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ABSTRACT 
Viscoelastic components are incorporated into automobile 

and aerospace structures system in order to damp mechanical 
vibrations. Viscoelastic components are a key element in 
designing desired dynamic behaviour of mechanical systems. 
Viscoelastic components dynamic characteristics are often very 
complex, due to the dependence of its response on several 
variables, such as frequency, amplitude, preload, and 
temperature. These dependencies can be critical in capturing 
the mechanical proprieties and so non linear dynamical 
behaviour may appear. Assuming that non linearities are due to 
non linear elasticity, the non linear Generalized Maxwell 
Model (GMM) is proposed to characterize dynamics of 
viscoelastic components. Parameters of GMM are identified 
from Dynamic Mechanical Analysis (DMA) tests for different 
excitation frequencies. A particular result from identification is 
that the non linear stiffness is dependent upon displacement 
amplitude and static displacement under static preload. The 

significance of this result is that the non linear dynamics of the 
viscoelastic component can be represented by a simple 
analytical model capable to produce accurate results. 
Comparison between measurements and simulations of 
dynamic stiffness of viscoelastic component has been carried 
on.  
Keywords: Viscoelastic components, Dynamic behaviour, 
Nonlinear GMM, Parametric identification.  

NOMENCLATURE 
x  displacement  and x̂  its Fourier transform 

00x displacement  amplitude 

0x displacement under static preload 

dx amplitude of sinusoidal displacement 

0,hx displacement under static preload for hth test, 
h=[1..Ne] 

,d hx amplitude of sinusoidal displacement for hth 
test, h=[1..Ne] 
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F force and F̂  its Fourier transform 
00F force amplitude 

0F resorting force of the non-linear spring 

iF resorting force of the ith Maxwell cell, 
i=[1..N] 

H0 height of the cylindrical rubber sample 
D0 =2R0  Diameter of the cylindrical rubber sample 
S0 Section of the upper cylindrical rubber 
�H displacement 
N Number of Maxwell cells 
P static preloads 
A amplitude of sinusoidal displacements 

*K dynamic stiffness 
'K  real part part of dynamic stiffness 
' 'K imaginary part of dynamic stiffness 
*
mK measured dynamic stiffness 

0K stiffness of non linear spring 

0mK measured stiffness of non linear spring 

0K mean value of estimated stiffness of non 
linear spring  

0,hK measured stiffness for hth test, h=[1..Ne] 
Ki stiffness of the ith spring 
Ci damping of the ith dashpot 
ω angular frequency 
ωz,i zero of the ith Pole–Zero couple 
ωp,i pole of the ith Pole–Zero couple 
φ dephasing phase 
φ  mean phase angle for all tests 

1f upper bound of the frequency domain 

2f lower bound of the frequency domain 
α, β, γ, λ and θ constants 

ijδ kronecker’s symbol 

N number of Maxwell cells 
Ne number of tests 

( ) ( ) ( )iZ Z e ϕ ωω ω= dynamic stiffness as a function of frequency 

( )Z ω dynamic stiffness magnitude as a function of 
frequency 

( )ϕ ω dynamic stiffness angle phase as a function 
of frequency 

1. INTRODUCTION
Viscoelastic components, which have substantial energy 

absorption abilities, are always incorporated into automobile 
and aerospace structure systems in order to damp mechanical 
vibrations and thus avoid serious damage. Viscoelasticity is 
widely studied since decades: considering works of 
[1,3,7,10,15,28]. Viscoelasticity is a causal phenomenon for 
which the force always precedes the displacement. This 
behaviour can be described by the relaxation function or the 

creep function. In the Fourier domain, the dynamic stiffness is a 
complex function which depends on frequency. 

Several experimental studies have been carried out to 
characterize viscoelastic behavior providing important results 
and understanding of viscoelastic components dynamics. Oberst 
and Frankenfeld [20] proposed to study the first mode of a 
sandwich beam consisting of metal skins and a viscoelastic 
core. Their method allows knowing the damping induced by the 
viscoelastic core at the frequency of the mode. Several authors 
like Barbosa and Farage [2] and Castello et al. [4] used this 
kind of technique for viscoelastic parameters identification. It is 
also possible to deduce the mechanical properties of a 
viscoelastic component from different measures of natural 
frequencies of a simple form sample like a beam for example, 
see Chevalier [6]. These methods use Frequency Response 
Function (FRF), hence, they can only characterize the 
frequencies of modes and not on a wide frequency band. 
Moreover, these methods are valid under the assumption of 
linear material excitation amplitude. Chen [5] suggested 
measuring directly the relaxation functions and creep to deduce 
the coefficients of a series of Prony. However, this is very 
efficient to get values at low frequency, when the material takes 
time to respond to the excitation. But to get high frequency 
values, a perfect unit step function is required to assess when 
exciting the material, which is technically hard. The most 
suitable kind of test is the Dynamic Mechanical Analysis 
(DMA), it is a useful technique for acquiring knowledge on the 
behaviour of a material versus frequency. A DMA tester is used 
in this work to determine the dynamic stiffness of the 
viscoelastic component depending on the frequency. 

Moreover, viscoelastic components are a key element in 
designing desired dynamic behaviour of mechanical systems; 
therefore, different models describing viscoelastic behaviour 
have been developed. Gaul et al. [12] presented the constant 
complex modulus model which is non-causal model, it is only 
suitable in the frequency domain, but, it is not a relevant model 
since its modulus is constant. Maxwell model represented by 
Park [22] as a spring and dash-pot connected in series and 
Kevin Voigt model which consists of a spring and dash-pot in 
parallel, are efficient only on a small frequency range. In fact, 
they are unrealistic respectively at low and high frequencies, 
where their modulus is respectively: infinitely small and high 
and the dynamic stiffness phase angle of the Kevin Voigt model 
is linearly dependent of frequency. The Zener model, see Huynh 
et al.[13], underestimates the dynamic stiffness at low 
frequencies and overestimates it at high frequencies. Just as the 
Kevin Voigt model, the Zener model is unable to capture the 
frequency dependence of the phase angle. Koeller [14] used 
Generalized Maxwell Model, which would refer to a spring in 
parallel with respectively Maxwell cells, to describe the 
frequency dependence of dynamic stiffness of the viscoelastic 
components. However the dynamic characteristics of 
viscoelastic components are often very complex in nature, due 
to the fact that the response is dependent not only on frequency 
but also several variables, such as amplitude, preload, and 
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temperature which can be certainly critical in capturing the 
mechanical proprieties and non linear dynamical behaviour 
appears. Consequently, various methods treating viscoelastic 
non linear dynamics have been developed. Volterra model, see 
Schetzen [26], is used in the work of Saad [25] to predict 
amplitude dependency observed experimentally and to linearize 
a viscohyperelastic model to take preload effects into account. 
The non linear dynamic behaviour of preloaded multilayer 
plates incorporating visco-hyperelastic material confined 
between stiff layers and worked as a damping layer is 
investigated by Gacem [11]. Monsia [17] proposed a non linear 
generalized Maxwell model which consisting of a non linear 
spring connected in series with a non linear dashpot obeying a 
power law with constant material parameters,  for representing 
the time-dependent properties of a variety of viscoelastic 
materials. Monsia [18] developed a non linear mathematical 
model with constant material coefficients applicable for 
characterizing the time-dependent deformation behaviour of a 
variety of materials under a constant loading.  

In this context, this paper introduced a new approach for 
non linear Generalized Maxwell Model in order to describe the 
dynamic behaviour of viscoelastic components. DMA tests have 
been conducted in order to identify parameters of the proposed 
NLGMM which shows a good accuracy when a comparison 
between experiments and simulations is performed. 

The planning of the present paper is as follows: in section 
2, a description of the experimental procedure to characterize 
the viscoelastic component is presented. The proposed 
NLGMM  and the identification techniques of its linear and non 
linear parameters are detailed in section 3. Comparison between 
identified and measured values is also performed. In section 4, 
the validity of the NLGMM is investigated and discussed.  

2. EXPERIMENTAL CHARACTERIZATION

When a material is subjected to a sinusoidal cyclic displacement 
of angular frequencyω :  

   
( )00( ) sinx t x tω= (1) 

The force response is sinusoidal at the same frequency but with 
a dephasing angleϕ , called loss angle: 

( )00( ) sinF t F tω ϕ= + (2) 

Generally, this assumption, called the first harmonic, is not 
sufficient. Typically, the force response contains higher order 
harmonics, and the real response is expressed as follows, see 
Long [16]: 

( ) ( )sink k
k

F t F k tω ϕ= +∑ (3) 

In the case of the assumption of the first harmonic, the complex 
stiffness * ( )K ω relates the Fourier transform of the imposed 

displacement ˆ( )x ω to the corresponding force ˆ ( )F ω is defined

as follows: 
*ˆ ˆ( ) ( ) ( )F K xω ω ω= (4) 

with the Fourier transform : 

( )ˆ( ) ( ) expx x t j t dtω ω
+∞

−∞

= −∫ (5) 

( )ˆ ( ) ( ) expF F t j t dtω ω
+∞

−∞

= −∫ (6) 

The dynamic stiffness is defined as: 

( ) ( )

[ ]

* 00

00

' '' '

ˆ ( )
.exp

ˆ( )

( ) ( ) ( ) 1 tan

FF
K j

x x

K jK K j

ωω ϕ
ω
ω ω ω ϕ

= =

= + = +
(7) 

2.1. EXPERIMENT 

The DMA tester is a bench test performed to characterize 
the behaviour of dynamic compression of a natural rubber 
sample as shown in Fig  1.  

Figure 1.  THE MTS BENCH TEST. 

The cylindrical elastomeric sample is subjected to uniaxial 
compression tests. The mechanical solicitation is performed 
using a hydraulic cylinder with a LVDT (Linear Variable 
Differential Transformer) displacement sensor. The system is 
also equipped with a force sensor built into the base of the 
assembly apparatus. The force and displacement signals after 
analog conditioning are returned on a spectrum analyzer for 
digital processing. The entire system is controlled by a 
computer equipped with an interface GPIB (General Purpose 
Interface Bus) card connected to the FFT (Fast Fourier 
Transform) analyzer which manages and controls the sweeping 
frequencies of the signal by incrementing the excitation 
frequency for each acquisition.  

To determine dynamic stiffness *K  of a material, the 
sample is placed between two rigid surfaces. Surfaces are flat 
and parallel as presented in Fig  2. 
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Figure 2.  UNIAXIAL COMPRESSION TEST. 

During these unidirectional tests, devices measure the 
vertical force imposed and H∆ the vertical displacement of 
upper surface of the rubber sample. For a cylindrical rubber 
sample of height 0 13H = mm and diameter 0 28D = mm, the 

surface on which the force acts is ( )2

0 0 2S Dπ= ×  .The 

dynamic stiffness is given by: 

* F
K

H
=

∆
 (8) 

Tests are carried out to evaluate the dynamic behaviour of 
elastomeric sample and are performed by applying a mechanical 
sinusoidal solicitation. Elastomeric materials present a different 
behaviour according to the amplitude of sinusoidal 
displacement and conforming to the imposed static preload, see 
[13, 19, 25, 27].  

These tests are carried out for different static preloads P = 
[300, 500, 700, 1000, 1500, 2000, 2500] N and different 
amplitudes A= [10, 25, 60, 100, 150, 250, 600] µm. Measuring 
devices allows calculating the dynamic stiffness for frequencies 
ranging from 4 to 130 Hz. For each test, the component is 
submitted to many excitation cycles. Measures were taken when 
cycles were stable and the stability of the cycle is expected to 
avoid taking into account the disturbance due to transitory 
states.  
Experiments were performed at room temperature T=20°C . 

2.2. RESULTS 
The dynamic stiffness magnitude and phase angle are used 

here to characterize the dynamic properties. Harmonic dynamic 
tests have been performed to analyze the amplitude, preload and 
frequency dependence of the dynamic stiffness and phase angle. 
An overview of the results is shown in Fig 3 and Fig 4.  

Each plan presents the preload in Fig 3 and the amplitude 
in Fig 4. Fig 3 illustrates that the dynamic stiffness magnitude 
shows considerable dependence to amplitude. The magnitude 
declines when amplitude increases towards an asymptotic value 
for large amplitudes. The phase angle reaches a maximum when 
the magnitude stiffness decreases to its minimum at maximal 
amplitude. This phenomenon identified since 1965 is called 
Payne effect, see Gacem [11]. Fig 4 shows that with raising 
preloads, the dynamic stiffness magnitude raises and no effect is 

shown for the phase angle. Imposed preloads and amplitude of 
displacement have opposed effects. In fact, the rubber shows a 
softening behaviour with increasing amplitudes as well as a 
hardening behaviour with increasing preloads. Dynamic 
stiffness magnitude and angle phase raises with increasing 
frequency. 

Figure 3.  DYNAMIC STIFFNESS MAGNITUDE AND 
PHASE ANGLE AS FUNCTION OF AMPLITUDE AND 

FREQUENCY FOR EACH PRELOAD. 

Figure 4.  DYNAMIC STIFFNESS MAGNITUDE AND 
PHASE ANGLE AS FUNCTION OF PRELOAD AND 

FREQUENCY FOR EACH AMPLITUDE. 

3. NON-LINEAR GENERALIZED MAXWELL MODEL
AND PARAMETRIC IDENTIFICATION TECHNIQUES 

3.1. NON-LINEAR GENERALIZED MAXWELL MODEL 

Generalized Maxwell Model (GMM) allows an accurate 
description of the dynamic behaviour of a viscoelastic material. 
Generalized Maxwell Model is classically composed of 
Maxwell cells in parallel. A Maxwell cell is represented by a 
spring and dash-pot connected in series. With such definition 
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this model is not able to display reversible creep, see [3]. As 
this paper deals only with viscoelastic solids, NLGMM would 
refer to a spring in parallel with respectively Maxwell cells, see 
[14]. Thus, the GMM defined here is the same as that used by 
[7] and the same as the Maxwell representation given by Caputo 
and Mainardi [3], without the first dashpot.  

To model the non-linear dynamic behaviour of the rubber, 
the chosen NLGMM is composed of a non-linear spring and N 
linear Maxwell cells as represented in Fig 5.  

To deform this rheological model, it is necessary to impose 
a displacement ( )x t , the response is the sum of the non-linear

spring force added to each cell reaction, noted ( )F t :

( ) ( ) ( )0 1

N

ii
F t F t F t

=
= +∑  

(9)

Figure 5.  THE PROPOSED NLGMM. 

The rheological formulation of the dynamic stiffness of 
NLGMM is  

( ) 0
1

N
i i

i i i

j K C
Z K

K j C

ωω
ω=

= +
+∑ (10) 

0K  is the stiffness taken at 0, ie. tω = = +∞ , iK  is the stiffness 

of the ith spring and iC is the damping of the ith dashpot. 

Reducing Eqn. (10) to the same denominator and grouping 
monomials gives the dynamic stiffness of NLGMM expressed 
as the ratio of two polynomials of the same degree N (number 
of Maxwell cells). This formulation of transfer function is also 
used in automation, namely, Oustaloup [21] provided a model 
using poles and zeros formulation (PZF). 

( ) ( )
( )

,

0
1 ,

1

1

N
z i

i p i

j
Z K

j

ω ω
ω

ω ω=

 +
 =
 + 

∏ (11) 

,z iω and ,p iω  are respectively the zero and the pole of the i th 

Pole–Zero couple, [ ]1.. .i N∈  This operator called by Oustaloup

[21] “CRONE regulator” facilitates considerably the treatment 
and the parametric identification of the polynomial ratio by 
expressing it in the form of products.  

3.2. PARAMETRIC IDENTIFICATION TECHNIQUES 

The prediction of dynamic behaviour is directly linked to 
parameters of rheological model. In this section the parametric 
identification method has been built to provide accuracy and 

can be automatically executed for a broad-based measurement 
tests. Renaud [23] demonstrated relations in Eqn. (12) which 
allow computing NLGMM parameters, given by Eqn. (10), 
from the parameters of PZF (Poles-Zeros Formulation). 

( ) ( )

( )

, , ,
0

1 , , ,

,

1

N
p h p i z h

i
h z h p i p h ih

i
i

p i

K K a

K
C b

ω ω ω
ω ω ω δ

ω

=

    −
=     + −   


 =


∏

(12) 

The dampers iC and the stiffnesses iK of the Maxwell 

model are commons for all cells. iK and iC coefficients are 

identified through Eqn. (12.a) and (12.b), after computing the 
poles and zeros.  

Considering 5N =  Maxwell cells, Fig 6 shows a diagram 
that summarizes all the steps performed for identification of 13 
parameters (10 for the linear viscoelastic model and 3 for the 
non linear elasticity). The following identification method aims 
to reduce the number of parameters to 4 independent and 
identifiable parameters. 

Figure  6.  SUMMARY OF NLGMM PARAMETERS 
IDENTIFICATION STEPS.       

3.2.1. Ki and Ci identification 

The method used to determine the poles and zeros is 
analogous to the one proposed by Oustaloup [21]. The main 
idea of this approach leads to consider the angle phase equal to 

2π between zero and pole of the same order and null

elsewhere. The resulting phase angle in the studied frequency 
range is then estimated as the average of phase angle calculated 
between the first zero and the last pole, see Dion [8,9]. 

To obtain a constant phase between two consecutive zeros, 
the ratio between two consecutive zeros is constant and equal to 
the ratio between two consecutive poles. Two constants λ and θ 
are then defined: 

( ) ( ) ( )
( )

2 1ln ln
ln

1
2

f f

N
λ φ πφ

−
=

+ −
(13) 
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( ) ( ) ( )
( )

2 1ln ln
ln

2 1
2

f f

N

πθ φ πφ

− = − 
  + −

(14) 

1f and 2f are respectively the upper and lower bounds of the 

frequency domain on which φ  the mean phase angle for all 

tests is identified and ( )ln y is the natural logarithm of y . The

first zero coincides with 1f and the last pole with 2f . This 

approach is illustrated in Fig 7. 

Figure 7.  APPROACH OF CONSTANT PHASE ANGLE. 

The identification of a viscoelastic behaviour can be 
performed using a ratio of two polynomial functions defined by 
zeros and poles. 
Zeros are defined from the first zero, so that  

, 1 ,z i z iω ω λθ+ =
 

(15) 

Poles are calculated from the last pole, so that 

, 1
,

p i
p i

ω
ω

λθ
+= (16) 

The relation between zeros and poles is given by 

, ,p i z iω λω=
 

(17) 

The mean value of estimated stiffness of non linear spring is 
then computed   

( )
( ) ( ), *

0

1 ,

1

1

N
z i

m
i p i

j
K K d

jω

ω ω
ω ω

ω ω=

  +
  =

  +  
∏∫ (18) 

 with ( )*
mK ω  are measures of dynamic stiffness. 

Figure 8. IDENTIFIED Ki AND Ci. 

Fig 8 shows that the dampers iC and the stiffnesses iK of the 

NLGMM are commons for all cells with all tested amplitudes 
and static preloads. 

3.2.2. K0 identification 

The displacement is proposed to be expressed as: 

0( ) sin( )dx t x x tω= + (19) 

0x is the displacement under static preload. 

dx is the amplitude of displacement. 

Non linear spring stiffness depends not only on static 
solicitations but also on dynamic ones as it is represented in Fig 
9. We proposed to model the problem with only one
curve ( )0F f x= . Indeed, dynamics of rubber are integrated in 

the non linear function 0F . Fig 10 illustrates the researched 

function between force and displacement. 

Figure 9. NON LINEAR SPRING STIFFNESS DEPENDING 
OF STATIC AND DYNAMIC EXCITATION. 

Figure 10. DETERMINATION OF K0 : SKETCH OF THE 
NON LINEAR RELATION BETWEEN FORCE AND 

DISPLACEMENTS.  

The identification of K0 is based on the assumption of a 
bijective function between the force and the displacement (Fig 
10) able to describe the whole surface represented in Fig 9.For
small dynamic displacements, 0K can be considered as the local 

tangent at 0x . However, for larger amplitudes dx , 0K is 

estimated by calculating the average slope in the range of 
dynamic excitation [ ]0 0,d dx x x x− + . 

The resorting force 0F of the non linear spring 0K is proposed to 

be expressed as  

( ) ( ) ( ) ( )3 2
0F t x t x t x tα β γ= + + (20) 

withα , β and γ are real constants.

x  preload 
 amplitude 
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The expression of 0F takes into account a quadratic term. 

This choice is due to analysis of the dynamic behaviour of the 
rubber sample which shows softening behaviour observed with 
increasing amplitudes of the excitation, and the hardening for 
increasing preloads.  
Substituting Eqn. (19) in Eqn. (20), the following expression is 
obtained: 

( )

3
0

2
0

2 3 2
0 0 0 0 0

3 1
( ) sin( ) sin(3 )

4 4

cos 21
(3 )

2 2

(3 2 ) sin( ) 3

d

d

d

F t x t t

t
x x

x x x t x x x

α ω ω

ω
α β

α β γ ω β γ

  = −  
  

 
+ + − 

 

+ + + + + +

(21) 

Measurement process of the stiffness is only based on the 
excitation frequency ω  . Thus, the measured force is:

( ) ( )3 2
0 0 0

3
( ) sin 3 2

4 d dF t t x x x xω α α β γ = + + + 
  (22) 

and 0K has the following form: 

( )
( )

0 2 2
0 0 0

3
3 2

sin 4 d
d

F t
K x x x

x t
α α β γ

ω
= = + + + (23) 

Having 0x and dx measured α , β and γ are determined with 

minimization in the least square sense by solving the following 
system of Ne equations 

2 2
1 01 01

m01

2 2
m0 0 0

m0
2 2

0 0

3
3 2 1

4

3
3 2 1

4

3
3 2 1

4

d

i d i i i

N

d N N N

x x x
K

K x x x

K
x x x

α
β
γ

 + 
   
            =  +           
    

 +
  

⋮ ⋮ ⋮
⋮

⋮
⋮ ⋮ ⋮

(24) 

With [ ]1..i Ne∈ , N is the number of tests. 0m iK  is measured 

non linear spring stiffness of the ith test. 0K  is well identified 

for 102.64 10α = , 77.10 10β = and 54.6310γ = . 

Figure 11.  K0 AS FUNCTION OF PRELOAD- 
IDENTIFICATION FOR DIFFERENT AMPLITUDES. 

Fig 11 and 13 show a good agreement between measured and 
simulated values of 0K for different preloads and amplitudes. 

Relative errors between measured and simulated values of 0K

are illustrated in Fig 12 and 14. The correlation coefficient 
between measures and simulations is 0.95.  

Figure 12.  ERROR BETWEEN MEASURED AND 
SIMULATED K0 AS FUNCTION OF STATIC PRELOAD 

FOR DIFFERENT AMPLITUDES. 

Figure 13.  K0 AS FUNCTION OF AMPLITUDE- 
IDENTIFICATION FOR DIFFERENT PRELOADS. 

Figure 14.  ERROR BETWEEN MEASURED AND 
SIMULATED K0 AS FUNCTION OF AMPLITUDE FOR 

DIFFERENT PRELOADS. 

x measured 
o identified 

x measured 
o identified 
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According to the curve of 0F represented in Fig 15, table 1 

presents measured and identified values of 0F for static 

deflection 0x . Measured values are obtained after each 

experiment in recording static deflection and force. These 
measures are close to the real static stiffness. Identified values 
are the forces computed with the non linear model (Eqn. 20). 
These values are obtained from dynamic experiments. They are 
greater than real static one. This difference is well known in 
parametric identification of viscoelastic model as GMM. This 
difference is mainly due to the tendency of the solid material to 
move slowly and to deform under the influence of stresses: 
creep phenomenon. 

Table 1.  IDENTIFIED AND MEASURED x0 FOR EACH 
PRELOADS. 

Static preload  [N] 300 500 700 1000 1500 2000 2500 

Measured 0x  [mm] 0.69 1.08 1.35 1.92 2.41 3.04 3.49 

Calculated 0x  [mm] 0.63 0.92 1.20 1.5 2.11 2.51 2.86 

Error [%] 8.69 14.81 11.11 21.87 12,44 17.43 18.05 

Figure 15.  IDENTIFIED AND MEASURED RESORTING 
FORCE F0 OF THE NON-LINEAR SPRING.. 

4. VALIDATION RESULTS

By frequency sweeping, a transfer function between force 
and displacement can be build on a wide frequency range. 
Given an experimental transfer function characterizing the 
dynamic stiffness, the validation of the identified NLGMM can 
be carried out with some graphical methods. Renaud [24] 
presented a method based on characteristics of the asymptotes 
of Pole–Zero formulations which allows identifying NLGMM 
parameters from both the magnitude and the phase curves with 
more efficiency than the classical graphical methods thanks to 
optimization algorithm based on asymptotes.  

The dynamic stiffness of NLGMM is well described by its 
magnitude and phase ( )( ) ( ) exp ( )Z Z jω ω ϕ ω= , magnitude and

phase of the associated PZF are defined in Eqn. (25), see [24]. 

( )
( )

2

,

0 0 2
1 1

,

1 1

1 1 , ,

1
( ) ( )

1

( ) ( ) tan tan

N N
z i

i
i i

p i

N N

i
i i z i p i

Z K Z K
ω ω

ω ω
ω ω

ω ωϕ ω ϕ ω
ω ω

= =

− −

= =

 + = =
+


    
  = = −            

∏ ∏

∑ ∑

(25) 

The NLGMM model is validated in Fig from 16 to 19. The 
3-D plots in Fig 16 and 18: (a) and (b) give an overview of the 
measured behaviour represented by the colored map and the 
identified behaviour represented by the transparent map, Fig (c) 
and (d) show the relative error between measured and identified 
values. The 2-D plots in Fig 17 and 19 give more detailed 
information. 

Measured and identified values show good agreement. The 
NLGMM is able to identify perfectly the frequency 
dependence. The behaviour for low amplitudes is predicted 
more accurately than the behaviour for high amplitudes. The 
amplitude 0.6 mm is the most difficult amplitude to model with 
respect to both magnitude and angle phase of the dynamic 
stiffness as it is illustrated in Fig 18 and 19 and the mean 
relative error for magnitude is 12.31% and 1.16% for angle 
phase for P=2000N.  

The behaviour for low preloads is predicted more 
accurately than the behaviour for high preloads. The dynamic 
stiffness magnitude is underestimated for low frequencies and 
overestimated for high frequencies for preload 2500N as 
illustrated in Fig 16 and 17 and the mean relative error is for 
magnitude is 6.66% and 0.67% for angle phase for A=250µm. 

Figure 16.  3-D PLOTS OF DYNAMIC STIFFNESS AS 
FUNCTION OF FREQUENCY AND PRELOAD FOR A= 
250µM. (a) MAGNITUDE OF THE DYNAMIC STIFFNESS. 
(b PHASE ANGLE OF THE DYNAMIC STIFFNESS. (c) 
RELATIVE ERROR OF THE MAGNITUDE OF THE 
DYNAMIC STIFFNESS. (d) RELATIVE ERROR OF THE 
PHASE ANGLE OF THE DYNAMIC STIFFNESS. 
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Figure 17.  2-D PLOT OF DYNAMIC STIFFNESS 
MAGNITUDE AND PHASE ANGLE AS FUNCTION OF 
FREQUENCY FOR A= 250µM. 

Figure 18.  3-D PLOTS OF DYNAMIC STIFFNESS AS 
FUNCTION OF FREQUENCY AND AMPLITUDE FOR P= 
2000N. (a) MAGNITUDE OF THE DYNAMIC STIFFNESS. 
(b) PHASE ANGLE OF THE DYNAMIC STIFFNESS. (c) 
RELATIVE ERROR OF THE MAGNITUDE OF THE 

DYNAMIC STIFFNESS. (d) RELATIVE ERROR OF THE 
PHASE ANGLE OF THE DYNAMIC STIFFNESS. 

Figure 19.  2-D PLOT OF DYNAMIC STIFFNESS 
MAGNITUDE AND PHASE ANGLE AS FUNCTION OF 
FREQUENCY FOR P= 2000N. 

The NLGMM model describes the behaviour of rubber 
specimen with satisfying accuracy. The identification method 
proposed is robust and has been applied for a very large number 
of tests with several amplitudes and different static preloads. 
The quality of fitting between simulation and measurements 
illustrated in the different Fig is similar for most tests. 

5. CONCLUSION
Viscoelastic components are a key element in designing 

desired dynamic behaviour of mechanical system; therefore, it 
is of a great interest to perform studies of the dynamic 
behaviour of these components in order to refine and develop 
more advanced models in Multi-body simulations of complete 
mechanical subsystems.  

The proposed NLGMM with only 4 independent 
parameters (φ , ,α β and γ ) allows an accurate description and 

good knowledge on the dynamic behaviour of viscoelastic 
components versus amplitude, preload and wide frequency 
range. Moreover, it needs only 4 parameters for identifying and 
it can be used with different kinds of solicitations: harmonic, 
transient and random signals. The different parameters of the 
present model can be identified with only one practical test. An 
accurate method for parametric identification is performed and 
a good conformity is shown between measurements and 
simulations.  

NLGMM describes faithfully both modulus and phase of 
complex stiffness characterizing viscoelastic materials and 
represent very well the softening behaviour with increasing 
amplitudes as well as a hardening behaviour in increasing 
preloads. 
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