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Viability analysis and minimal time problems

for the Lotka-Volterra prey-predator model

Terence Bayen∗, Alain Rapaport†

April 30, 2017

Abstract

In this work, we consider two approaches for the control of the classical Lotka-Volterra prey-predator
model, with a controlled mortality on the predators. Our aim is to maintain the system as much as
possible in a subset K(x), which is defined as a prey density above a given threshold x. We first establish
an analytic description of the viability kernel of K(x) when it is not empty (depending on the value x),
and then determine an optimal feedback control for the minimum time problem to reach this set, as a first
control strategy. We also study the so-called minimal time crisis problem, which consists in minimizing
the total time spent outside the set K(x), providing a second control strategy. Finally, we compare these
two strategies, showing that for a large subset of initial conditions the optimal trajectories and the length
of time spent outside K(x) are slightly different for the two problems.

Keywords. Optimal Control, Viability Theory, Pontryagin Maximum Principle, Lotka-Volterra system.

1 Introduction

We consider the classical Lotka-Volterra prey-predator model{
ẋ = rx− axy,
ẏ = −my + bxy − cuy,

in the positive orthant domain D := (R+ \ {0})2
. Here, x and y denote respectively the prey and predator

densities, and a, b, c,m, r are five positive parameters. The additional mortality term −cuy represents a
mortality action on the predators (by chemical or biological means), where the control variable u ∈ [0, ū]
represents the removal effort (here ū > 0).

Many works on the control of Lotka-Volterra and more general prey-predator models are available in the
literature since the seventies (see for instance the text book [19]). They provide efficient strategies to protect
valuable living organisms (bacteria, crops, animals...) from invasions or damage by pests (phages, insects,
predators...). Several situations depending on the way the control acts on the dynamics (on predators only,
preys only or both [20]) or directly on the predation term [34], have been considered. Many approaches consist
in driving the state of the system to a target usually defined as the equilibrium point of the dynamics without
control, minimizing a criterion such as the time to reach the target [29], or an integral cost as a combination
of the use of (non-null) control and the pest damage [20]. Other approaches study the optimal control over a
prescribed time interval, possibly large as in [24], or the maximization of the population densities at the final
time [1, 34]. For crops protection, stabilizing controllers such as in [19, 22] or impulsive controls [21, 26] have
been also proposed.

These models have been also considered for harvesting purposes (such as fisheries) maximizing yields at
steady state [6] or a discounted utility function over an infinite horizon [32]. More recently, it has been shown
that discontinuous feedback controllers can stabilize the system about some desired steady states, that are
unstable under constant harvesting [27].
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Comparatively, there exist very few results concerning accessibility and viability properties of the Lotka-
Volterra model with positive controls (apart the works [9, 15, 16] with different contexts and objectives).

In the present work, we address the problem of preserving the preys from the predators, maintaining as
much as possible their density above a given threshold x > 0, which amounts to have the state belonging to
the set

K(x) := {(x, y) ∈ D ; x ≥ x}.

Although the mathematical model predicts that the preys cannot be extinct in finite time, one may consider
that practically having a small density of preys expose them to a danger of disappearance that should be
avoided as much as possible.

Throughout the paper, time varying controls u(·) will be sought among the set U defined by:

U := {u : [0,+∞)→ [0, ū] ; u(·) meas.}.

For simplicity and without any loss of generality, we choose the coefficients a, b, c equal to 1 and consider
then the system: {

ẋ = rx− xy,
ẏ = −my + xy − uy. (1.1)

For any initial condition z0 = (x0, y0) ∈ D and control law u(·) ∈ U , we shall denote by zu(·, z0) = (xu(·), yu(·))
the unique solution of (1.1) defined over R+ such that (x(0), y(0)) = z0.

Our objective is first to study the intrinsic compatibility of the threshold x with the range of control action
[0, ū] for maintaining the state of the system in the set K(x) (independently to any other criterion). This
question falls precisely in the field of the Viability Theory [2, 3, 14]. To our knowledge, the determination of
the viability kernel for sets such as K(x), which is defined as

V iab(x) := {z0 ∈ D ; ∃u(·) ∈ U , zu(t, z0) ∈ K(x), ∀t ≥ 0},

has not been yet tackled in the literature for prey-predator models. Next, we shall examine control strategies
to reach and stay at best in the set K(x), when the initial state is outside this set. Minimizing the time appears
to be the most natural way to achieve this objective, but there are two possibilities for defining this time:

1. the time spent outside the viability kernel. This choice guarantees that it is possible to stay in the set
K(x) for any future time, and amounts to solve the minimal time control problem with V iab(x) as the
target:

inf
u(·)∈U

Tu s.t. zu(Tu, z0) ∈ V iab(x). (1.2)

2. the length of time spent outside the set K(x). This choice does not ensure a priori that the state
necessarily reaches first the viability kernel i.e. the optimal trajectory could enter and exit several times
the set K(x). This amounts to consider the so-called minimal time crisis problem introduced in [17]:

inf
u(·)∈U

J(u) :=

∫ ∞
0

1K(x)c(zu(t, z0)) dt, (1.3)

where 1K(x)c denotes the characteristics function of K(x)c (i.e. the complementary of K(x)) defined by

1K(x)c(x, y) :=

{
1 if (x, y) /∈ K(x),
0 if (x, y) ∈ K(x).

Let us underline that both problems are defined over an infinite horizon, so that the corresponding value
functions and optimal controls are independent of the initial time.

For practitioners, the condition of non-vacuity of the viability kernel and its size (when it is not empty)
provide information of the ability of the controlled system to sustain the threshold x on the preys density. For
states in the interior of the viability kernel, it is known from the Viability Theory that a simple strategy to
remain inside the viability kernel is to constraint control only when the trajectory hits the boundary of the
viability such that the velocity vector points inward [2, 3]. For states outside the viability kernel, minimizing
the time to reach the viability kernel appears to be a natural choice for the practitioners. Nevertheless, when
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trajectories enter and exit several times the set K(x), as it can be the case for the Lotka-Volterra model,
one may wonder if the minimal time strategy to reach the viability kernel could indeed let the trajectory
spend significantly more time outside the set K(x) than a strategy minimizing the total length of time spent
outside would do. This is why we consider in this work both minimal time criteria, which provide two different
measures of the risk of having the prey density below the threshold, and compare them.

Technically, both optimal control problems present several issues that we investigate in the present work.

- The first problem needs to determine first the viability kernel as a target. Its boundary might be non-
smooth, opening the possibility of having several trajectories reaching a common boundary point with
different velocity vectors.

- The minimal time crisis problem possesses a discontinuous Hamiltonian, preventing the use of classical
necessary conditions (and standard numerical codes). In [17] a characterization of the value function
as a generalized solution of an Hamilton-Jacobi equation has been proposed, but necessary conditions
have not been studied. To overcome this difficulty, the authors have proposed recently an approximation
scheme based of the Moreau-Yosida regularization of the characteristic function of the constraint set
(here K(x) plays the role of the constraint set) [4], for the finite horizon case. This regularization
allows to use the available numerical methods (direct or indirect), that require a continuous integrand,
to determine approximate optimal trajectories [5]. Let us also mention references [7, 8] for the study of a
similar regularization scheme in the context of parabolic equations. Following [4], the hybrid maximum
principle (see e.g. [12, 18, 23]) is well adapted to derive necessary optimality conditions on the time
crisis problem over a finite horizon, as a theoretical or analytic tool.

The paper is organized as follows:

i. In Section 2, we provide an exact analytic description of the viability kernel V iab(x) of K(x).

ii. In Section 3, we determine the optimal synthesis for the minimal time problem to reach V iab(x) and
show that optimal controls are “bang-bang” using the Pontryagin Maximum Principle [28]. Switching
curves are computed by a numerical integration of the state-adjoint system backward in time.

iii. In Section 4, we first provide an equivalent formulation of the time crisis problem over a finite horizon for
a general control system (see Proposition 4.1). Thanks to this result, we can apply the hybrid maximum
principle on (1.3). We then show that an optimal control for this problem is “bang-bang” and we depict
the switching curves numerically. Optimal strategies for both problems (1.2)-(1.3) are then compared.
When V iab(x) is empty, we show that the time crisis function is necessarily equal to +∞ and that no
chattering occurs at the boundary of K(x).

iv. The appendix provides details on the numerical scheme that has been used to depict optimal trajectories
and the switching curves for both problems (1.2)-(1.3).

2 Determination of the viability kernel

We start by giving some definitions and recall some classical properties about the Lotka-Volterra prey-predator
model.

Given a non-empty subset A of R2, we will denote by Int(A) its interior and by ∂A its boundary. Next,
we also denote by ‖(x, y)‖ the euclidean norm of a vector (x, y) ∈ R2. For a fixed u ∈ [0, ū], we define the
function Wu : D → R by:

Wu(x, y) := x− (m+ u) lnx+ y − r ln y, (x, y) ∈ D,

together with the number c(u) ∈ R defined by

c(u) := Wu(m+ u, r) = (m+ u)(1− ln(m+ u)) + r(1− ln r),

and the positive equilibrium point E?(u) for (1.1)

E?(u) := (x?(u), y?) = (m+ u, r).
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For a given number c ≥ c(u), we denote by Lu(c), resp. by Su(c), the level set, resp. the sub-level set of Wu

defined by

Lu(c) := {(x, y) ∈ D, Wu(x, y) = c}, resp. Su(c) := {(x, y) ∈ D, Wu(x, y) ≤ c}.

We recall in the two following Lemmas classical results about the model (1.1) with constant control.

Lemma 2.1. For a constant control u, a trajectory of (1.1) belongs to a level set Lu(c) with c ≥ c(u). The
sets Lu(c) are closed curves that surround the steady state E?(u).

Proof. By differentiating Wu w.r.t. x and y, one finds ∂xWu(x, y) = 1 − m+u
x and ∂xWu(x, y) = 1 − r

y for

(x, y) ∈ D. If (x(·), y(·)) is a solution of (1.1) with the constant control u, a direct computation gives

d

dt
Wu(x(t), y(t)) = ∂xWuẋ+ ∂yWuẏ = 0.

So, any solution of (1.1) with the constant control u belongs to a level set of the function Wu. As Wu(x, y)→
+∞ when ‖(x, y)‖ → +∞, each level set Lu(c) is bounded. For a constant control u, one can check that the
single equilibrium of the dynamics in D is E?(u), and that the level set Lu(c(u)) is the singleton {E?(u)}.
Therefore, for any initial condition in D \ {E?(u)}, the trajectory belongs to a level set Lu(c) with c > c(u)
(recall that Wu(x, y) → +∞ when ‖(x, y)‖ → +∞). As Lu(c) is a compact set that does not contain any
equilibrium point, the trajectory has to be periodic and thus Lu(c) is a closed curve which surrounds E?(u).

For u ∈ [0, ū], we define two functions φu : R+ → R and ψ : R+ → R by

φu(x) := x− (m+ u) lnx, x ∈ R+ and ψ(y) := y − r ln y, y ∈ R+.

Lemma 2.2. Given u ∈ [0, ū], on has the following properties

• For any x > φu(m + u), there exists unique x+
u (x) ∈ (m + u,+∞) and x−u (x) ∈ (0,m + u) such that

φu(x+
u (x)) = φu(x−u (x)) = x.

• If p > ψ(r), the equation ψ(y) = p has exactly two roots y−(p), y+(p) that satisfy y−(p) < r < y+(p).

Proof. One can easily check that limx→+∞ φu(x) = limx→0 φu(x) = +∞. Moreover, by differentiating φu
w.r.t. x, one finds φ′u(x) = 1 − m+u

x . So the function φu is decreasing from +∞ down to φu(m + u) and
increasing up to +∞. Therefore, for any x > φu(m + u), the equation φu(z) = x has exactly two solutions
x−u (x), x+

u (x), with x−u (x) < m+u and x+
u (x) > m+u. Similarly, the function ψ is decreasing from +∞ down

to ψ(r) and increasing up to +∞, which provides the result.

For c ∈ R, we consider the subsets of D, L+
u (c), L−u (c), S+

u (c) and S−u (c) defined by:

L+
u (c) := Lu(c) ∩ {y ≥ r}, L−u (c) := Lu(c) ∩ {y ≤ r},

and
S+
u (c) := Su(c) ∩ {y ≥ r}, S−u (c) := Su(c) ∩ {y ≤ r},

and let r− ∈ (0, r] be defined by:
r− := y−(W0(x+

ū (x), r)− φ0(x)).

The next Proposition provides a description of the viability kernel V iab(x) of K(x) for (1.1).

Proposition 2.1. One has the following characterization of the viability kernel:

• If m+ ū < x, the set V iab(x) is empty.

• If ū ≥ x−m, the viability kernel is non-empty and is given by

V iab(x) = S+
ū (Wū(x, r))

⋃ (
S−0 (W0(x+

ū (x), r)) ∩K(x)
)
,

where x+
ū (x) is given by Lemma 2.2. Its boundary is the union of the three curves

B+(x) := L+
ū (Wū(x, r)),

B−(x) := L−0 (W0(x+
ū (x), r)) ∩ {x ≥ x},

B0(x) := {x} × [r−, r].
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Proof. Let us assume that ū < x − m and let ε > 0 be such that m + u < x − ε. Consider a trajectory
(x(·), y(·)) that stays in the set K(x) for any time t ≥ 0. As 0 ≤ u(t) ≤ ū, we deduce that

ẏ = y(x−m− u) ≥ y(x− x+ ε) ≥ εy,

using that x(t) ≥ x for any time t ≥ 0. Therefore y(·) is increasing, unbounded and thus there exists t1 > 0
such that y(t) > r for any time t ≥ t1. It follows that

ẋ(t) = x(t)(r − y(t)) < x(t)(r − y(t1)) < 0 ∀t > t1,

and there exists t2 > t1 such that x(t2) < x. So the trajectory (x(·), y(·)) must escape the set K(x) in finite
time, and we have a contradiction. Thus, the viability kernel V iab(x) is empty.

Assume now that one has ū ≥ x−m. Notice first that the three curves B+(x), B−(x) and B0(x) belong
to the set K(x) and that their union U(x) defines the boundary of a compact subset Z(x) of K(x), which is
such that

Z(x) = S+
ū (Wū(x, r))

⋃ (
S−0 (W0(x+

ū (x), r)) ∩K(x)
)
.

When ū = x−m, the set Z(x) is reduced to the single point E?(ū) that is an equilibrium of (1.1) for the
constant control ū. Thus, Z(x) is a viable set.

When ū > x−m, we first show that for any initial condition in U(x), there exists a trajectory that stays
in K(x) for any time t ≥ 0. Consider an initial condition in the set B+(x). With the control u = ū, the
corresponding solution of (1.1) remains on the level set Lū(Wū(x, r)) which is contained in K(x) as its extreme
left point is (x, r). Take now an initial condition in B−(x). With the control u = 0, the corresponding solution
of (1.1) remains on B−(x) until it reaches in finite time the boundary point (x+

ū (x), r) that belongs to B+(x).
From this point, we come back to the previous case. Finally, take an initial condition in Int(B0(x)) (if not
empty). On Int(B0(x)), one has ẋ > 0 for any control as one has r − y > 0. Thus the trajectory enters the
subset Z(x) and cannot evade from K(x) on Int(B0(x)). If the trajectory touches B+ ∪ B−, we face one of
the two previous case. So we conclude that Z(x) is a viable domain.

We now show that Z(x) is the largest viable domain included in K(x), that is, the viability kernel V iab(x),
or equivalently that any trajectory with initial condition in K(x)\Z(x) leaves the set K(x) in a finite horizon.
For convenience we consider the two subsets of K(x) \ Z(x), C+(x) and C−(x) defined by:

C+(x) =
(
K(x) \ Z(x)

)
∩ {y ≥ r} and C−(x) =

(
K(x) \ Z(x)

)
∩ {y ≤ r}.

Consider now an initial condition (x0, y0) ∈ C+(x), and let (x(·), y(·)) a solution of (1.1) starting from (x0, y0).
One has Wū(x0, y0) > Wū(x̄, r), and by differentiating w.r.t t one finds:

d

dt
Wū(x(t), y(t)) = (y(t)− r)(ū− u(t)) ≥ 0.

Therefore no trajectory can reach the level set Lū(Wū(x̄, r)) from K(x) \ Z(x). When y(t) = r, one has
x(t) > m+ ū and thus ẏ(t) = r(x(t)−m− u(t)) > 0 as u(t) ≤ ū. We deduce that if there exists a trajectory
with an initial condition (x0, y0) in C+(x) that stays in K(x), it has to stay in C+(x). By differentiating w.r.t
t, we obtain on C+(x) that

d

dt
W0(x(t), y(t)) = −u(t)(y(t)− r) ≤ 0,

and thus W0(x(t), y(t)) ≤ W0(x0, y0). It follows that the trajectory is bounded. Moreover, one has ẋ ≤ 0.
i.e. the function t 7→ x(t) is non-increasing and thus converges to a certain x∞ > 0. By Barbalat’s Lemma
(see for instance [25]), ẋ(t) converges to 0 which implies that y(t) tends to r. Then Wū(x(t), y(t)) converges
to Wū(x∞, r) > Wū(x̄, r) which implies that x∞ < x̄. Thus, the trajectory necessary leaves the set K(x) and
we have a contradiction.

Consider now an initial condition (x0, y0) ∈ C−(x). Similarly, one can show that no trajectory can reach
the level set L0(W0(x+(x), r)) from K(x) \ Z(x). It follows that a trajectory with an initial condition in
C−(x) that stays in K(x) has to stay in C−(x) (otherwise, it reaches C+(x) and we have shown above that
its has to escape K(x)). As previously, one can show that a trajectory that stays in C−(x) is bounded and
as t 7→ x(t) is increasing, one obtains the convergence of x(t) to a certain x∞ > x. As before, by Barbalat’s
Lemma, ẋ(t) converges to 0 when t → +∞, which implies that y(t) → r, and thus x∞ ≥ x+

ū (x) > m + ū.
Therefore there exists ε > 0 and t0 > 0 such that ẏ(t) = (x(t)−m− u)y(t) > εy(t) for any t > t0. This gives
a contradiction with the convergence of y(t) to r when t → +∞. So, the trajectory has to enter C+(x) and
then leaves K(x).
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The viability kernel is depicted on Fig. 1 in case (ii) of Proposition 2.1 together with the three curves
B+(x), B−(x),B0(x) that define its boundary (see the Appendix for the numerical values of the parameters).
It is worth noting that B+(x) is a semi-orbit of (1.1) with u = ū passing trough the point (x, r). Similarly,
B−(x) is a semi-orbit of (1.1) with u = 0 passing though the point (x, r−).

r

B+(x)

B−(x)

x

B0(x)

V iab(x)

Kc(x)

Figure 1: Viability kernel when ū > x−m (numerical values can be found in the appendix).

Definition 2.1. Given a solution z(·, z0) of (1.1), we say that a time tc > 0 is a crossing time for z(·) from
K(x) to K(x)c if the control u is left- and right-continuous at tc, z(tc) ∈ ∂K, and there exists η > 0 such that
for any time t ∈ [tc − η, tc], resp. t ∈ (tc, tc + η], z(t, z0) ∈ K, resp. z(t, z0) ∈ Kc. Similarly, we define the
notion of crossing time from K(x)c to K(x).

The viability kernel of K(x) enjoys the following properties.

Proposition 2.2. Suppose that ū > x−m.

• Consider the unique solution of (1.1) backward in time with u = 0 from (x+
ū (x), r), and let t′ > 0 be the

first time where this trajectory intersects the line {y = r}. Then, we have:

x(t′) ≤ x. (2.1)

• The set V iab(x) is a compact convex set with non-empty interior.

• Suppose that t1 < t2 are two consecutive crossing times from K(x) to K(x)c and from K(x)c to K(x)
respectively and that (x(t1), y(t1)) /∈ V iab(x), (x(t2), y(t2)) /∈ V iab(x). Then, we have the following
inequality:

t2 − t1 ≥
ln
(
r
r−

)
m+ ū

. (2.2)

Proof. To prove the first point, suppose by contradiction that x(t′) > x. Denote by (x0(·), y0(·)) the unique
solution of (1.1) with u = 0 and such that (x0(0), y0(0)) = (x(t′), r). By construction, the point (x+

ū (x), r) is
on the graph of the parameterized curve (x0(·), y0(·)). Thus we denote by t0 := inf{t ≥ 0 ; (x0(t), y0(t)) =
(x+
ū (x), r)}, and let γ0 be the parametrized curve (x0(·), y0(·)) on the interval [0, t0].
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Now, consider the unique solution (x1(·), y1(·)) of (1.1) with u = ū starting from the point (x(t′), r) and
let t1 := inf{t ≥ 0 ; y1(t) = r}. We define γ1 as the parametrized curve (x1(·), y1(·)) on the interval [0, t1].
From (1.1), we know that the graph of γ1 is below the graph of γ0.

To conclude, we consider the unique solution (x̃1(·), ỹ1(·)) of (1.1) with u = ū starting from (x, r) until
the first time t′1 > 0 where it reaches the segment line {y = r}. It can be noticed that this curve passes
through the point (x+

ū (x), r) and that its graph γ̃1 is also below the graph of γ0. Hence, both graphs γ1

and γ̃1 should intersect i.e. there must exist a time τ ∈ (0, t0) such that (x1(τ), y1(τ)) = (x̃1(τ), ỹ1(τ)). By
Cauchy-Lipschitz’s Theorem, both solutions (x1(·), y1(·)) and (x̃1(·), ỹ1(·)) should coincide everywhere which
is a contradiction as (x1(0), y1(0)) 6= (x̃1(0), ỹ1(0)).

Let us now show the second point. From Proposition 2.1 and the previous point, we know that V iab(x)
is a compact subset of R2 with non-empty interior. Now, one can easily verify that solutions of (1.1) in the
plane (x, y) satisfy:

d2y

dx2

∣∣∣∣
u=0

(x) =
y(r(x−m)2 +m(r − y)2)

(r − y)3x2
and

d2y

dx2

∣∣∣∣
u=ū

(x) =
y(r(x−m− 1)2 + (m+ 1)(r − y)2)

(r − y)3x2
.

It follows that for y < r, resp. y > r, one has d2y
dx2 |u=0

(x) > 0, resp. d2y
dx2 |u=ū

(x) < 0, which guarantees that the

set V iab(x) is convex.

To show the last point, we integrate the equation ẏ(t) = y(t)(x(t)−m− u(t)) over [t1, t2], which gives:

(m+ ū)(t2 − t1) ≥
∫ t2

t1

(m+ u(t)) dt =

∫ t2

t1

x(t) dt−
∫ y(t2)

y(t1)

dy

y
≥ −

∫ y(t2)

y(t1)

dy

y
≥ ln

(
r

r−

)
,

using that y(t1) > r and y(t2) < r−. This ends the proof.

Remark 2.1. (i) Whereas when m < x, it is clear that (2.1) holds true (as the equilibrium point for (1.1)
with u = 0 is (m, r)), the previous Proposition shows that this property remains valid whenever m > x. Note
also that in the latter case, the set V iab(x) is always non-empty as ū > 0.
(ii) We know that for a given initial state in V iab(x), any control u can be chosen until that the corresponding
trajectory reaches the boundary of V iab(x) (see e.g. [2, 3]). If (x0, y0) ∈ B−(x), resp. (x0, y0) ∈ B+(x), then
only the control u = 0, resp. u = ū is admissible in order to stay in V iab(x).
(iii) If x > m, then any point of the segment [x, ū+m]×{r} is a steady-state point for (1.1) with a prescribed
constant control whereas x ≤ m. Then any point of the segment [m, ū + m] × {r} is a steady-state point for
(1.1) with a prescribed constant control.
(iv) Inequality (2.2) gives a lower bound between two consecutive crossing times and will be used in Section 4.

3 Minimal time problem to reach the viability kernel

In this Section, we consider that the condition ū ≥ x − m is fulfilled, which guarantees that the viability
kernel V iab(x) is non empty (see Proposition 2.1). We first study the attainability of V iab(x) and then derive
necessary conditions for the minimal time problem. Finally, we give the optimal synthesis.

3.1 Attainability of the viability kernel

We recall from the Viability Theory (see e.g. [2, 30, 31]) that the viability kernel V iab(x) can be reached from
outside only at its boundary in common with the boundary of K(x), that is, accordingly to Proposition 2.1
at the line-segment B0(x) = {x} × [r−, r] (possibly reduced to a singleton when ū = x−m).

In order to show the attainability of the target set, it is convenient to introduce the following feedback
control.

Definition 3.1. The myopic1 state feedback is defined as

u[x, y] :=

{
ū if y ≥ r,
0 if y < r.

(3.1)

1This terminology was introduced in [4] in the case where a control policy acts separately in two components of the state
domain.
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Given an initial condition (x0, y0) ∈ (R∗+×R∗+)\V iab(x), we denote by (xm(·), ym(·)) the unique solution of
(1.1) starting from (x0, y0) at time 0 and associated to the control um(·) defined by um(t) := u[xm(t), ym(t)] .

Proposition 3.1. For any initial condition (x0, y0) ∈ D\V iab(x), there exists a control u ∈ U steering (x0, y0)
to the viability kernel V iab(x).

Proof. Suppose first that one has m+ ū > x, hence V iab(x) has a non-empty interior.

First step. We show that it is enough to prove the result for any initial condition of type (x0, r) with x0 > x+
ū (x̄).

If the initial condition (x0, y0) is such that y0 < r, then it is enough to replace x0 by xm(tc) where tc is the
first time t > 0 such that ym(tc) = r. If (xm(tc), ym(tc)) ∈ V iab(x), then the result is proved. Otherwise, we
have xm(tc) > x+

ū (x̄). If now y0 > r, we apply the control um until the first time t′c > 0 such that ym(t′c) = r.
Then, for t > t′c (close to t′c) one has ym(t′c) < r, and we conclude by the previous case.

Second step. We now show the Proposition for any initial condition (x0, r) with x0 > x+
ū (x̄). By applying the

feedback control um, we can define two sequences of time (tn)n≥0 and (t′n)n≥0 such that:

yn(tn) = yn(t′n) = r and x′n := xm(t′n) < x < xn := xm(tn).

Moreover, the trajectory is such that for any n ∈ N:

t ∈ (tn, t
′
n) ⇒ ym(t) > r and t ∈ (t′n, tn+1) ⇒ ym(t) < r.

We have x1 < x0. Indeed, consider the two solutions of (1.1), x̂0(·), resp. x̂1(·) with the control u = 0, resp.
u = ū starting from the point (x′0, r). We then have x̂0(t) > x̂1(t) for any t ∈ (0, t̂] where t̂ is such that
x̂0(t̂) = r. Now, as x̂1(·) passes though the point (x0, r), we deduce that x1 < x0. Now, the two solutions of
(1.1) with u = ū starting from (x0, r) and (x1, r) cannot intersect, thus we deduce that x′1 > x′0. By induction,
we obtain that (xn)n≥0 is decreasing and that (x′n)n≥0 is increasing.

Now, integrating (1.1) on the interval (t0, t
′
0), resp. (t′0, t1) with u = ū, resp. with u = 0 yields:{

−x0 + (m+ ū) ln(x0) = −x′0 + (m+ ū) ln(x′0),

−x1 +m lnx1 = −x′0 +m lnx′0.

Thus we obtain the relation x0 − x1 −m ln
(
x0

x1

)
+ ū ln

(
x′0
x0

)
= 0 and by induction we get:

∀n ∈ N∗, xn−1 − xn −m ln

(
xn−1

xn

)
+ ū ln

(
x′n−1

xn−1

)
= 0.

As xn−1 < xn, we deduce that one has

xn−1 − xn ≥ ū ln

(
xn−1

x′n−1

)
. (3.2)

To conclude, we suppose by contradiction that the trajectory always stays outside the set V iab(x). By noticing

that inequalities xn−1 − x′n−1 ≥ x+
ū (x)− x and x′n−1 ≤ x are fulfilled for any n ≥ 1, one obtains xn−1

x′n−1
≥ x+

ū (x̄)
x

which implies
xn−1 − xn ≥ β,

where β := ū ln
(
x+
ū (x̄)
x

)
> 0 (recall that the interior of V iab(x) is non-empty). Thus, one has for each n ∈ N

xn ≤ xn−1−β. Therefore we obtain a contradiction and the trajectory necessary enters the set V iab(x) which
ends the proof in the case where m+ ū > x.

Consider now the case m + ū = x. Then V iab(x) is reduced to a single point (x, r) that belongs to the
periodic orbit Or defined as the unique solution of (1.1) with u = 0 passing through this point. The second
intersection point of this orbit with the line {y = r} is denoted by (ν, r) with ν > 0. Now, if the initial
condition is in the interior of Or, then the control u = ū steers (1.1) in finite time to Or and the result follows.
Following the proof of the result in the case where m+ ū > x, we can suppose that the initial condition is such
that (x0, r) with x0 > x. Similarly, let us define two sequences of points (xn), (x′n) such that (xn) is increasing
and (x′n) is decreasing. Moreover inequality (3.2) also holds true. To conclude, we suppose by contradiction
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that the trajectory does not intersect Or. Hence, for any n ∈ N one has xn − x′n ≥ x − ν and x′n ≤ ν. We
then find that for any n ∈ N∗

xn−1

x′n−1

=
xn−1 − x′n−1

x′n−1

+ 1 ≥ x

ν
> 0.

and for any n ∈ N one finds that
xn−1 − xn ≥ β′,

with β′ := ū ln (x/ν) > 0. We can then conclude as in the previous case.

Remark 3.1. Observe indeed that along trajectories of (1.1) one has

∀t ≥ 0,
d

dt
W0(x(t), y(t)) = −u(t)(y(t)− r), (3.3)

Finding a control strategy that makes the value of W0 decreasing with time appears to be a an efficient
strategy to steer (1.1) from a given initial condition to V iab(x). From (3.3), we obtain the following inequalities

∀t ≥ 0, y(t) ≥ r ⇒ d

dt
W0(x(t), y(t)) ≥ −ū(y(t)− r) and y(t) ≤ r ⇒ d

dt
W0(x(t), y(t)) ≥ 0, (3.4)

which allow to state that the myopic feedback u is the control strategy that gives the maximal decreasing of the
function W0 along the trajectories. However, there is no evidence that this strategy corresponds to the optimal
feedback control for the minimal time strategy to reach V iab(x) that we study in the next sections.

3.2 Necessary optimality conditions

Let us define the value function V associated to the minimum time control problem to reach V iab(x). For a
given initial condition z0 = (x0, y0) ∈ D, the function V is defined as

V (z0) := inf
u(·)∈U

Tu s.t. zu(Tu, z0) ∈ V iab(x), (3.5)

where zu(·, z0) := (xu(·), yu(·)) is the unique solution of (1.1) associated to the control u(·) ∈ U and Tu the first
entry time of zu(·, z0) into the target set. From Proposition 3.1, the set V iab(x) can be reached from any initial
condition (x0, y0) ∈ D. Therefore V is finite everywhere in D and the existence of an optimal control follows
from standard argumentation based on Fillipov’s Theorem (see for instance [11]). Recall also that V iab(x) can
be reached fromK(x)c only through ∂K(x)\∂V iab(x) (see for instance [2]), that is here the line-segment B0(x).

Recall that given a non-empty closed convex subset K ⊂ Rn, n ≥ 1, the normal cone to K at a point
x ∈ K is defined as NK(x) := {p ∈ Rn ; p · (y − x) ≤ 0, ∀y ∈ K} where a · b denotes the standard scalar
product of two vectors a, b ∈ Rn. Let H : R2×R2×R×R→ R be the Hamiltonian associated to (3.5) defined
by:

H = H(x, y, p, q, p0, u) = px(r − y) + qy(x−m− u) + p0.

We now apply the Pontryagin Maximum Principle (PMP) to (3.5) to derive necessary optimality conditions
for Problem (3.5). Let u ∈ U be an optimal control defined over a certain time interval [0, Tu] with Tu < +∞
and let zu := (xu, yu) be the associated trajectory. Then, there exists an absolutely continuous map λ :=
(p, q) : [0, Tu]→ R2 and a number p0 ≤ 0 such that the following conditions are satisfied:

• The pair (λ(·), p0) is non-zero.

• The adjoint vector satisfies the adjoint equation λ̇(t) = −∂H∂z (zu(t), λ(t), p0, u(t)) for a.e. t ∈ [0, Tu] that
is: {

ṗ = p(y − r)− qy,
q̇ = px+ q(u+m− x).

(3.6)

• As V iab(x) is a non-empty compact convex subset of Rn, the transversality condition can be expressed
as λ(Tu) ∈ −NV iab(x)(z(Tu)) (see e.g. [33]).
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• The control u satisfies the maximization condition:

u(t) ∈ arg max0≤ω≤ūH(zu(t), λ(t), p0, ω) a.e. t ∈ [0, Tu]. (3.7)

An extremal is a triplet (zu(·), λ(·), u(·)) satisfying (1.1)-(3.6)-(3.7). Moreover, as the system is autonomous
and Tu is free, the Hamiltonian is equal to zero along any extremal trajectory. We say that the extremal is
normal if p0 6= 0 and abnormal if p0 = 0. Whenever an extremal trajectory is normal, we can always assume
that p0 = −1 (using that H and (3.6) are homogeneous). In view of maximization in (3.7), we define the
switching function φ as

φ := −qy,

and we obtain the following candidate optimal control law: φ(t) > 0 ⇒ u(t) = ū,
φ(t) < 0 ⇒ u(t) = 0,
φ(t) = 0 ⇒ u(t) ∈ [0, ū].

(3.8)

We call switching time tc a time such that the switching function φ has non-constant sign in any neighborhood
of tc (and switching point for the corresponding state z(tc)). From (3.8), we deduce that any switching time
satisfies φ(tc) = 0. A direct computation shows that we have:

φ̇(t) = −p(t)x(t)y(t) a.e. t ∈ [0, Tu].

Let us now explicit the transversality condition. Taking into account that V iab(x) is non-smooth at the point
(x, r−), let w be the unit vector defined by w := (sinψ,− cosψ) where ψ ∈ (−π2 ,

π
2 ) is defined by

tanψ :=
(x−m)r−
(r − r−)x

,

and let e1 := (1, 0).

Lemma 3.1. Suppose that ū > x−m, i.e. that V iab(x) has a non-empty interior. If (x, y) ∈ B0(x), we have:

y ∈ (r−, r] ⇒ NV iab(x)(x, y) = R− × {0},
y = r− ⇒ NV iab(x)(x, y) = {α(βw − [1− β]e1) ; (α, β) ∈ R+ × [0, 1]}.

Proof. The result is straightforward for y ∈ (r−, r] (note that for y = r, then B+(x) has a vertical tangent at
the point (x, r)).

Now, at the boundary point (x, r−) of V iab(x), the tangent cone is generated by the vectors (0, 1) and
(cosψ, sinψ). The geometric computation of NV iab(x)(x, y) follows using that V iab(x) is convex and that the
normal cone to V iab(x) at (x, y) ∈ B0(x) is the dual cone to the tangent cone to V iab(x) at (x, y).

Thanks to Pontryagin Principle, we can derive the following properties.

Proposition 3.2. Let u ∈ U be an optimal control for (3.5) and (zu(·), λ(·), u(·)) the corresponding extremal
trajectory defined over a time interval [0, Tu]. Then, the following properties hold true:

• The control u is bang-bang i.e. it satisfies u(t) ∈ {0, ū} for a.e. t ∈ [0, Tu] and:

u(t) =
ū

2
(1 + sign(φ(t))) a.e. t ∈ [0, Tu]. (3.9)

• The transversality condition on the adjoint vector at time Tu reads as follows (in the case where ū > x−m
only):

(x(Tu), y(Tu)) ∈ {x} × (r−, r) ⇒ (p(Tu), q(Tu)) ∈ R+ × {0},
(x(Tu), y(Tu)) = (x, r−) ⇒ (p(Tu), q(Tu)) ∈ {α(−βw + (1− β)e1) ; (α, β) ∈ R+ × [0, 1]}.

(3.10)

• If the extremal trajectory reaches the target at some point in {x}× (r−, r), then it is normal i.e. p0 6= 0.
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• If the extremal trajectory is abnormal, then any switching point lies on the line {y = r}.

Proof. To prove the first point, suppose that φ = 0 on some time interval [t1, t2]. By differentiating φ w.r.t
the time t, we obtain q̇ = q = 0 over [t1, t2] implying p = 0 over [t1, t2]. From (3.6), we deduce that the adjoint
vector λ is zero over [0, Tu]. We thus obtain a contradiction with the PMP using H = 0. This proves that
(3.9) holds almost everywhere.

Lemma 3.1 together with the transversality condition λ(Tu) ∈ −NV iab(x)(z(Tu)) straightforwardly implies
(3.10).

Let us show the third point. Suppose by contradiction that p0 = 0. Using that H = 0 and that y(Tu) 6= r,
one obtains p(Tu) = 0. Thus we would have p(Tu) = q(Tu) = 0 and then λ ≡ 0 using (3.6). This contradicts
the PMP as the pair (λ(·), p0) would be zero.

Finally, suppose that the extremal is abnormal and let t0 bet a switching point implying φ(t0) = q(t0) = 0.
It follows that p(t0) 6= 0 (otherwise the vector λ would be zero on [0, Tu] and this would contradict the PMP).
Now, suppose that y(t0) 6= r, then we find that p(t0)x(t0)(r− y(t0)) 6= 0 which again contradicts the PMP as
one has p0 = 0. Hence, we necessarily have y(t0) = r.

Remark 3.2. From (3.6) and the fact that (λ(·), p0) is non-zero, the mapping t 7−→ (p(t), q(t)) is always
non-zero. Using a similar argument as in the proof of the first point of Proposition 3.2, one can prove that
the zeros of φ are isolated.

3.3 Optimal synthesis

We first analyze the behavior of the switching function t 7→ φ(t), which is crucial in order to find an optimal
control policy.

Lemma 3.2. A normal extremal trajectory (z(·), λ(·), u(·)) defined over [0, Tu] satisfies the following properties:

• The switching function is solution of the ordinary differential equation (ODE):

φ̇(t) =
y(t)(m+ u(t)− x(t))

r − y(t)
φ(t)− y(t)

r − y(t)
, a.e. t ∈ [0, Tu], (3.11)

• At a time t0 where y(t0) = r, we have φ(t0) 6= 0 and:

φ(t0) =
1

u(t0) +m− x(t0)
. (3.12)

Proof. Let us first show that the set S := {t ∈ [0, Tu] ; y(t) = r} is finite. If t0 ∈ S, we have q(t0)y(t0)(x(t0)−
m − u(t0)) = 1 which implies that ẏ(t0) 6= 0, hence t0 is isolated and thus S is finite. Using that φ = −qy,
φ̇ = −pxy, and that H = 0, we get that (3.11) holds a.e. The proof of the second point is straightforward
combining H = 0 and y(t0) = r.

This Lemma leads to the following Proposition.

Proposition 3.3. Let (z(·), λ(·), u(·)) be a normal extremal trajectory defined over [0, Tu]. Then, the following
properties hold true.

• If there exist two consecutive times t2 > t1 > 0 such that y(t1) = y(t2) = r, then the control u has exactly
one switching time tc ∈ (t1, t2).

• If, in addition, one has x(t1) > x(t2), resp. x(t1) < x(t2), then an optimal control satisfies u = 0, resp.
u = ū on (t1, tc) and then u = ū, resp. u = 0 on (tc, t2).

Proof. From (3.12), the sign of φ(ti), i = 1, 2 depends on the value of x(ti) compared to u(t0) +m. Whenever
the trajectory satisfies y(t1) = r with x(t1) > x+

ū (x), we thus have φ(t1) < 0 implying u = 0. Using the
inequality x(t2) < m, we deduce that φ(t2) > 0, hence the trajectory necessarily has a switching point at

some time tc ∈ (t1, t2). Now, from (3.11), one has φ̇(tc) = − y(tc)
r−y(tc) > 0. Thus, the only possibility for the

trajectory is to switch from u = 0 to u = ū. This shows the uniqueness of tc in (t1, t2). If now x(t1) < x+
ū (x),

the same argumentation shows that there exists a unique switching time from u = ū to u = 0 in (t1, t2). This
ends the proof of the Proposition.

11



We denote by γ the graph of the unique solution (x̃(·), ỹ(·)) of (1.1) backward in time starting from the
point (x, r) associated to the myopic feedback control (3.1). Let τ1 be the first time where (x̃(·), ỹ(·)) exits
K(x) and τ2 > τ1 be the first exit time of (x̃(·), ỹ(·)) of the set {(x, y) ∈ D ; y ≤ r}. Finally, let γ1 be the
restriction of (x̃(·), ỹ(·)) to the interval [τ1, τ2]. The optimal synthesis of the problem then reads as follows
(see also Fig. 2).

Theorem 3.1. Let (x0, y0) be an initial condition in D\V iab(x).

• If (x0, y0) ∈ γ, then any optimal trajectory of (1.1) steering (x0, y0) to the target set is abnormal. The
corresponding control is given by um(·) and switching points occur on the line {y = r}.

• If (x0, y0) /∈ γ, then any optimal trajectory of (1.1)steering (x0, y0) to the target set is normal. Moreover,
if u(·) denotes the optimal control, there exists p ∈ N∗, s ∈ {0, 1}, and a sequence of times (τk)0≤k≤p
such that:

– We have τ0 = 0 < τ1 < · · · < τp−1 < τp = Tu and τk is a switching time of u for 1 ≤ k ≤ p.

– The optimal control u is given by

u(t) =
ū

2
(1 + (−1)p−k−s) t ∈ (τk, τk+1), 0 ≤ k ≤ p− 1. (3.13)

– If y(Tu) ∈ (r−, r), resp. y(Tu) = r−, then s = 1, resp. s = 0.

Proof. Let us prove the first point. We already know from Proposition 3.2 that any trajectory starting on the
curve γ and associated to the control um corresponds to an abnormal extremal trajectory. We must prove
that such an extremal is optimal. To do so, let us choose (x0, y0) on the curve γ, and let (x(·), y(·), λ(·), u(·))
be an optimal extremal trajectory steering (x0, y0) to V iab(x). Let t0 be defined as follows:

t0 := inf{t ≥ 0 ; ∃ε > 0 ∀τ ∈ (t, t+ ε) (x(τ), y(τ)) /∈ γ}.

Suppose by contradiction that t0 < Tu. As (x(·), y(·), u(·)) is extremal, (3.7) implies that t0 is necessarily a
switching time from u = 0 to u = ū or from u = ū to u = 0. We argue that y(t0) 6= r. Indeed, otherwise,
we would have a contradiction with the definition of t0 (as by definition, um switches on the line {y = r}).
Hence, either we have y(t0) < r or y(t0) > r. Now, the fact that y(t0) 6= r implies that the extremal trajectory
is a normal one. Indeed, we cannot have p(t0) = 0 by Cauchy-Lipschitz’s Theorem, but as y(t0) 6= r, we
obtain that p(t0)x(t0)(r − y(t0)) 6= 0 and thus p0 must be non null. Suppose for instance that y(t0) < r. By
construction of t0, this point is a switching time from u = 0 to u = ū and we necessarily have φ̇(t0) ≥ 0. On
the other hand, we obtain from (3.11) that

φ̇(t0) = − y(t0)

r − y(t0)
< 0,

and thus a contradiction. If y(t0) > r, we obtain a similar contradiction with the sign of φ̇ at time t0. This
shows that t0 ≥ Tu, thus we have proved that the abnormal extremal trajectory starting from (x0, y0) with
the control um(·) drives a solution of (1.1) optimally to the target.

Let us prove the second point. The first two properties follow from Proposition 3.2 and from the fact that
the number of switching times of an optimal control is finite. Given an extremal trajectory (x(·), y(·), λ(·), u(·))
driving optimally (x0, y0) /∈ γ to V iab(x), we consider two cases depending if y(Tu) ∈ (r−, r) or y(Tu) = r−.
First case: y(Tu) ∈ (r−, r). From Proposition 3.2, we have p0 6= 0 i.e. the trajectory is normal. Now, as

φ(Tu) = 0 and φ̇(Tu) = − y(Tu)
r−y(Tu) < 0, we obtain that u = ū in a left neighborhood of Tu. By using Proposition

3.3, we obtain that the extremal has exactly one switching time tc between two consecutive instants t1 < t2
such that y(t1) = y(t2) = r. We thus obtain (3.13) by considering (1.1) backward in time from t = Tu and by
counting the number of times (denoted by p − 1 with p ≥ 1) where the trajectory surrounds V iab(x) before
reaching (x0, y0). When k = p− 1, we obtain u(t) = ū

2 (1 + (−1)1−s), thus s = 1 as was to be proved.

Second case: y(Tu) = r−. Suppose that the extremal is abnormal i.e. p0 = 0. It follows that q(Tu) > 0.
Otherwise, the transversality condition would imply q(Tu) = 0 and using H = 0 we would have p(Tu) = 0
and a contradiction with the PMP. We deduce that φ(Tu) < 0 thus u = 0 in a left neighborhood of Tu. As
the extremal is abnormal, switching points occur only on the line {y = r}. This shows that we have u = 0 on
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[tc, Tu] where tc is the last time such that y(tc) = r before reaching B0(x). Thus, by integrating backward in
time (1.1) from (x, r−), we find that u(·) = um(·) and that (x0, y0) ∈ γ which is a contradiction. We have thus
proved that the extremal optimal trajectory is normal. Finally, we have two cases depending if the optimal
trajectory reaches (x, r−) with either the control u = 0 or u = ū:

- The case where we have u = ū at the terminal time Tu is similar to the first case y(Tu) ∈ (r−, r) above.
Thus, the conclusion is obtained similarly as above.

- Now, suppose that we have u = 0 at the terminal time Tu. The trajectory necessary has a switching
time on γ1 (as it is normal). We thus obtain (3.13) by considering (1.1) backward in time from t = Tu
and by counting the number of times (denoted by p − 1 with p ≥ 1) where the trajectory surrounds
V iab(x) before reaching (x0, y0). As u = 0 in a left neighborhood of Tu, we obtain s = 0.

When the viability kernel is reduced to the singleton {(x, r)} i.e. when ū = x−m, Theorem 3.1 still holds
true, even though there is no transversality condition on the terminal adjoint vector. This can be interpreted
as the limiting case when the two extreme points of B0(x) collapse.

3.4 Discussion

Typical optimal trajectories are depicted on Fig. 2 (see Appendix for details on the numerical simulations).

r

x

Kc(x)

Figure 2: Examples of optimal trajectories for the minimal time to reach V iab(x) (see Appendix for the
numerical values). In blue, normal optimal trajectories reaching the target set at B0(x). In red, the abnormal
optimal trajectory reaching B0(x) at the extreme point (x, r−). Switches (from 0 to ū or from ū to 0) are
represented by the green dots.

We highlight the results of Theorem 3.1 and properties of optimal trajectories illustrated on Fig. 2 by the
following remarks.

• From Theorem 3.1, any normal trajectory reaching B0(x) in its interior satisfies:

p− (2j + 1) ≥ 0 and p− 2j ≥ 0 ⇒ y(τp−2j+1) > r and y(τp−2j) < r.

13



• Any normal trajectory either reaches B0(x) with u = ū, or it reaches the point (x, r−) with u = 0. In
this latter case, an optimal trajectory switches from u = ū to u = 0 on γ1.

• Abnormal trajectories are contained in the curve γ and they are the only extremal trajectories for which
switching points occur exactly on the line {y = r}.

• Between two consecutive times t1 < t2 for which a normal extremal trajectory satisfies y(t1) = y(t2) = r,
the extremal has exactly one switching time.

• When the initial condition z0 is far away from the target, optimal trajectories have to surround the
target set a number of times that is increasing with the distance of z0 (see Fig. 2).

• The optimal control provided by Theorem 3.1 (ii) can be interpreted as a delayed perturbation of the
myopic strategy (3.1): instead of switching on the line {y = r}, switching times are delayed and the
corresponding switching points occur after the last intersection between the corresponding trajectory
and the line {y = r} (see the switching curves in red on Fig 2).

4 The minimal time crisis problem

To compare with the minimal time problem studied in Section 3, we first consider viability kernels V iab(x)
with non-empty interior, that is when the condition ū > x−m is fulfilled (see Proposition 2.1), and define the
value function associated to the minimal time crisis problem, as

θ(z0) := inf
u∈U

∫ ∞
0

1K(x)c(zu(t, z0)) dt. (4.1)

We first provide a general result that gives sufficient conditions for which the optimal solutions of the
minimal time crisis problem (in infinite horizon) minimize the crisis time to reach the viability kernel in finite
time. This result is of interest on itself and applies to the Lotka-Volterra prey predator model. This allows us
to apply the Hybrid Maximum Principle (in finite time) and characterize optimal trajectories of the minimal
time crisis problem. We then discuss and compare the optimal solutions with the ones of the minimal time to
reach V iab(x). Finally, we consider the case of empty viability kernels.

4.1 Equivalence of the time crisis problem with a finite horizon problem

In a general setup, we consider a control system:

ẏ = f(y, v), (4.2)

where f : Rn × Rm → Rn is the dynamics, y is the state, and v the control that takes values in a non-empty
closed subset Ω of Rm. The admissible control set is classically

Vad := {v : [0,+∞)→ Ω ; v meas.}.

We assume the usual regularity assumptions on the dynamics (see e.g. [13]):

(H1) The dynamics f is continuous w.r.t. (y, v), of class C1 w.r.t. y and satisfies the linear growth condition:
there exist c1 > 0 and c2 > 0 such that for all y ∈ Rn and all v ∈ Ω, one has:

|f(y, v)| ≤ c1|y|+ c2, (4.3)

where | · | is the euclidean norm in Rn.

(H2) For any y ∈ Rn, the velocity set F (y) := {f(y, v) ; v ∈ Ω} is a non-empty compact convex set.

It follows, by the Cauchy-Lipschitz’s Theorem, that for any initial condition y0 ∈ Rn and any T ≥ 0, there
exists a unique absolutely continuous solution of (4.2) defined over [0, T ] such that y(0) = y0, denoted by
yu(·, y0) hereafter.
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Let K be a given closed subset of Rn and Kc := Rn\K its complementary, the minimal time crisis problem
states as

T (y0) := inf
v∈Vad

∫ +∞

0

1Kc(yv(t, y0)) dt, (4.4)

where 1Kc is the characteristic function of Kc:

1Kc(x) :=

{
0 if x ∈ K,
1 if x /∈ K.

Under the additional hypothesis:

(H3) The viability kernel of K under the dynamics f , V iab(K)2, is non-empty and for any initial condition
in Rn, there exists a control v ∈ Vad steering y0 to V iab(K) ,

one can consider the following optimal control problem:

T̂ (y0) := inf
τ≥0,v∈Vad

{∫ τ

0

1Kc(yv(t, y0)) dt s.t. yv(τ, y0) ∈ V iab(K)

}
. (4.5)

The existence of an optimal control for both problems (4.4) and (4.5) follows from standard argumentation
(see [17, 4]).

We introduce now an hypothesis on the crossing times:

(H4) There exists a number η > 0 such that for any pair of consecutive crossing times3 t1 < t2 from K to Kc

or from Kc to K, one has t2 − t1 ≥ η ,

which allows us to state the following equivalence result.

Proposition 4.1. Suppose that assumptions (H1)-(H4) are satisfied. Then, for any y0 ∈ Rn one has

T (y0) = T̂ (y0).

Furthermore, for any y0, the infimum in (4.5) is reached for a finite τ .

Proof. As the value functions T and T̂ are clearly identically equal to zero in V iab(x), we consider y0 /∈
V iab(K). It is known (see [17]) that one has T (y0) ≤ Ṽ (y0), where

Ṽ (y0) := inf
v∈Vad

{Tv s.t. yv(Tv, y0) ∈ V iab(K)} .

Moreover, Hypothesis (H3) implies Ṽ (y0) < +∞. Let u∗(·) be an optimal control for T (y0) and y∗(·, y0) the
associated solution starting from y0. Define the time τ(y0) ∈ R+ ∪ {+∞} by:

τ(y0) := sup{t ≥ 0 ; y∗(t, y0) ∈ Kc},

and suppose by contradiction that τ(y0) = +∞. As T (y0) < +∞, there exists t0 ≥ 0 such that y∗(t0, y0) ∈ K.
Now, as τ(y0) = +∞, there exists t1 ≥ t0 such that t1 is a crossing time from K to Kc. We now define t2
as the first entry time t > t1 of y∗(·, y0) from Kc into K (t2 exists as T (y0) < +∞). From (H4), we deduce
that t2 − t1 ≥ η > 0. By the Dynamic Programming Principle, y∗(·) is also optimal from y∗(t2) and one
has T (y∗(t2)) ≤ T (y0) < +∞, τ(y∗(t2)) = τ(y0) = +∞. Therefore, the same argument can be applied from
(t2, y

∗(t2)) and we obtain two increasing sequences of times (ti,n)n, i = 1, 2, such that one has t2,n−t1,n ≥ η > 0
for any n ∈ N. This implies that one has T (y0) = +∞ and thus a contradiction. Therefore, we necessary have
τ(y0) < +∞ which implies that y∗(t, y0) ∈ K for any time t ≥ τ(y0) i.e. y∗(τ(y0), y0) ∈ V iab(K). It follows
that

T (y0) =

∫ τ(y0)

0

1Kc(y∗(t, y0)) dt ≥ T̂ (y0),

2The viability kernel of K under the dynamics f is defined as V iab(K) := {y0 ∈ K ; ∃v(·) ∈ Vad, yv(t, z0) ∈ K, ∀t ≥ 0}.
3The definition of a crossing time in this setting is the same as the one introduced in Section 2 with K in place of K(x).
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using that y∗(τ(y0), y0) ∈ V iab(K). On the other hand, let (τ̂ , v̂(·)) ∈ R+ ×Uad be an optimal pair for T̂ (y0).
If ŷ(·, y0) denotes the associated trajectory, we then have ŷ(τ̂ , y0) ∈ V iab(K) with v̂ defined over [0, τ̂ ]. Hence,
we can extend v̂ to a control function ū ∈ Vad defined on [0 +∞) such that the associated trajectory ȳ(·, y0)
satisfies ȳ(t, y0) ∈ V iab(K) for any time t ≥ τ̂ . We then have

T̂ (y0) =

∫ τ̂

0

1Kc(ŷ(t, y0)) dt =

∫ +∞

0

1Kc(ȳ(t, y0)) dt ≥ T (y0),

and the conclusion follows.
Finally, to prove that the infimum in (4.5) is reached for a finite τ , we suppose by contradiction that this

is not the case. As previously, we can then find two increasing sequences of times (ti,n)n, i = 1, 2, such that

one has t2,n − t1,n ≥ η for any n ∈ N. Similarly, we find a contradiction with the fact that T̂ (y0) is finite,
which ends the proof.

In connection with Hypothesis (H4), it is relevant to recall the chattering phenomenon4, following for
instance [10, 35, 36].

Definition 4.1. Given y0 ∈ Rn and a solution y(·, y0) of (4.2) defined over [0,+∞), we say that a chattering
phenomenon occurs if there exist two sequences of times (toutn )n≥0, (tinn )n≥0 satisfying:

• For any n ∈ N, toutn and tinn are two consecutive crossing time for y(·, y0) from K to Kc and from Kc to
K respectively.

• For any n ∈ N, one has toutn − tinn > 0, and toutn − tinn → 0 when n→ +∞.

Let us also recall the definition of transverse crossing times [4] (for convex sets K).

Definition 4.2. Given an admissible trajectory yu(·, y0), a crossing time tc (from K to Kc or from Kc to K)
is transverse when there exists ν ∈ NK(yu(tc, y0)) such that ẏu(tc, y0) · ν 6= 0.

In other words, a transverse crossing time tc is such that the trajectory does not hit the boundary of K
tangentially while crossing K.

4.2 Necessary optimality conditions

It has been proved in Section 3 that V iab(x) can be reached from any initial condition (x0, y0) ∈ D (see
Proposition 3.1). Therefore, as for (4.1), the Problem

θ̂(z0) := inf
T≥0,u∈U

{∫ T

0

1K(x)c(zu(t, z0)) dt, s.t. zu(T, z0) ∈ V iab(x)

}
, (4.6)

has a solution. Moreover, Proposition 2.2 implies that for any pair of consecutive crossing times t1 < t2 from
K to Kc and from Kc to K, one has

t2 − t1 ≥ δ :=
ln
(
r
r−

)
m+ ū

> 0.

Hence, we can apply Proposition 4.1 and we get θ(z0) = θ̂(z0) for any z0 ∈ D. We are now in position
to apply the Hybrid Maximum Principle [18, 23, 12] (in finite time) to Problem (4.6). As in the former
work [4], we tackle the discontinuity of the integrand 1K(x)c by considering the partition of the state space
D = K(x) ∪K(x)c. Let H : R2 × R2 × R× R→ R be the Hamiltonian associated to (4.6) defined by:

H := H(x, y, p, q, p0, u) = px(r − y) + qy(x−m− u) + p01K(x)c(x, y).

If u is an optimal control of (4.6) and (xu(·), yu(·)) is the associated solution of (1.1), then the following
optimality conditions are satisfied:

4In general, this terminology is used when an optimal control has an infinite number of switching points, see Fuller’s example
[35].
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• There exist numbers T ≥ 0, p0 ≤ 0 and a measurable function λ(·) := (p(·), q(·)) : [0, T ] → R2 that is
almost everywhere absolutely continuous, satisfying a.e. on [0, T ]:{

ṗ = p(y − r)− qy,
q̇ = px+ q(u+m− x).

(4.7)

• The control u satisfies the maximization condition:

u(t) ∈ arg max
ω∈[0,ū]

H(x(t), y(t), p(t), q(t), p0, ω) a.e. t ∈ [0, T ]. (4.8)

• The Hamiltonian H is constant equal to zero along any extremal trajectory (x(·), y(·), u(·), p(·), q(·), p0)
satisfying (1.1)-(4.7)-(4.8) (we recall that the terminal time is free).

• The function λ(·) is discontinuous only at a crossing time tc (from K(x) to K(x)c or from K(x)c to
K(x)) and one has

λ(t+c )− λ(t−c ) ∈ NK(x)(x(tc), y(tc)).

• The triplet (p0, p(·), q(·)) is non identically null.

• As (x(T ), y(T )) ∈ V iab(x), one has λ(T ) ∈ −NV iab(x)(x(T ), y(T )) i.e. λ(T ) satisfies (3.10).

As for the minimal time control problem, the switching function φ := −qy provides information on the optimal
control:  φ(t) > 0 ⇒ u(t) = ū,

φ(t) < 0 ⇒ u(t) = 0,
φ(t) = 0 ⇒ u(t) ∈ [0, ū].

(4.9)

Moreover, the adjoint equation implies φ̇ = −pxy. Following Definition 4.2 for the set K(x), a crossing time
tc is transverse when one has ż(tc, z0).e1 6= 0, where e1 denotes the vector (1, 0). We begin by two Lemmas
that characterize crossing times.

Lemma 4.1. Given a solution z(·, z0) of (1.1), any crossing time tc of z(·, z0) such that z(tc, z0) /∈ V iab(x)
is transverse.

Proof. Suppose that a solution z(·, z0) = (x(·), y(·)) of (1.1) hits tangentially the boundary of K(x) at some
point (x, y). Then, we must have ż(tc, z0) · e1 = 0 which implies that y(tc) = r. Hence, we obtain that
(x(tc), y(tc)) = (x, r) ∈ V iab(x) which contradicts the hypothesis of the Lemma. Hence, any crossing time is
transverse.

Thanks to this Lemma, we can write the jump condition on the adjoint vector as follows (see [4]). Let tc
be a crossing time. Then, one has:

x(t−c ) > x and x(t+c ) < x ⇒ p(t+c )− p(t−c ) =
q(tc)y(tc)(u(t+c )− u(t−c ))− p0

x(r − y(tc))
,

x(t−c ) < x and x(t+c ) > x ⇒ p(t+c )− p(t−c ) =
q(tc)y(tc)(u(t+c )− u(t−c )) + p0

x(r − y(tc))
.

(4.10)

and the function q(·) is (absolutely) continuous over [0, T ] whereas p is piece-wise (absolutely) continuous. We
then obtain the following characterization of the jumps.

Lemma 4.2.

(i) If an extremal trajectory (x(·), y(·), u(·), p(·), q(·), p0) is abnormal (i.e. p0 = 0), then the adjoint vector
(p(·), q(·)) is absolutely continuous.

(ii) If an extremal trajectory (x(·), y(·), u(·), p(·), q(·), p0) is normal, then a crossing time tc is such that
x(t−c ) > x and x(t+c ) < x ⇒ p(t+c )− p(t−c ) =

1

x(r − y(tc))
,

x(t−c ) < x and x(t+c ) > x ⇒ p(t+c )− p(t−c ) =
−1

x(r − y(tc))
.

(4.11)
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Proof. Let us first show that q(tc)y(tc)(u(t+c ) − u(t−c )) is zero at any crossing time. The result is obvious if
q(tc) = 0. Now, if q(tc) < 0, then φ > 0 in a neighborhood of tc, thus u = ū in a neighborhood of tc (recall
that φ is continuous) so that u(t+c )− u(t−c ) = 0. The same conclusion follows if q(tc) > 0. Using the equality
q(tc)y(tc)(u(t+c )− u(t−c )) = 0, one obtains straightforwardly (i) and (ii).

We can now state our main result that characterize the optimal solutions of Problem (4.1).

Proposition 4.2. Consider an optimal solution of Problem (4.1) defined overv [0, T ].

• If (x0, y0) ∈ γ, then the optimal trajectory is abnormal and the optimal control is given by um. Switching
points occur on the line {y = r}.

• If (x0, y0) /∈ γ, then the optimal trajectory is normal. Moreover, the following properties hold true:

(i) If τ is the last instant for which y(τ) = r, then one has u = ū over [τ, T ].

(ii) Any switching point in K(x)c ∩ {y > r} is from u = 0 to u = ū.

(iii) Any switching point in K(x)c ∩ {y < r} is from u = ū to u = 0.

(iv) If a switching point occurs in K(x) at an instant ts, then we must have y(ts) = r.

Proof. First, notice that 1K(x)c is zero in K(x), hence any switching time ts that occurs in the set K(x)
necessarily satisfies y(ts) = r.

To prove the first point, we suppose by contradiction (as in the proof of the first point in Theorem 3.1)
that the trajectory starting from (x0, y0) ∈ γ contains a switching point ts such that q(ts) = 0 and y(ts) 6= r.
We may suppose that ts is the first one satisfying y(ts) 6= r. Hence, the trajectory is normal (otherwise, the
condition H = 0, q(ts) = 0 and y(ts) 6= r would imply a contradiction). Finally, suppose that y(ts) > r.
Thus, ts is a switching point from u = ū to u = 0, i.e. φ(ts) = 0 implying also φ̇(ts) ≤ 0. From (3.11) (which
remains valid in K(x)c) we deduce that φ̇(ts) < 0 which is a contradiction. If now y(ts) < r, then ts is by
construction a switching point from u = 0 to u = ū, and we obtain a similar contradiction. Hence, we deduce
that the optimal control is um and that the corresponding trajectory is abnormal.

To prove the second point, we use the transversality condition (3.10) which implies that either p(T ) > 0
and q(T ) = 0, thus φ̇(T−) ≤ 0 (when y(t) ∈ (r−, r)) or q(T ) < 0 (when y(t) = r−). Suppose that the
trajectory reaches B0(x) in its interior. Then, one must have p(T )x(r − y(T )) + p0 = 0, hence p0 < 0 and
the trajectory is normal (otherwise we would have p(·) and q(·) identically equal to zero which contradicts the
hybrid maximum principle). Suppose now that the trajectory reaches the point (x, r−) at time t = T . Then,
if the trajectory is abnormal, it must coincide with the curve γ (as switching points only occur on the line
{y = r}. Thus we obtain a contradiction with (x0, y0) /∈ γ.

It follows that one has φ > 0 in a left neighborhood of T and u = ū thus u = ū over [τ, T ]. Now, thanks to
(3.11), we obtain that any switching point in K(x)c ∩ {y > r}, resp. K(x)c ∩ {y < r} is from u = 0 to u = ū,
resp. from u = ū to u = 0. Finally, note that in the set K(x), the Hamiltonian writes

H = px(r − y) + qy(x−m− u) = 0,

implying that y(ts) = r whenever q(ts) = 0. This ends the proof.

We then deduce the following result.

Corollary 4.1. Let (x(·), y(·)) be a normal extremal trajectory defined over a time interval [t0, t2] such that :

• At time t0, one has y(t0) = r, (x(t0), y(t0)) ∈ K(x)\V iab(x), and t0 is a switching point from u = 0 to
u = ū.

• There exists t1 ∈ (t0, t2) such that x(t1) = x(t2) = x with (x(t2), y(t2)) /∈ V iab(x) and t1 < t2 are two
consecutive crossing times from K(x) to K(x)c and from K(x)c to K(x) respectively.

Then, the trajectory has exactly one switching time ts ∈ (t1, t2) from u = ū to u = 0 such that y(ts) < r.
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Proof. As t0 is a switching point such that (x(t0), y(t0)) ∈ K(x)\V iab(x), we necessarily have u = ū over
[t0, t1). Now, using that q(·) is continuous and that no switching points occur in the interval (t0, t1], we must
have q(t1) < 0 thus φ(t1) > 0, and consequently one has φ > 0 in a right neighborhood of t1. From Proposition
4.2, the trajectory cannot switch from u = ū to u = 0 in the set K(x)c ∩ {y > r}. Recall that one has φ > 0
when the trajectory crosses the line {y = r}. Suppose now that the trajectory does not switch in the set
K(x)c ∩ {y < r}. Then, one has φ > 0 until t = t2. At this time, the trajectory enters K(x) with φ > 0
(as q is continuous), thus we have u = ū until that the trajectory again reaches the point (x(t0), r). Indeed,
recall that switching points in K(x) only occur on the axis {y = r}. This contradicts the optimality of the
trajectory. Hence, there must exist a switching point in the set K(x)c ∩ {y < r} as was to be proved.

4.3 Discussion

Typical optimal trajectories are depicted on Fig. 3 (see Appendix for details on the numerical simulations).
Switching points are represented in black. Switching curves consist of the collection of these points.

Let us underline the following features of the optimal trajectories:

• Switching points in K(x)\V iab(x) only occur on the line {y = r}.

• Between two consecutive crossing times from K to Kc and from Kc to K, there exists at least one
switching point in K(x). Notice that the terminal time (i.e. the first time where the optimal trajectories
enters V iab(x)) is not a crossing time.

• Abnormal trajectories are contained in the curve γ and they are the only extremal trajectories for which
switching points occur exactly on the line {y = r} (both in K(x) and in K(x)c).

x

Kc(x)

r

Figure 3: Examples of normal optimal trajectories for the minimal time crisis (see Appendix for the numerical
values). Color of the trajectories are changed at each crossing time. Switching points are represented by the
black dots.

In order to compare solutions of Problems (3.5) and (4.1), we consider the subset E ⊂ D containing all the
points of D that can reach V iab(x) with the constant control u = ū and such that the corresponding optimal
trajectory does not contain any switching point. Moreover, let F be defined by:

F := E ∪ γ.
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Proposition 4.3. Given an initial condition z0 = (x0, y0) ∈ D, we have the two following cases:

• If z0 ∈ F , optimal solutions for Problems (3.5) and (4.1) coincide.

• If z0 ∈ D\F , then one has
θ(z0) < J(u?, z0),

where u? denotes an optimal control for (3.5).

Proof. The proof of the first point is immediate from Theorem 3.1 and Proposition 4.2. Take now an initial
condition z0 = (x0, y0) ∈ D\F and let u? be an optimal control for (3.5). As u? ∈ U is admissible for (4.1), we
have θ(z0) ≤ J(u?, z0). If we have θ(z0) = J(u?, z0), then u? is necessarily an optimal control for (4.1). The
switching points in K(x) of the associated trajectory occur on the line {y = r} only from Proposition 4.2. As
z0 ∈ D\F the trajectory necessarily has at least one switching point in the set K(x) from Proposition 3.3 at
some time tc. At this time, we have y(tc) > r (see Theorem 3.1) which gives a contradiction.

4.4 The case of empty viability kernel

We study here properties of the minimal time crisis problem when the viability kernel V iab(x) is empty, that
is when the condition m+ ū < x is fulfilled (see Proposition 2.1).

Proposition 4.4. When m+ ū < x, the following properties hold true.

• There is no chattering phenomenon for Problem 4.1 in the sense of Definition 4.1 for system (1.1).

• For any z0 ∈ D, one has θ(z0) = +∞.

Proof. First, suppose that there exist two sequences of times (t1n) and (t2n) satisfying:

- both sequences (t1n) and (t2n) are increasing with t1n < t2n for any n ∈ N and such that t2n − t1n → 0 when
n→ +∞.

- for any n ∈ N, t1n, resp. t2n is a crossing time from K(x) to K(x)c, resp. from K(x)c to K(x),

- for any time t ∈ (t1n, t
2
n), one has (x(t), y(t)) ∈ K(x)c.

As m + ū < x, there exists ε > 0 such that m + ū + ε < x. Let us now integrate (1.1) over [t1n, t
2
n]. Since

u(t) ≤ ū for any time t, one has:∫ y2
n

y1
n

dy

y
=

∫ t2n

t1n

(x(t)−m− u(t)) dt ≥
∫ t2n

t1n

(x(t)−m− ū) dt >

∫ t2n

t1n

(x(t)− x+ ε) dt,

where y1
n := y(t1n) and y2

n := y(t2n), or equivalently

ε(t2n − t1n) + ln

(
y1
n

y2
n

)
<

∫ t2n

t1n

(x− x(t)) dt. (4.12)

As one should have at the crossing times ẋ(t1n) > 0 and ẋ(t2n) < 0, one immediately obtains from equations

(1.1) the inequalities y1
n > r > y2

n, and thus ln
(
y1
n

y2
n

)
is a positive number, for any n. We then deduce from

(4.12) that ln
(
y1
n

y2
n

)
has to tend to 0 when n tends to +∞, which implies that y1

n and y2
n both tend to r.

Therefore, y(·) is uniformly bounded on the intervals [t1n, t
2
n], say by a number C > 0. It follows that one has

∀n ∈ N, ∀t ∈ [t1n, t
2
n], |ẋ(t)| ≤ x(t)(r + y(t)) ≤ A,

where A := x(r + C). We then deduce that |x(t) − x| ≤ A|t − t1n| for any n ∈ N and any time t ∈ [t1n, t
2
n].

Finally one has from (4.12)

ε(t2n − t1n) + ln

(
y1
n

y2
n

)
<
A

2
(t2n − t1n)2

which gives a contradiction for large values of n. This concludes the proof of the first point.
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To prove the second point, suppose by contradiction that there exists z0 ∈ D such that θ(z0) < +∞ and let
(x(·), y(·), u(·)) be an optimal solution. Then, x(·) has an infinite number of crossing times. Otherwise, either
x(·) remains in K(x) after a certain time τ ≥ 0, which is a contradiction with V iab(x) = ∅, or it remains in
K(x)c after a certain time τ ≥ 0, which is a contradiction with θ(z0) < +∞. Without any loss of generality, we
can then suppose that there exist two sequences of times (t1n), (t2n) as above. We then obtain a contradiction
as previously, which ends the proof.

Remark 4.1. (i) This result shows that even if θ(z0) = +∞, then no chattering phenomenon occurs.
(ii) Proposition 4.4 implies that when m+ ū < x one has J(u, z0) = +∞ for any u ∈ U and z0 ∈ D. However,
it is possible to study the minimal time crisis problem restricted to a given finite horizon (see [4, 5]) and to
characterize optimal controls in the same way.

5 Conclusion

In this work, we have provided an exact determination of the viability kernel for the Lotka-Volterra prey-
predator model when the control acts as a mortality term on the predators. We have characterized optimal
controls for both minimum time to reach the viability kernel, and minimal time crisis problems. We have also
shown that no chattering occurs even if the time crisis function is unbounded. To overcome the difficulties
of the infinite horizon, we have also proposed in a general framework an equivalent formulation of the time
crisis problem over a finite horizon when the viability kernel is non-empty under additional hypotheses (see
Proposition 4.1). For the prey-predator model that we consider, it appears that optimal trajectories for both
Problems (1.2) and (1.3) may enter and leave the set K(x) an arbitrary large number of times (depending on
the initial condition) before reaching V iab(x). Thanks to the Pontryagin and Hybrid Maximum principles,
we have then characterized a subset of the state space such that any optimal trajectory steering an initial
condition from this set to the viability kernel spends more time outside K(x) than an optimal trajectory for
the minimal time crisis problem does. The complementary of this set contains initial conditions for which
Problems (1.2)-(1.3) are equivalent, and in particular it contains the set of initial conditions for which optimal
trajectories are abnormal. The methodology we have deployed here could be applied to other controls of the
Lotka-Volterra equations or more general prey-predator models.

In terms of state constraints (here the constraint is expressed as zu(t, z0) ∈ K(x)), the optimal control for
the minimum time crisis problem guarantees less violation of the state constraint than the one for the minimal
time problem to reach V iab(x). Therefore, the minimal time crisis function appears to be an interesting
alternative to the strategy which consists in steering a system in minimal time to the viability kernel, although
it presents some technicalities du to the discontinuity of the Hamiltonian.

6 Acknowledgments

The authors thank the FMJH Gaspard Monge Program in Optimization and Operation Research, the ECOS-
SUD project C13E03, and the MathAm-SUD project SOCDE. The authors are grateful to Camila Romero
for helpful discussions on the subject.

7 Appendix: numerical simulations

The parameters that have been used to perform Fig. 1, 2 and 3 are given in Table 1. The numerical simulations

r m ū x̄
1 1 0.5 1.2

Table 1: Parameters for Fig. 1, 2 and 3.

for obtaining Fig. 2 and 3 have been conducted as follows. Given a terminal time T > 0, we consider the
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state-adjoint system backward in time:
ẋ = −x(r − y),
ẏ = −y(x−m− u),
ṗ = −p(y − r) + qy,
q̇ = −px− q(u+m− x),

(7.1)

over [0, T ] together with the control law u(t) = sign(−q(t)) for a.e. t ∈ [0, T ] obtained from (4.8). The
initialization makes use of the transversality condition (3.10) and is explained below.

Numerical determination of the extremal trajectories for the minimum time problem (3.5).
Let y0 ∈ [r−, r).
First case. If y0 ∈ (r−, r), then q(0) = 0 and p(0) = 1

x(r−y0) (thanks to H = 0). Thus, (7.1) is initialized by

the quadruple: (
x, y0,

1

x(r − y0)
, 0

)
. (7.2)

Second case. If y0 = r−, then there exists α ≥ 0 and β ∈ [0, 1] such that

(p(0), q(0)) = α(1− β(1 + w1),−βw2) and α =
1

x(r − r−)(1− β(1 + w1))− βw2r−(x−m)
, (7.3)

using the fact that the Hamiltonian is zero along any extremal trajectory. The system (7.1) is then initialized
by the quadruple:

(x, r−, p(0), q(0)) , (7.4)

with (p(0), q(0)) and α given by (7.3). Notice that in this case, the value of β ∈ [0, 1] is a parameter (as K(x)
is non-smooth at (x, r−), there exist infinitely many extremal trajectories arising from (x, r−)).

Numerical determination of the extremal trajectories for the minimum time crisis problem
(4.1).
The initialization of (7.1) is the same as for Problem (3.5). Moreover, the equation (7.1) remains valid as long
as the trajectory does not belong to the boundary of K(x). We thus impose the following condition:{

x(t−c ) < x and x(t+c ) > x ⇒ p(t+c )− p(t−c ) = 1
x(r−y(tc)) ,

x(t−c ) > x and x(t+c ) < x ⇒ p(t+c )− p(t−c ) = −1
x(r−y(tc)) ,

(7.5)

at each crossing time tc (recall that according to the Hybrid Maximum Principle applied on Problem (4.8)
only p is discontinuous). Finally, the plots of optimal trajectories for (3.5) or (4.1) have been obtained as
follows:

• Take N ∈ N∗ and let yk0 := r− + (k−1)
N (r − r−) for k = 1 · · ·N .

• If k = 1 then choose βi = (i−1)
N for i = 1 · · ·N and initialize (7.1) with (7.4) where β is replaced by βi.

• If k > 1 initialize (7.1) with (7.2) where y0 is replaced by yk0 .

For both problems, the numerical integration of (7.1) is stopped when t = T (with T chosen sufficiently large).
Any zero of the switching function φ (or equivalently q) during the numerical integration is marked by a dot
point on the picture. These points correspond to switching points in the state space and to the switching
curves (i.e. the loci where the control switches either from u = 0 to u = ū or from u = ū to u = 0).
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