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Abstract. Our work focuses on metric learning between gesture sample
signatures using Siamese Neural Networks (SNN), which aims at model-
ing semantic relations between classes to extract discriminative features.
Our contribution is the notion of polar sine which enables a redefini-
tion of the angular problem. Our final proposal improves inertial gesture
classification in two challenging test scenarios, with respective average
classification rates of 0.934± 0.011 and 0.776± 0.025.
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1 Introduction

As consumer devices become more and more ubiquitous, new interaction solu-
tions are required. In recent years, new sensors called MicroElectroMechanical
Systems (MEM) were popularized thanks to their small sizes and low production
costs. Two kinds of gestures can be considered for different applications. On the
one hand, static gestures correspond to a specific state, described by a unique
set of features, with, in the context of Smartphones, a "phone-to-ear" posture for
instance. On the other hand, dynamic gestures are more complex, since they are
described by a time-series of inertial signals, such as the "picking-up" movement
when the user is ready to take a call. Thus, in this study, we explore inertial-
based gesture recognition on Smartphones, where gestures holding a semantic
value are drawn in the air with the device in hand.

Based on accelerometer and gyrometer data, three main approaches exist.
The earliest methods suggest to model the temporal structure of a gesture class,
with Hidden Markov Models (HMM) [10]; while another approach consists in
matching gestures with reference instances, using a non-linear distance measure
generally based on Dynamic Time Warping (DTW) [1]. Finally, features can
be extracted from gesture signals in order to train specific classifiers, such as
Support Vector Machines (SVM) [11].

Our work focuses thus on metric learning between gesture sample signatures
using Siamese Neural Networks (SNN) [3], which aims at modeling semantic re-
lations between classes to extract discriminative features, applied to the Single
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Feed Forward Neural Network (SFNN). Contrary to some popular versions of
this algorithm, we opt for a strategy that does not require additional class-
separating-parameter fine tuning during training. After a preprocessing step
where the data is filtered and normalized spatially and temporally, the SNN
is trained from sets of samples, composed of similar and dissimilar examples, to
compute a higher-level representation of the gesture, where features are collinear
for similar gestures, and orthogonal for dissimilar ones. As opposed to the classi-
cal input set selection strategies, using similar or dissimilar pairs, or {reference,
similar, dissimilar} triplets, we propose to include samples from every available
dissimilar classes, resulting in a better structuring of the output space. More-
over, the notion of polar sine enables a redefinition of the angular problem by
maximizing a normalized volume induced by the outputs of the reference and
dissimilar samples, which results in a non-linear discriminant analysis similar to
independant component analysis.

This paper is organized as follows. Section 2 presents related works on SNN.
In Section 3, we explain our contributions with a new SNN objective function.
Then, Section 4 describes our results for gesture recognition. Finally, our con-
clusions and perspectives are drawn.

2 Related Studies on SNN

2.1 Training Set Selection

A SNN is trained to project multiple samples coherently. Two identical neural
networks with shared weights W take simultaneously two input samples X1 and
X2 to compute the error relative to a cosine-based objective function, thanks
to the respective outputs OX1 and OX2 (see Figure 1a). The resulting appli-
cation of the network depends on the kind of knowledge about similarities one
expects. In problems such as face or signature verification [3,4,8,2], the similarity
between samples depends on their origin, and the network allows to determine
the genuineness of a test sample with a binary classification. In cases involving
the learning of a mapping that is robust to specific transformations [6], similar
samples differ by slight rotations or translations. However, similarities can be
more abstract concepts, such as same documents in different languages [13]. The
most common representation consists in a binary relation based on pairs: given
two samples X1 and X2, the (X1, X2) pair similarity is determined by a tag,
which takes two different values whether the relation is similar or dissimilar.
However, knowledge about semantic similarities can take more complex forms.
Lefebvre et al. [8] expand the information about expected neighborhoods with
triplets (R, P, N), composed of a reference sample R for each known relation,
with P a positive sample forming a genuine pair with R, while N, the negative
sample, is the member of an impostor pair. Similarities are then represented as
much as dissimilarities. With these different knowledge representations present-
ing multiple samples to a set of weight-sharing sub-networks, it is necessary to
study new objective functions in order to define how semantic relations will be
reflected in the output space.
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2.2 Objective Function

The contrastive loss layer objective function aims at computing a similarity
metric between the higher-level features extracted from multiple input patterns.
Thus, this discriminative distance is trained to get smaller for similar patterns,
and higher for dissimilar ones. It takes two forms, respectively bringing together
and pushing away features from similar and dissimilar pair of patterns. Given two
samples X1 and X2, two main similarity measures are used: the cosine similarity,
based on the cosine value between these two samples cos(X1, X2) = X1.X2

‖X1‖.‖X2‖ ;
and the Euclidean similarity d(X1, X2) = ‖OX1 −OX2‖2. In this study, we
focus on cosine-based objective functions. A cosine objective function aims at
learning a non-linear cosine similarity metric, whether it is expressed specifically,
in the form of multiple targets, or relatively, by pair scores ranking. The cosine
similarity metric is defined as:

cossim(X1, X2) = 1− cos(X1, X2) (1)

Square Error Objective One approach comes from the original use of the
square error objective function for the SFNN. Given a network with weights
W and two samples X1 and X2, a target tX1X2 is defined for the cosine value
between the two respective output vectors OX1 and OX2 . In [3], Bromley et al.
set this target to 1 if for a similar pair, and -1 otherwise. Given the similarity
label Y and the weights W of the network, the error EW for any pair defines:

EW (X1, X2, Y ) = (tX1X2(Y )− cos(OX1 , OX2))2 (2)

Triangular Similarity Metric Zheng et al. [14] imply these same targets.
Given Y the numerical label for the (X1, X2) pair, acting as the target tOX1 OX2
and respectively equal to 1 and -1 for similar and dissimilar pairs; the triangular
inequality imposes:

‖OX1‖+ ‖OX2‖ − ‖C‖ ≥ 0, with C(X1, X2, Y) = OX1 + Y.OX2 (3)

After adding norm constraints to prevent a degeneration towards a null projec-
tion, the final objective function becomes:

EW (X1, X2, Y ) = ‖OX1‖+ ‖OX2‖ − ‖C(X1, X2, Y)‖+ 0.5(1− ‖X1‖)2

+0.5(1− ‖X2‖)2 = 0.5 ‖OX1‖
2 + 0.5 ‖OX2‖

2 − ‖C(X1, X2, Y)‖+ 1
(4)

Deviance Cost Function Inspired by the common loss functions such as
square or exponential losses, Yi et al. [12] opt for the binomial deviance.
Since their Siamese architecture does not necessarily share weights between sub-
networks, let B1 and B2 be the respective functions associated to both sub-
networks, and B1(X1) and B2(X2) be the projections of the samples of a pair,
we get:

EW (X1, X2, Y ) = ln(exp−2Y.cos(B1(X1),B2(X2)) +1) (5)
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Triplet Similarity Objective Lefebvre et al. [8] generalize the Square Error
Objective by using simultaneously targets for genuine and impostor pairs. Sam-
ples outputs from similar classes are collinear while outputs from different classes
tend to be orthogonal, which translates as a target equal to 1 for similar pairs
and 0 for dissimilar ones. Let (R, P, N) be a triplet, with a reference sample R,
a positive sample P forming a similar pair with R, and a negative sample N,
forming a dissimilar pair with R, we get:

EW (R, P, N) = (1− cos(OR, OP))2 + (0− cos(OR, ON))2. (6)

3 Our contributions - SNN-psine

3.1 Training Set Selection Strategy

Every training set selection strategy for a Siamese network consists in defining
a certain number of similar and dissimilar pairs, deemed representative of the
global relationships within the data. This generally induces a bias, since it is not
possible to ensure a perfect coverage for every relationship. For this reason, we
first propose a unified approach for multi-class problems. Let C = {C1, .., CK} be
the set of classes represented in the training data, ORk the output vector of the
reference sample Rk from the class Ck presented to the model for update, OPk

the output of a different sample Pk from the same class, and ONl the output of
a sample Nl from another class Cl. In order to keep symmetric roles for every
class and optimize the efficiency of every update, we propose here to minimize an
error criterion for training tuples Tk = {Rk, Pk, {Nl, l = 1..K, l 6= k}} involving
one reference sample from the class Ck, one positive sample and one negative
sample from every other class. This leads us to the definition of the SNN-cos,
relying on the following cost function. The total error estimation for a training
set Tk, EW (Tk), becomes:

EW (Tk) = (1− cos(ORk , OPk))2 +
K∑

l=1,l 6=k

(0− cos(ORk
, ONl

))2. (7)

3.2 Objective Function Reformulation

While the cosine allows for a correlation estimation between two vectors in any
Euclidean space of finite dimension, it is sensible to consider another function
which would measure dissimilarities, like the sine in 2D. In the following, we
propose a reformulation of the objective function based on a higher-dimensional
dissimilarity measure, the polar sine. Lerman et al. [9] define the polar sine
(PolarSine) for a set V = {v1, . . . , vn} of m-dimensional (m > n) linearly inde-
pendent vectors, forming the columns of the matrix A =

[
v1 v2 · · · vn

]
and its

transpose A>:

PolarSine(v1, . . . , vn) =
√

det (AT .A)∏n
i=1 ‖vi‖

(8)



Polar Sine based Siamese Neural Network for Gesture Recognition 5

),cos(
21 XX OO

),(: 21 XXEObjective W

1XO
2XO

NN
W

2X

NN
W

1X

(a) Original SNN architecture.

NN
W

kPO

kP

NN
W

1NO

1N

NN
W

kNO

KN

NN
W

),...,,(psine),,cos(
1 Kkkk NNRPR OOOOO

kRO

kR

)(: kW TEObjective
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Fig. 1: Comparison between the original and the proposed architectures. The
original SNN processes pair similarity with two weight-sharing NNs and a cosine
based objective, while our proposal handles comprehensive class relationships
with a combination of cosine and psine metrics.

As a measure of a regularized hyper-volume, the polar sine acts as another
similarity metric, more precisely as a dissimilarity metric. However, in order to
prevent numerical instabilities during the training process and make the metric
value independent from the size of the set of vectors, we propose a redefinition
of the Polar Sine for learning angles. In the following, we call this adaptation
the Polar Sine Metric (psine). Given Anorm =

[
v1
‖v1‖

v2
‖v2‖ · · ·

vn

‖vn‖

]
and S =

Anorm
>.Anorm, i.e. S(i, j) = cos(vi, vj), the polar sine metric equals to:

psine(A) = n
√

det (S). (9)

Thus, optimizing the polar sine metric corresponds to assigning a target equal
to 0 to the cosine between every available pair of different vectors drawn in
Tk \ {OPk

}. This comprehensive representation actually holds more information
than our original objective function which aimed at assigning zero-cosine-values
only for pairs between the reference and negative outputs. Furthermore, this
approach is easily scalable to any number of classes. With two comparable simi-
larity estimators, whose values are comprised between 0 and 1, it is now possible
to redefine the objective function for our training sets Tk (see Figure 1b):

EW (Tk) = (1− cos(ORk , OPk))2 + (1− psine(ORk , ON1 , . . . , ONK))2. (10)

4 Experiments

4.1 Database

Using the same data and process as [7] and [5], both proving that neural ap-
proaches are suited to the gesture recognition problematic, two datasets were
formed, based on the accelerometer and gyrometer data from the Android Sam-
sung Nexus S device, sampled at 40Hz. The first dataset, named DB1, contains
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40 repetitions of 14 different classes performed by a single individual, for a total
of 720 records. Conversely, DB2 contains 5 repetitions of these 14 gesture classes
performed by 22 individuals, for a total of 1540 records. DB2 corresponds to
an open world testing with multiple users. The 14 classes in DB2 encompass
gestures with different complexities. They are composed of linear gestures, with
horizontal (flick North, South, East, West) and vertical (flick Up, Down) transla-
tions; curvilinear gestures (clockwise and counter-clockwise circles, alpha, heart,
N and Z letters, a pick gesture towards, and a throw gesture away from the user).

4.2 Protocols

The classification results rely on 4 protocols, named C1 to C4, covering different
real application settings: C1, based on DB1, covers the closed-world application
with a single user in a context of a personalization paradigm, with 5 randomly
selected samples per class for training, and 16 samples for testing; C2, based
on DB2, corresponds to a multi-user, closed-world application. Every user is
represented in the training data, with 2 samples per class and per user used for
training, and the 3 remaining samples for testing; C3, based on DB2, consists in
open-world problem, where a comprehensive user representation is not possible:
training is performed on every sample from 17 users, while testing is carried
out on the samples of the 5 remaining users; C4, based on DB2, is the most
challenging scenario, testing the generalization capabilities of each model, with
one user used as a training reference and the samples from the 21 remaining
users used for tests. Each protocol is repeated 10 times so as to minimize the
influence of the training and testing data selection.

The performance of our SNN-psine is compared to the following methods :
our SFNN classifies the 270-feature vectors from 45-neuron hidden layer with a
hyperbolic tangent activation function, and a 14-neuron "softmax" output layer;
our SNN-cos and SNN-psine share the same architecture, and classify with a
KNN (K=1) the outputs of a SNN from 270-feature vectors, with 45-neuron
hidden layer with a hyperbolic tangent activation function, and a 80-neuron
"linear" output.

4.3 Results

Protocol C1 : The general performance comparisons between the main models
for gesture recognition are presented in Table 1. Every version of the SNN show
a comparable result (i.e. 98.8% for SNN-cos and 98.7% for SNN-psine). These
are the highest scores for neural-based methods, which proves the coherence of
the learnt projections. Indeed, both SNN results overcome the SFNN average
classification rate of 97.8%.

Protocol C2: The SNN-cos shows the best accuracy for protocol C2 of 96.9%,
closely followed by SNN-psine with 96.8%, proving that the SNN performs well
even when multiple, different gesture dynamics are involved. Once again, the
SFNN obtains a lower score of 94.5%. A closer study of one confusion matrix
for the SNN-psine shows small confusions between "N" and "Up", and "Alpha"
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and "Heart", which are indeed similar gestures. Moreover, an understandable
confusion between the vertical, upwards, gestures "Up" and "Pick" appears. An
analysis of the source of these errors shows that all of these samples belong
to a unique user. Thus, this phenomenon underlines the fact that some users
may have a really specific way of performing gestures, which, combined with the
imprecision of the sensors, may result in a great difficulty to manage them with
a single, general model not specifically trained for these singletons.

Protocol C3: This protocol amplifies the difficulties encountered with C2.
The SNN-psine and SNN-cos take advantage of the bigger training dataset with
an accuracy of 93.4%. Once again, the SFNN performance is lower, with 90.5%.
In that case, the SNN-psine shows a high symmetric confusion between "Pick"
and "Up". It also handles badly the gesture "Throw". Indeed, this gesture, which
consists in an arc away from the user, brought about fears of actually throwing
the device, resulting in the highest disparities between users.

Protocol C4: Finally, this protocol presents the highest challenge for these
methods, with a single user data for training. As a consequence, the SNN-psine
and SNN-cos overtake the SFNN, with respective accuracies of 77.6% and 77.5%
against 74.4%. The flaws identified above are amplified. The "Alpha" and "Clock-
wise" gestures are still confused. Moreover, the "Throw" gesture still shows the
highest variability among users, representing 25% of the total number of errors,
with heavy confusions with the "Tap" and "FlickN" gestures.

Consequently, our SNN-psine contribution is a very challenging solution on
the 4 protocols, and even better for C3 and C4 protocols. Nevertheless, some
limitations are identified, with confusions between gestures where one can be
identified as a part of the other. Moreover, the complexity for the SNN-psine
error computation, compared to the complexity for the SNN-cos in Table 21,
implies a trade-off between class relationships which has to be taken into account.
However, parallelizable matrix computations allow for a limited repercussion on
training times for SNN-psine, with an effective 23% update time increase for the
protocol C4 compared to the SNN-cos.

5 Conclusion and Perspectives

In this study, we first propose an adaptation of the Siamese strategy to a multi-
class classification context for a stochastic training. We propose a unified similar-
ity function, the Polar Sine Metric, which offers a comprehensive representation
of dissimilarity relationships within the training set. The Polar Sine Metric pro-
poses a matrix approach to describe relationships, and relies on a determinant to
compute the final dissimilarity for a set of samples. The complexity evaluation
implies 0.5Nc(Nc − 1) + 1 relationships in the cost function per update given
a reference sample, with Nc the number of classes. Thus, the training set sizes
should be taken into account for future research, so as to study the trade-off
between accuracy and complexity when the number of classes increases.
1 Computations are performed on an Intel c© CoreTMi7-4800MQ processor at 2.70GHz.
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Table 1: Recognition rates on our 4 protocols.
C1 C2 C3 C4

SFNN 0.978± 0.010 0.954± 0.006 0.905± 0.010 0.744± 0.040
SNN-cos 0.988± 0.005 0.969± 0.007 0.934± 0.013 0.775± 0.032
SNN-psine 0.987± 0.011 0.968± 0.006 0.934± 0.011 0.776± 0.025

Table 2: Complexities and times for one update (in ms) on protocol C4.
Complexity Number of relationships Training time for C4 (Nc = 14)

cos O(Nc) Nc 2.61779± 1.03648.10−1

psine O(N log2 7
c ) Nc(Nc − 1)/2 + 1 3.21632± 1.79093.10−1
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