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ABSTRACT 

This paper presents optimization approaches for a 

complex nonlinear constrained optimization problem: 

sizing integrating operation strategies of energy 

systems (heating, ventilation) for positive energy 

buildings. This is a multi-criteria optimization 

problem of big size with differentiable objective 

functions (thermal comfort and life-cycle cost) and a 

lot of continuous decision variables. To solve it, 2 

optimization methods will be studied: (i) derivative-

free method (NSGA2) et (ii) derivative-based method 

(Sequential Quadratic Programing).  The study case 

is a positive energy house in South-East of France in 

which we will show that derivative-based 

optimization approach will be more efficient with 

much less computation time and a better quality of 

Pareto front solutions. 

INTRODUCTION 

Optimization studies in the field of building science 

have increased within the last two decades (Nguyen 

et al., 2014). The applied optimization algorithms can 

be divided into two main approaches: stochastic and 

deterministic methods. (Wystrcil et al., 2015) has 

presented avantages and drawbacks of stochatic ones 

such as genetic algorithms GAs (Goldberg 1989), 

generalized pattern search GPS (Audet et al., 2003), 

particle swarm optimization PSO (Kennedy et al., 

1995). Their advantages are derivative-free and easy 

applicable with existing simulation software like e.g 

EnergyPlus, TRNSYS and Dymola. Nevertheless, 

these algorithms are time-consuming due to a large 

number of iterative simulation so that the number of 

optimization parameters is limited. Most of 

deterministic algorithm for continuous problems are 

gradient-based methods (Newton’s methods) like e.g 

Sequential Quadratic Programming SQP (Boggs 

1996) or interior points method (Potra et al., 2000). 

These methods offer a faster convergence by 

determination of a search direction, but have higher 

requirements to the system model. Nowadays, there 

does not exist a generic rule for algorithms selection 

because of the complexity and diversity of building 

optimization problem. Howerver, for a specific 

optimization problem, the choice of optimization 

algorithms is usually based on many considerations: 

(1) nature of decision variables (continuous, discrete 

or mixed-interger); (2) presence of constraints; (3)  

nature of functions (linear or nonlinear, continuous or 

discontinuous, mono or multi objective); (4) 

availability of derivatives; (5) characteristics of 

problem (dynamic or static)... Detailed reviews on 

optimization algorithms can be seen in (Evins et al., 

2013) and (Nguyen et al., 2014). 

In recent years, research on HVAC system 

optimization has become very popular. One of the 

first examples of the sizing of heating, ventilating 

and air-conditioning systems is presented in (Wright 

et al., 1987) or (Wright 1996). A more complex 

problem of the simultaneous optimization of HVAC 

system size and operation strategies has been studied 

in (Wright et al., 2001). In this problem, the control 

variables of system are considered as optimization 

variables, which significantly increases the problem 

dimension (e.g. 203 decision variables and 15 

constraints). A genetic algorithm has been used in 

order to take discrete variables into account. The 

simultaneous optimization of HVAC system has also 

been studied in (Patteeuw et al., 2014) and (Ashouri 

et al., 2014) in which models are linear and a mixed 

integer linear programming (MILP) approach has 

been used. However, to the author’s best knowledge, 

very few publications can be found in the literature 

that discuss optimization approaches for the 

simultaneous optimization of HVAC system size and 

operation strategies with highly constrained nonlinear 

functions and continuous decision variables. Our 

paper tries to describle such a complex optimization 

problem.  

For high efficiency energy buildings, the summer 

comfort is usually guaranteed by building envelope 

so that cooling system is not recommended to be 

installed. Therefore, current research is focused on 

heating and ventilation systems optimization for 

assuring the indoor air quality (the winter thermal 

and aeraulic comfort). 

In our study, for a positive energy house in south-east 

of France, the simultaneous optimization of the 

sizing and the operation strategy is studied. The 

heating and ventilation systems will be considered 

such that it maximizes the winter thermal comfort 

and minimizes the life-cycle cost in maintainting the 

aeraulic comfort. The objective functions and 

constraints are nonlinear functions of decision 

variables, while the number of continuous variables 

and constraints are relatively high (337 variables and 

504 constraints). To solve such a complex multi-

objective optimization problem, we would like to 

compare the performances of derivative-free and 

derivative-based optimization approaches knowing 

that the automatic code differentiation is available in 

order to produce gradients automatically. To do that, 

the multi-objective genetic algorithm NSGAII is a 

good candidate among the derivative-free algorithms 



 

while SQP is chosen as one of the most efficient 

derivative-based algorithms. 

The remainder of the paper is organized as follows: 

Section 2 describes the modelling for optimization 

problem. Section 3 introduces the multi-objective 

optimization problem formulation. In section 4, the 

basic idea and applications of NSGAII and SQP 

algorithms are presented. Section 5 analyses the 

optimization results and the performances of the 

algorithms. Conclusions are reported in the final 

section. 

BUILDING MODELLING 

Case study 

The studied building is part of the ADEME
1
 research 

project “COMEPOS
2
” aiming at constructing twenty 

five positive energy buildings in France by 2018. 

This house has one heated zone, one garage and two 

basements with a floor area of more than 200 m
2
. It is 

designed with high performance materials to reduce 

heat losses and to ensure a summer thermal comfort 

without cooling system. An energy operation system 

based on optimal predictive control will be installed 

by Vesta-System
3
. Then, we would like to apply our 

methodology to size the energetic system based on 

the fact that it would be managed optimally. 

Thermal envelope model 

An accurate model (Figure 1), produced with the 

EnergyPlus
4
 software that enables the dynamic 

thermal simulation, was previously built by our 

partner LOCIE
5
 laboratory.  

 

Figure 1 EnergyPlus model 

This model is considered as a reference from which a 

reduced order model for optimization purpose is built 

in the form of an electrical equivalent circuit (Figure 

2). This circuit uses a thermal-electrical analogy: 

thermal resistances, capacities, heat gains and 

external temperatures correspond to electrical 

resistances, capacities, current sources and voltage 

sources respectively. In Figure 2, Tint and Text 

represent the interior temperature of heated zone and 

the exterior temperature respectively. Tgar defines the 

temperature of garage while TBSoffice and TBSroom 
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express the temperatures of office and room 

basements. Twe, Twg, Twbso and Twbsr are inside 

temperatures of wall or floor linked to the exterior, 

garage, office basement and room basement 

respectively. The heat gains come from the power 

transmitted to the zone by the sun (Psolar), electrical 

equipments (Pelec), occupants (Poccupant) and heating 

system (Pheat). 

 

Figure 2 Electrical equivalent circuit 

Thanks to the Ohm’s law and Kirchhoff’s laws, the 

circuit equations can be described: 

2

int

1 ext
R

we
TT

ext
R

we
T

ext
T

dt

we
dT

.
ext

C






 

  (1) 

2

int

1 gar
R

wg
TT

gar
R

wg
T

gar
T

dt

wg
dT

.
gar

C








 

  (2) 

2

int

1 BSoffice
R

wbso
TT

BSoffice
R

wbso
T

BSoffice
T

dt

wbso
dT

.
BSoffice

C







 

  (3) 

2

int

1 BSroom
R

wbsr
TT

BSroom
R

wbsr
T

BSroom
T

dt

wbsr
dT

.
BSroom

C






 

  (4) 

solar
P

elec
P

occupant
P

heat
P

BSroom
R

T
wbsr

T

BSoffice
R

T
wbso

T

gar
R

T
wg

T

v
R

T
ext

T

ext
R

T
we

T

dt

dT
.

air
C





















2

int

2

int

2

intint

2

intint

 
  (5) 

The equations from (1) to (5) can be rewritten in the 

form of an equation system: 

)),(,)(()().()().()(' ttutxftutBtxtAtx   (6) 

Where x represents temperature variables; u presents 

heat gains and external temperatures; A(t)5x5, B(t)5x8 

are state matrices depending on the resistances and 

capacities. For example: 
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Resistances and Capacities 

Cair: Capacity of air 

Cext, Rext1, Rext2: Capacity, external 

resistance, internal resistance of 

wall linked to exterior 

Cgar, Rgar1, Rgar2: Capacity, external 

resistance, internal resistance of 

wall linked to garage 

CBSoffice, RBSoffice1, RBSoffice2: Capacity, 

external resistance, internal 

resistance of floor linked to office 

basement 

CBSroom, RBSroom1, RBSroom2: Capacity, 

external resistance, internal 

resistance of floor linked to room 

basement 

Rv: Resistance linked to ventilation 
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It can be noted that Rv(t) is a variable resistance 

according to airflow Qv(t) (m
3
/h) which is not 

constant over time: 
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air and pairC are the mass density (kg/m
3
) and the 

specific heat (J/(kg.K)) of air respectively. 

Numerical integration method 

The time domain simulation by equation (6) with a 

given initial value 00)( xtx  , can be solved using 

Heun’s scheme (modified Euler’s method) (Süli et 

al., 2003): 
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Where 
kk ttdt  1

is the step size (in second). 

Equation (8) allows to determine the heated zone air 

temperature Tint at time step.  

Identification of parameters of RC model  

To have the same behavior between the macroscopic 

model and EnergyPlus model, an optimization 

procedure was proceeded which identifies the 

parameters of the RC model.  
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Figure 3 Heated zone air temperature by EnergyPlus 

and RC model using the validation data set 

This identification uses the SQP algorithm aiming to 

minimize the difference between the heated zone air 

temperature Tint computed by RC model and by 

EnergyPlus for a constant 120 m
3
/h ventilation. The 

data profile of one year has been used for the 

identification then another year data has been taken 

for the validation of parameters obtained. This 

optimization is not the aim of this paper even if many 

interesting issues may occur. 

Table 1 

Identified parameters R, C 

PARAMETERS 

 

IDENTIFIED 

VALUES 

Cair (J/K)         3747281 

Cext (J/K)         38832547 

Cgar (J/K)         233332 

CBSoffice (J/K)         3038849 

CBSroom (J/K)         8110949 

Rext1 (K/W)         0.00789 

Rext2 (K/W)         0.00417 

Rgar1 (K/W)         0.17195 

Rgar2 (K/W)         0.16600 

RBSoffice1 (K/W)         0.06713 

RBSoffice2 (K/W)         0.01350 

RBSroom1 (K/W)         0.12775 

RBSroom2 (K/W)         0.00220 

Figure 3 shows that the output temperature of 

reduced order model has a good agrement with the 

one of EnergyPlus model. The mean error value over 

1 year between the two models is about 0.48°C.  

CO2 model 

The CO2 concentration at tk+1 can be calculated by 

equation (Dang 2013): 
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Where CO2(tk+1) and CO2(tk) are the CO2 

concentration (ppm) at tk+1 and tk respectively; Np(tk) 

is number of person in the room at tk; Qp and CO2p 

are the airflow (m
3
/h) and CO2 concentration (ppm) 

breathed out by a person respectively; Qv(tk) is the 

airflow (m
3
/h)  supplied to the room; CO2air is the 

CO2 concentration (ppm) of the outside air; 

kk ttt  1
is the step size (h); V is the volume 

(m
3
) of the room. 

Economic model 

In our study, the life cycle cost (LCC) (€) will be 

taken into account as an optimization criteria, which 

contains the initial capital cost, the replacement cost, 

the maintenance cost of energy system and the 

energy cost bought from the grid. The life span of 

building PL is considered as 30 years. The expression 

of cost equations can be seen in (Kaabeche et al., 

2010). 

PROBLEM FORMULATION  

Objective function 

The problem in this study is a multi-objective 

optimization problem whose two optimization 

criteria to minimize are: thermal discomfort and life 

cycle cost. The thermal discomfort is calculated from 

A summer week 



 

a winter scenario (a typical day or a typical week) 

and described in degree-hour of discomfort:  

ttediscomfort
N

k
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
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1
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)( kT te  is the difference between the heated zone air 

temperature and the set point temperature at tk: 

 )()()( int kksetkT tTtTte   (11) 

N is the period length (N=24 for a day and N=168 for 

a week of operation for instant).  It can be noticed 

that the thermal discomfort is increasing when the 

building temperature is smaller than the set point 

value in winter. 

Design scenario, variables and constraints 

To see the performance of derivative-free and 

derivative-based approaches for optimization 

problem, we have done 2 tests.  The first test is based 

on the scenario of a typical winter day and the second 

test is done during a typical winter week. The aim of 

the second test is to check the behavior of 

optimization algorithms when the number of decision 

variables and constraints is increasing. For all tests, a 

time step of 10 minutes is used for simulation and a 

time step of 1 hour is for decision variables. 

Table 2 

Continuous decision variables  

 

VARIABLE 

TYPE 

 

RANGE OF 

VALUES 

NUMBER OF VARIABLES 

TEST 1 

tk=0:23h  

TEST 2 

tk=0:167h 

  Pheatmax  

Pheat(tk)  

Qv(tk)  

 

[0;20000] (W) 

[0;20000] (W) 

[120;3000] (m3/h) 

1 

24 

24 

 

1 

168 

168 

                                   TOTAL 49 337 

 

Table 3 

Constraints functions 

 

FUNCTION 

 

FORM 

 

 

LIMIT 

NUMBER OF 

CONSTRAINTS 

TEST 1 

tk=0:23h 

TEST 2 

tk=0:167h 

Pheat(tk)-  

-Pheatmax   

CO2(tk)  

Tint(tk)  

 

≤ 

 

≤ 

≤ 

 

0 (W) 

 

1000 (ppm) 

21 (°C) 

24 

 

24 

0 

 

168 

 

168 

168 

                                    TOTAL 48 504 

Table 2 presents the continuous decision variables 

including the design variable (heating size Pheatmax) 

and operation variables (heating power Pheat and 

airflow Qv at each step tk) for 2 test cases. Table 3 is 

for the constraints on the CO2 concentration 

(CO2(tk)), heated zone air temperature (Tint(tk)) and 

heating system operation power (Pheat(tk)-Pheatmax). 

For test 1, the optimization problem has 49 decision 

variables and 48 constraints. For test 2, there are 337 

decision variables and 504 constraints.  It can be 

noticed again that the objective functions and 

constraints functions are nonlinear with respect to 

decision variables (e.g. nonlinear dependence of 

discomfort and CO2 in Qv).  

To solve such a complex problem, we are using the 

CADES software
6
 (developed in collaboration with 

our laboratory) in which models (envelope, CO2, 

cost) are defined as modules, and are connected 

together for the global simulation. The optimization 

algorithms (SQP and NSGAII) are available in the 

framework for our optimization tests. 

 
Figure 4 Optimization Implementation in CADES 

OPTIMIZATION ALGORITHMS 

NSGAII and SQP are two algorithms with 

advantages and drawbacks, so it is important to 

understand their limits and performances for our 

application domain (nonlinear constrained 

optimization problem):   
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With
nx  ; )(xhi  and )(xg j  are assumed 

continuously differentiable on
n .  

NSGAII algorithm 

NSGAII is well-known fast elitist Non-dominated 

Sorting Genetic Algorithm proposed by (Deb et al., 

2002). It uses non-dominated sorting and a crowed-

comparison approach to find a set of evenly 

distributed solutions to multi-objective optimization 

problems. NSGAII is a modified version of NSGA 

(Srinivas et al., 1994) with the improvements of 

computational complexity, diversity of solutions and 

the incorporation of elitism.  

For multi-objective optimization problems in 

building performance simulation, NSGAII is one of 

the most widely used algorithms. (Daum et al., 2010) 

used NSGAII to identify important state variables for 

a blind controller by optimizing the energy 
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consumption and thermal comfort. In order to design 

optimally compact heat exchangers, (Sanaye et al., 

2010) applied NSGAII to obtain the maximum 

effectiveness and the minimum total annual cost. 

(Chantrelle et al., 2011) coupled NSGAII with 

TRNSYS to develop a multi-criteria tool for 

optimization of renovation operations, with an 

emphasis on building envelopes, heating and cooling 

loads and control strategies. (Evins et al., 2011) 

presented a new analysis and optimization procedure 

to aid decision-making exploiting the Non-dominated 

Sorting Genetic Algorithm for the environmental and 

financial objectives. NSGAII was also investigated in 

(Wright et al., 2013) for optimizing the cellular 

fenestration design. Recently, (Brownlee et al., 2015) 

has presented the constrained, mixed-integer and 

multi-objective optimization of building design by 

NSGAII with fitness approximation. 

Through the applications of NSGAII algorithm, it is 

notable that the quality of results heavily depends on 

the population size N and the maximum number of 

generation M. A small size of N and M may result in 

the convergence with a poor confidence. On the 

contrary, a large size of N and M generally allows to 

obtain better results but requires high computation 

time due to a large number of simulations (Wetter et 

al., 2004). The choice of the most effective size is 

still a big challenge and is dependent on the 

complexity of optimization problems.  

SQP algorithm 

(Schittkowski et al., 2010) indicates that Sequential 

Quadratic Programming (SQP) belongs to the most 

powerful nonlinear programming algorithms for 

solving nonlinear optimization problems (12).  

The basic idea to solve this problem is to seek to a 

search-direction 
n

kd   from a given iterate xk (an 

approximation of the solution) using a quadratic 

programming sub-problem: 
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Where )(),(),( kjkik xgxhxf   are the gradients 

of functions )(),(),( kjkik xgxhxf  respectively. 

),,(
2

kkkxk xLH   is the Hessian of the 

Lagrangian function:  

)(.)(.)(),,( xgxhxfxL TT    (14) 

mp   , are the multiplier vectors.  

Once equation (13) solved, the search-direction 
n

kd   found allows determining a new iterate:   

kkkk dxx .1 
 (15) 

In which  1,0k  is a suitable step-length 

parameter. 

In SQP, the Hessian is not really required because it 

is generally approximated iterativelly using 

gradients. 

A more detailed description about this algorithm is in 

(Boggs 1996). Generally speaking, SQP method is 

rapid and accurate but requires gradients of the 

model which is not always available in modelling 

tools. However, automatic code differentiation is a 

mature technique that allows engineers to focus on 

modelling and not in mathematics. We have 

implemented such an automatic differentiation 

technic in CADES software based on AdolC 

(Walther et al., 2012). Then, all previous models that 

we have defined in CADES framework have their 

gradient available for SQP. 

RESULTS AND ANALYSIS 

We now analyze in detail the performance of 

solutions obtained by the gradient-based approach 

(SQP) and the gradient-free approach (NSGAII) in 

the two tests mentioned above. All computations 

were run on a 2.7 GHz computer under window 7. 

Table 4 

Iteration number and computation time of test 1 

 ITERATION 

NUMBER 

COMPUTATION 

TIME (s) 

SQP 180 10 

NSGAII 

N50M100 

10101 19 

NSGAII 

N100M200 

20201 38 

NSGAII 

N100M1000 

100201 174 

(2min54s) 

NSGAII 

N300M1000 

300601 537 

(8min57s) 

NSGAII 

N300M2000 

600601 1072 

(17min52s) 

NSGAII 

N500M3000 

1501001 2795 

(46min35s) 

 

Table 5 

Iteration number and computation time of test 2 

 ITERATION 

NUMBER 

COMPUTATION 

TIME (s) 

SQP 69 176 

(2min56s) 

NSGAII 

N500M3000 

1501001 21438 

(5h57min18s) 

NSGAII 

N1000M5000 

5002001 72215 

(20h3min35s) 

Analysis of test 1: 

Test 1 in our study is the nonlinear optimization 

problem with 49 continuous decision variables and 

48 constraints. We started with the population size 

N=50 and the maximum number of generation 

M=100 for NSGAII. Figure 5 shows that the non-

dominated front obtained by NSGAII with N=50 and 

M=100 is worse than the Pareto front obtained by 



 

 
Figure 5 Non-dominated solutions obtained with NSGAII and SQP for test 1 

 

 
Figure 6 Non-dominated solutions obtained with NSGAII and SQP for test 2

SQP. Therefore, we increased step by step the size of 

N and M to hope improving the result with NSGAII. 

As a result, we obtained a Pareto front with N=500 

and M=3000 converging near the Pareto front of SQP 

(Figure 5). To get this result, it takes approximately 

45min with NSGAII and 10s with SQP, i.e. the 

optimization using the gradient-based approach is 

280 times faster. A more detailed comparison about 

function evaluations number and computation time 

between both algorithms is summarized in Table 4.  

Regarding the optimum solutions, Figures from 7 to 

11 analyze solutions obtained by SQP and NSGAII 

(N=500 and M=3000). The blue axis of Figure 5 

indicates solutions with the same discomfort of 4 

(°C.h). For this discomfort, it is observed that the 

solutions found by SQP and NSGAII in Figure 9 and 

Figure 11 lead to the relatively same trajectories of 

room temperation (Figure 8) and CO2 concentration 

(Figure 10). As it can be seen in Figure 9, regardless 

of the optimization method used, the heating system 

is turned on in advance from 2 a.m to 5 a.m so that 

the temperature tries to reach the set point at 6 a.m 

(Figure 8). Such a pre-heating when electricity cost is 

cheap allows to increase smoothly the interior 

temperature and so avoid a peak power of heating 

when the set point changes rapidly. 

Figure 10 depicts that the constraint on the CO2 

concentration is well satisfied by the two 

optimization methods. However, there is a small 

difference between the solutions: SQP sizes a smaller 

Axis of the same 

discomfort: 

4 °C.h 

 



 

heating system (Figure 9) and reduces airflow at 

some moments (Figure 11) compared to NSGAII. 

Due to these facts, the life-cycle cost of solutions 

using gradient-based method is a litte bit lower than 

ones using gradient-free method (Figure 5). 

Analysis of test 2: 

Test 2 is much more complex than test 1 with 337 

decision variables and 504 constraints. In this case, 

SQP converges after 176s with a uniform spread of 

solutions (Figure 6). Regarding the gradient-free 

algorithm, we began with N=500 and M=3000 which 

was the NSGAII configuration used to obtain the best 

result in test 1. It is observed in Figure 6 that SQP 

has a better spread of solutions and converges much 

better to the true Pareto-optimal front. We tried a 

bigger population size N=1000 and number of 

generation M=5000. As it can be seen in Figure 6 the 

non-dominated set of solutions obtainted by NSGAII 

is improved but still much worse than ones obtained 

by SQP. In addition, Table 5 indicates that the 

computation time of NSGAII with this configuration  

 
Figure 7 Scenario of electricity cost and exterior 

temperature for a typical winter day 

 
Figure 8 Winter interior temperature and set point  

 
Figure 9 Heating system operation 

 
Figure 10 CO2 Concentration and constraint 

 
Figure 11 Ventilation system operation 

is about 20 hours which is prohibitive regarding the 

number of optimization that are required during a 

design process. Meanwhile the computation time of 

SQP is much less (only 3 minutes). Thus, the solution 

using NSGAII in this test is clearly ineffective and 

impractical while the SQP method always ensures the 

high confidence for the computation time and the 

quality of Pareto front. With the obtained results, 

SQP method can completely be applied for complex 

optimization problems. 

CONCLUSION 

In this paper we study gradient-free and gradient-

based optimization approaches for solving the 

complex nonlinear multi-objective optimization 

problem. This problem is optimizing simultaneously 

the heating nominal power and the operation strategy 

(heating and ventilation) for the criteria of winter 

comfort and energy cost. The originality of this study 

lies in the fact that we investigate the capacity of the 

optimization algorithms for solving the big size 

optimization problems with continuous decision 

variables and nonlinear constraints. Based on the 

results, it can be concluded that the approach using 

gradients (SQP) outperforms a gradient-free 

approach (NSGAII) in term of computation time and 

Pareto front quality. This research also indicates the 

limit of the genetic algorithm and shows perspectives 

of derivative-based methods for treating more and 

more complex problems in the real world of building 

performance.   
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