be
presented by an efficient introduction of free-weighting-matrices leading to less conservative results than when using
the Wirtinger-based inequality. In this paper, we will compare the various results presented here with Corollary
1 of [ZHWS15], which uses exactly the same Lyapunov-Krasovskii functional as the one presented in (45). This
will allow for a fair comparison between the various inequalities employed is all these results. Note that the main
stability theorem of [ZHWS15] exploits additional terms in the construction of the functional, leading to a reducing
of the conservatism. We will not present the numerical results in the present paper since our goal is to show the
conservatism of integral and matrix inequalities and their associated numerical complexity.

5.8 Numercial examples

In this section, we will consider two academic examples taken from the literature. Our goal is to illustrate and compare
the efficiency of the conditions presented in Theorems 27 and 30 and Corollary 28 and for various conditions taken
from the literature for the stability analysis of linear systems with time-varying delays. Before entering into the
numerical results, we would like to point out in Table 4, the number of decision variables involved in the conditions
presented in this paper and in existing results from the literature. For the two next examples, we expose in Tables 5
the maximal upper-bound, h2 of the delay function for various values bounds on the derivative of the delay function,
i.e. d2(= −d1).

There exists a large number of paper dealing with the stability analysis of such a class of systems. Because of space
limitations, we consider only few representative conditions from the literature. On a first side, conditions derived using
Jensen’s inequality ([PKJ11]), Wirtinger-based inequality ([SGF13]), auxiliary-based inequality [PLL15] and the
recent free-matrix-based inequality ([ZHWS15]). On the other hand, we also discriminate conditions that are based
on Young/Moon inequality [ZHWS15], or on the Reciprocally convex combination lemma [PKJ11, SGF13, PLL15].
A last comment on the contribution presented in [PLL15]. Indeed, the conditions proposed in [PLL15] is proven to
be less conservative than the Wiritinger-based inequality together with the reciprocally convex combination lemma.
Therefore, it is expected that the conditions presented in [PLL15] are less conservative than the one from Theorem
27.
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d2 0.0 0.1 0.2 0.5 0.8 1

[FS02a] 4.47 3.60 3.03 2.00 1.36 0.99

[HWXL07a] 4.47 3.60 3.03 2.04 1.49 1.34

[PK07] 4.47 3.65 3.16 2.33 1.93 1.86

[AG09b] 6.11 4.79 3.99 2.68 1.95 1.60

[ZHWX13] (N=3) 5.92 4.62 3.76 2.44 2.07 2.07

[SG13]∗ 6.05 4.70 3.83 2.42 2.13 2.12

[ZHWS15] (Cor.1)∗ 6.05 4.71 3.84 2.45 2.21 2.18

[ZHWS15] (Th.1) 6.05 4.78 4.06 3.05 2.61 -

Cor. 28∗ 6.05 4.70 3.83 2.42 2.20 2.20

Th. 27∗ 6.05 4.71 3.85 2.48 2.24 2.24

Th. 30∗ 6.05 4.71 3.85 2.48 2.30 2.30

Table 5
Example 1: Admissible upper bound of h2 for various values of d2 = −d1. The mark ‘∗’ means that the stability conditions
are based on the same functional.

Example 1: Consider the following much-studied linear time-delay system (42) with

A =

[
−2.0 0.0

0.0 −0.9

]
, A1 =

[
−1.0 0.0

−1.0 −1.0

]
.

The results obtained by solving Theorem 27 and it corollary show a clear reduction of the conservatism. Moreover,
the improvements due to the use of Lemma 26 and its corollary can be seen when comparing the results obtained
with [SGF13] and the stability conditions provided in the present paper. Indeed the only difference between these
two papers is the use of the delay-dependent reciprocally convex lemma. Moreover, it is worth noting that Theorem
27 and its corollaries provide less conservative results, on this example, than other conditions from the literature
except for [PLL15] with h1 = 3. This improvement of [PLL15] can be explained by the use of the auxiliary function
integral inequality, which is less conservative the the Wirtinger inequality. It is also worth noting that Theorem 27
and its corollaries leads in general to the same results except for small lower bounds h1 = 0 even if the computational
complexities of the stability conditions are different.

6 Conclusions

In this report, an overview of the recent developments in the area of time-delay system has been provided. Its
demonstrates that, despite the already 20 years of investigation, this field still attracts many researchers around the
world. There are still many directions to investigate and several key aspects to be undertaken.
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