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ABSTRACT
Generally speaking, the behaviour of viscoelastic material

is more complicated than the behaviour proposed by classical
models as Voigt, Maxwell or Zener. The stiffness of such mate-
rials is a frequency dependent complex function. Above 1000Hz,
classical measurements techniques are unable to achieve accu-
rate measurements of the stiffness. In this paper, a new Dynam-
ical Mechanical Analysis (DMA) tester is presented. It allows
the characterization of the shear stiffness of preloaded viscoelas-
tic materials between 200 and 3500Hz and without using time-
temperature equivalences. Then the Generalized Maxwell model
is used to describe behaviours measured with the DMA tester. A
new iterative identification method of the parameter of the Gen-
eralized Maxwell model is described. This identification method
is based on the asymptotes of the model.

NOMENCLATURE
σ Stress.
ε Strain.
h(t) Relaxation function.
δX Displacement.
N Force factor.
δV Tension.

F Force.
Q Power of the driver.
f Frequency of excitation.
Ce Electrical capacity.
M Mass.
K Stiffness.
C Damping.
ω Angular frequency.
χ = log(ω) Logarithm of the angular frequency.
ωp Pole.
ωz Zero.
S Stiffening.
A Area.

INTRODUCTION
Many mechanical systems are damped with viscoelastic ma-

terials. This helps to avoid instabilities and to limit the levels
of vibration. Although the viscoelastic behavior of materials is
of great importance in order to obtain accurate results, the as-
sumption of purely elastic materials is very commonplace for
frequency analysis with Finite Element (FE) models. In order
to carry out realistic Complex Eigenvalue Analysis (CEA) in dy-
namics, one needs to model viscoelasticity. Linear viscoelastic-
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ity has been described by many authors, for citing just a few
of them: Ferry [1], Vinh [2], Caputo [3], Lakes [4], Cheva-
lier [5]. Linear viscoelasticity assumes the existence of a relation
between stress, σ , of a material and its strain, ε , history. Let us
call h(t), the relaxation function which is also an element of the
complex stiffness tensor. Linear viscoelasticity is defined by the
Equation (1). The Fourier transform is denoted with a hat and
H = ĥ(ω).


σ(t) =

∫ t

−∞

h(t− τ)ε(τ)dτ

σ̂(t) = H ε̂(ω)

(1)

Viscoelastic behaviour of materials is difficult to measure
over a large frequential bandwidth. For that, several methods of
characterization exist. Oberst and Frankenfeld [6] proposed to
study the first mode of a sandwich beam made up of metal skins
and of a viscoelastic heart. Their method makes it possible to
know the damping induced by the viscoelastic heart at the fre-
quency of the mode. Several authors use this kind of technique
for the identification of viscoelastic parameters, Barbosa and
Farage [7] and Castello et al. [8]. It is also possible to deduce the
mechanical properties from a viscoelastic material starting from
the measurement of the various Eigen frequencies of a sample
having a simple form, a beam for example, see Chevalier [9].
These methods are equivalent with the deduction of the me-
chanical properties starting from Frequency Response Function
(FRF). This type of methods allows only the characterization of
the frequencies of the Eigen modes and not on a large frequential
bandwidth. Moreover these methods are valid only under the
linear material assumption in amplitude of excitation. Chen [10]
proposed to directly measure the functions of relieving and creep
to deduce the coefficients from them from a series of Prony.
However, it is difficult to impose a level of perfect displacement,
thus this method, which gives access to the behaviour on a large
frequential bandwidth, is accurate only at low frequencies. For
the characterization of viscoelastic materials, the Dynamic Me-
chanical Analysis (DMA) is the most suited technique. It allows
one to measure the stress and the deformation of materials and
thus to calculate the dynamic rigidity of the samples according
to the frequency. DMA testers work into quasi-static, i.e. at
frequencies lower than the first Eigen mode of the test bench.
Currently, the best DMA testers allow characterizations, without
using time-frequency equivalences, until approximately 1000Hz.
Thus there is a need of a new DMA tester in order to measure
the viscoelastic behaviour at higher frequencies in quasi-static
excitation.

Tests on viscoelastic materials led by many authors exhibit
strong stiffness frequency dependence on both modulus and
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FIGURE 1. Complex shear stiffness of a multilayer viscoelastic ma-
terial at ambiant temperature in the [200-3500Hz] frequency range. The
top graph represents the normalized modulus H( f )/H( f = 200Hz) (di-
mensionless) and the bottom graph represents the phase ψ (in degrees).

phase, see Vinh [2], Soula [11]. For example, Figure 1 shows the
stiffness of a multi layer material with layers of glue, rubber and
steel. The non-zero value of the stiffness phase of viscoelastic
materials is well known, because it generates damping. But the
stiffness modulus is also frequency dependent, hence, simple
models, with constant modulus, such as constant complex
modulus or modal damping are not accurate. Many rheological
models have been proposed for H, as the constant complex
modulus, Maxwell, Voigt, Zener, etc (see Renaud et al. [12]).
In the present paper Generalized Maxwell model is used. The
parameters of this model will be identified from the curve of H
against the angular frequency, see Renaud et al. [12].

Given an experimental transfer function characterizing a
complex stiffness H, the identification of the parameters of the
GMM can be carried out with some graphical methods. Two
of them were described by Vinh [2] and Oustaloup [13]. These
methods are led on a Pole-Zero Formulations which are equiva-
lent to the GMM. The identification method presented here has
been detailed in the article of Renaud et al. [12]. This method
uses the characteristics of the asymptotes of Pole-Zero Formula-
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tions and allows one to identify parameters from both the modu-
lus and the phase curves.

PIEZOELECTRIC VISCOANALYZER (DMA) CONCEPT
Shear measurement principle

The DMA tester has been designed to characterize the
dynamic shear stiffness of the samples under normal preload and
in the frequential band between 1 to 5000Hz. The DMA tester
works in quasi-static excitation, which means at any frequency
below the first Eigen mode of the tester. The DMA tester can
reach a maximum normal preload of 4MPa. Moreover this
preload must be uniform on the whole sample surface.

The design of the DMA tester is shown on the Figure 2.
The samples are gripped between the jaws and the holders
of samples. Due to symmetry, this tester needs four samples
for characterization. In contrary to the Oberst beam test and
thanks to the symmetry principle, this DMA tester allows pure
dynamical shear excitation without inflection. The normal
preload is applied with a unique M6 bolt. The preload is limited
to 5000N in order not to plasticize the jaws. The sample size,
20*30mm, is thus selected to ensure a pressure of 4MPa with a
preload of 5000N.

The shearing of the samples is obtained by moving the sup-
ports in phase opposition. For that, two chains of actuation are
placed between the holders. Thanks to the symmetry, there is no
need to clamp the chains of actuation on a frame. These chains
consist in a piezoelectric actuator, a connector and a force sensor.

Quasi static excitation
The piezoelectric actuators make it possible to reach high

frequencies higher than 10 kHz. The frequential limit is set by
the frequency of the first Eigen mode of the DMA tester. So this
frequency must appear as high as possible. Consequently, the
DMA tester is suspended by rubber bands to avoid Eigen modes
coming from the frame. Actually, the tested viscoelastic materi-
als have so low shear stiffness that the first Eigen mode is due to
the mass of the holders and the actuation chains suspended by
the tested samples. This Eigen mode generally appears around
4100Hz and limits the characterization to a frequency of 3500Hz.

The jaws are made in aluminium. Their design has been
optimized so that the unique preloading bolt generates a uniform
preload of the samples on their whole surface. This design also
ensures the decoupling between the normal load and the shear
load on the samples. The first Eigen mode of this jaw appears
around 7500Hz.

The Figure 3 shows the capabilities of each piezoelectric

FIGURE 2. Principle and picture of the shear DMA tester.
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FIGURE 3. Real working characteristics of the piezoelectric actuators
combined with a 30W driver.

actuator according to the Equation (2), with δX the displace-
ment, F the force, K the stiffness of the actuator, δV the tension
and N the force factor. The continuous line shows the force-
displacement behavior of actuators, for the maximum electrical
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alimentation: δV = 100 Volts.

δX = (N δV −F)/K (2)

When their ends are blocked, the displacement is nil and
the maximum pushing force they can generates is 800N. If their
ends are free, the force is nil and the maximum displacement is
δX = 15 m. Unfortunately, the actuators are similar to electric
capacities, thus the more the frequency of excitation is raised
and the more the actuators need current. Since, the power of the
actuators driver is limited to Q = 30 Watts, the current is also
limited, see Equation (4) and the real behaviors of actuators at
f = 1000 Hz and f = 5000 Hz are shown in Figure 3.

Q = 2π fCeV 2
p (3)

Test post processing
Basically, the complex shear stiffness of the samples is

the ratio of the force spectra to the displacement spectra.
However, the quasi-static excitation is applied until 3500Hz
and some inertia effect must be taken into account in the
post processing. Thus a simplified model of the DMA tester
has been set, see Figure 4. The jaws are modeled by two
identical masses, MP, connected between them by a spring,
K jaw. The masses MP represent the moving part of the jaw
which undergoes the accelerations read by the accelerometers.
Since, the DMA tester is quasi-symmetrical between the sides
left and right, the central part of the jaws which constitutes the
symmetry plane, does not move. Consequently, the masses of
the screw M6 and the sensor of force do not move and one has
MP1 = MP2 = M jaw/3+Maccelerometer. The spring K jaw is the
same one for the two jaws. It was evaluated starting from a
calculation by finite elements. The two chains of actuation are
identical and are made up of a sensor of force, a connector and
a piezoelectric actuator. These two chains of actuation work
in phase and push with the same force, thus they are regarded
as one equivalent chain of actuation generating an equivalent
force which is the sum of the forces of both Fpiezo = F0 + F1.
However, because of the efforts of inertia, the force measured on
the level of the sensors, is neither equal to the force generated by
the actuators nor equal to the force undergone by a sample. In
order to take into account these efforts of inertia, the chains of
actuation equivalent is modeled by three different masses MS1,
the mass of the support of left, MR the mass of the connector and
MS2 the mass of the support of right-hand side. FFS is the force
measured by the force sensors.

It is worth noticing that because of the efforts of inertia of
the connector, the force generated by the piezoelectric actuators

FIGURE 4. Model of the DMA tester for post processing.

is Fpiezo = MRü3 +FFS. The samples are modeled by pure stiff-
nesses, KS. The equations of the dynamics of the system are
given by the Equations (4).

(a)
(b)
(c)
(d)
(e)
( f )



MP1ü2 = −K jaw(u2 +u5)+KS(u3−u2)
MS1ü3 = −KS(2u3−u2−u4)+FFS
MP2ü4 = −K jaw(u4 +u7)+KS(u3−u4)
MP1ü5 = −K jaw(u2 +u5)+KS(u6−u5)
MS2ü6 = −KS(2u6−u5−u7)+FFS +MRü3
MP2ü7 = −K jaw(u4 +u7)+KS(u6−u7)

(4)

By calculating the sum of the relations (b)+(e), one obtains
the stiffness, KS, of the samples, see Equation (5)

KS =
(MS1−MR)ü3 +MS2ü6−2FFS

u2 +u4 +u5 +u7−2u3−2u6
(5)

Equation (5) is not used during post processing because dis-
placements are calculated by double integration of accelerome-
ter measurements. This double integration is carried out by the
formula ü =−ω2u. Thus, the Equation is replaced by the Equa-
tion (6).

KS = ω
2 (MS1−MR)ü3 +MS2ü6−2(F0 +F1)

2ü3 +2ü6− ü2− ü4− ü5− ü7
(6)

Results on industrial specimens
The Figure 5 shows the complex shear stiffness of a mul-

tilayer viscoelastic material for two normal preloads : 500 and
5000N. This material is made of layers of glue, rubber and steel.
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FIGURE 5. Modulus and phase of the shear stiffness of a multilayer
viscoelastic material with layers of glue, rubber and steel. The blue
curve has been obtained with a normal load of 5000N and the red one
with a normal load of 500N.

FIGURE 6. Rheological model of Generalized Maxwell.

One can see the stiffening effect of viscoelasticity. This stiffen-
ing effect cannot be taken into account by the common modal
damping model. On the contrary, the Generalized Maxwell
model is able to describe such behaviour.

IDENTIFICATION OF THE COMPLEX SHEAR MODU-
LUS

The Generalized Maxwell model is a rheological model de-
scribed by the Figure 6 and the Equation (7). It is composed of
N Maxwell cells, with K0, the static stiffness, Ki the stiffness in
the ith Maxwell cell and Ci the damping in the ith Maxwell cell.

Z(ω) = K0 +
N

∑
i=1

jωKiCi

Ki + jωCi
(7)

Z(ω) = K0

N

∏
i=1

1+( jω/ωz,i)

1+( jω/ωp,i)
(8)
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FIGURE 7. Behaviors of the modulus and the phase of one pole-zero
couple and its asymptotes.


Ki = K0

N

∏
h=1

(
ωp,h

ωz,h

)(
ωp,i−ωz,h

ωp,i +ωp,h(δih−1)

)
Ci =

Ki

ωp,i

(9)

The identification of Generalized Maxwell parameters using
a pole zero formulation has been fully detailed in the article of
Renaud [12]. Let us summarize the main steps. First, it is worth
noticing that in the logarithmic scale, the behaviour of a pole zero
formulation is the sum of the behaviour of each pole zero couple.
The modulus and the phase generated by one pole zero couple in
logarithmic scale is given by the Equation (10).


log(|Z(ω)|i) =

1
2

log

(
1+
(

ω

ωz,i

)2
)
− 1

2
log

(
1+
(

ω

ωp,i

)2
)

φi(ω) = tan−1
(

ω

ωz,i

)
− tan−1

(
ω

ωp,i

)
(10)

Since this behaviour is non-linear against frequency, we
will approach them with asymptotes, see Figure 7.

Let us define the stiffening S(|Z|,χa,χb) and the area under
the phase curve A(ϕ,χa,χb) by the Equation (11). The identifi-
cation of poles and zeros will be led by equating the stiffening
and the area of experimentally measured curves and the stiffen-
ing and the area of the model.
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∀ χa = log(ωa) ∈ R and χb = log(ωb) ∈ R,

S(|Z|,χa,χb) =
∫

χb

χa

∂

∂ χ
log(|Z(χ)|) dχ

= log(|Z(χb)|)− log(Z|(χa)|)

A(ϕ,χa,χb) =
∫

χb

χa

ϕ(χ) dχ

(11)

The stiffening and the area of the asymptotes are given by
the Equation (12) and are easy to calculate. They are proportional
to the gap between the pole and the zero: log(ωp,i)− log(ωz,i).
Thus, by the knowledge of the stiffening and the area of exper-
imentally measured curves, it is easy to obtain the gap between
the pole and the zero.

{
S(|Zasy(χ)|i,χa,χb) = log(ωp,i)− log(ωz,i)

A(φ asy
i (χ),χa,χb) =

π

2
(log(ωp,i)− log(ωz,i))

(12)

The identification begins by an initialisation step. It consists
in an apportionment of the frequency domain so that each
sub domain has the same stiffening and phase area. Then the
Equation (12) allows the calculation of one pole-zero couple
in each sub domain. The initialisation step gives a first set of
parameters which is optimized in a second step.

The difference between experimental curves and the
model obtained after initialisation can be seen as local lacks
and local excesses of stiffening and area. These local lacks
and excesses are translated into difference between pole and
zero, log(ωp,i)− log(ωz,i) by the Equation (12). It allows the
adjustment of initial parameters by iteration.

For example, a local excess of stiffening appearing on
the right of a pole-zero couple means that the pole has to tend
towards the zero. On the contrary if this excess of stiffening
appears on the left of a pole-zero couple, the zero has to tend
towards the pole. Moreover, all pole-zero couples of the model
are able to correct a local excess of stiffening, so all pole-zero
couples of the model have to be adjusted. Actually, the behavior
of the model at a frequency far from a pole-zero couple is
quasi independent of this couple. Indeed, the contribution of
a pole-zero couple, at a frequency far from it, is very low, see
Figure 7. So the adjustment of a pole zero couple, because of a
local difference, is weighted according to its local contribution
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FIGURE 8. Given a test stiffness function, the identification is led in
two steps: initialization and optimization.
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FIGURE 9. Identification of 3 viscoelastic materials in the same time,
with the constraint of common poles

to the whole model.

This identification technique is efficient, see Figure 8. Un-
like some others techniques based on non-linear optimization,
it allows constraining the values of the zeros to be lower than
the values of the poles to ensure the causality of the model, see
Renaud [12]).

In general cases, several viscoelastic materials can appear
in a same FE model. For some reasons concerning calculation
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time, that are not developed here, it is better to have the same
relaxation times for all materials. A relaxation time is equal to
the inverse of a pole. So, in the case of 3 pole-zero models with
5 pole-zero couple, it means it is better to have 5 poles common
to the 3 models. The inclusion of this constraint requires to do 2
more steps. The third one consists in calculating the mean value
of the poles and recalculating the zeros. Then, the fourth step is
an optimisation step analogous to the second one. The Figure 9
gives the final result of the identification process in the case of 3
test functions. The identification is still good.

CONCLUSIONS
A new Dynamical Mechanical Analysis (DMA) tester has

been developed for the characterization of the shear stiffness
of viscoelastic materials which are known to be frequency
dependent. It allows direct characterization under preload, for
frequencies starting from 200Hz to 3500Hz without using the
time-temperature equivalences.

The Generalized Maxwell model has been chosen to de-
scribe the experimentally measured behavior of viscoelastic ma-
terial. This rheological model is equivalent to a pole-zero formu-
lation. An identification method has been developed. It allows
to compute the poles and the zeros from the behavior of mate-
rials measured with the DMA tester. This method gives good
results and allows ensuring the causality of the model by con-
straining the zeros to be lower than the poles. In the case of sev-
eral materials to identify, this identification method allows com-
puting same poles for all material. Since a pole is the inverse of
a relaxation time, each material is thus modeled with the same
relaxation times. This characteristic is of great importance for
computation time reduction in FE models.
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