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In these notes we fill a gap in a proof in Section 4 of Gamboa, Nagel, Rouault [Sum rules via large deviations, J. Funct. Anal. 270 (2016), 509-559]. We prove a general theorem which combines a LDP with a convex rate function and a LDP with a non-convex one. This result will be used to prove LDPs for spectral matrix measures and for spectral measures on the unit circle.

Introduction

In Section 4 of [START_REF] Gamboa | Sum rules via large deviations[END_REF], we studied large deviations for a pair of random variables with values in topological vector spaces by means of the joint normalized generating function. However, in some cases, the rate function of one of the marginals is not convex, which invalidates this way of proof. Actually, it is possible to state a general theorem which combines a LDP with a convex rate function and a LDP with a non-convex one. It is used to prove LDPs in [START_REF] Gamboa | Sum rules and large deviations for spectral matrix measures[END_REF] for spectral matrix measures and in [START_REF] Gamboa | Sum rules and large deviations for spectral measures on the unit circle[END_REF] for spectral measures on the unit circle.

Since this theorem may have its own interest, we give it in a general setting in Section 3 1 after recalling classical results in Section 2. We come back in Section 4 to the framework of [START_REF] Gamboa | Sum rules via large deviations[END_REF].

In the sequel, we assume that X and Y are Hausdorff topological vector spaces. X * is the topological dual of X and X is endowed with the weak topology. We denote by C b (Y) the set of all bounded continuous functions ϕ : Y → R. A point x ∈ X is called an exposed point of a function F on X , if there exists x * ∈ X * (called an exposing hyperplane for x) such that

F (x) -x * , x < F (z) -x * , z (1.1)
for all z = x.

Some classical results in large deviations

Let us recall two well known results in the theory of large deviations which will be combined in order to solve our problem. The first result is the inverse of Varadhan's lemma (Theorem 4.4.2 in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]), the second one is a version of the so-called Baldi's theorem (Theorem 4.5.20 in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]). The latter differs from the version in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] in a straightforward condition to identify the rate function, which was applied for instance in [START_REF] Gamboa | A functional large deviation principle for quadratic forms of Gaussian stationary processes[END_REF] (see also [START_REF] Dette | Asymptotic properties of the algebraic moment range process[END_REF]). The proof of our Theorem 3.1 will be quite similar to the proof of these two classical theorems. Theorem 2.2 (A version of Baldi's Theorem) Suppose that the sequence (X n ) of random variables in X is exponentially tight and that :

1. There is a set D ⊂ X * and a function

G X : D → R such that for all x * ∈ D (2.1) lim n→∞ 1 n log E exp (n x * , X n ) = G X (x * ) . 2 2. If F denotes the set of exposed points x of G * X (x) = sup x * ∈D { x * , x -G X (x * )},
with an exposing hyperplane x * satisfying x * ∈ D and γx * ∈ D for some γ > 1,

then for every x ∈ {G * X < ∞} there exists a sequence (x k ) k with x k ∈ F such that lim k→∞ x k = x and lim k→∞ G * X (x k ) = G * X (x).
Then (X n ) satisfies the LDP with good rate function G * X .

A general theorem

Our extension is the following combination of the two above theorems. The main point is that the rate function does not need to be convex, but we still only need to control linear functionals of X n .

Theorem 3.1 Assume that X n ∈ X and Y n ∈ Y are defined on the same probabilistic space. Moreover, we assume that the two sequences (X n ) and (Y n ) are exponentially tight.

Assume further that:

1. There is a set D ⊂ X * and functions

G X : D → R, J : C b (Y) → R such that for all x * ∈ D and ϕ ∈ C b (Y) (3.1) lim n→∞ 1 n log E exp (n x * , X n + nϕ(Y n )) = G X (x * ) + J(ϕ) .

If F denotes the set of exposed points x of

G * X (x) = sup x * ∈D { x * , x -G X (x * )}
with an exposing hyperplane x * satisfying x * ∈ D and γx * ∈ D for some γ > 1,

then for every x ∈ {G * X < ∞} there exists a sequence (x k ) k with x k ∈ F such that lim k→∞ x k = x and lim k→∞ G * X (x k ) = G * X (x).
Then, the pair (X n , Y n ) satisfies the LDP with speed n and good rate function

I(x, y) = G * X (x) + I Y (y) ,
where

I Y (y) = sup ϕ∈C b (Y)
{ϕ(y) -J(ϕ)}.

y∈Y {ϕ(y) -I Y (y)}.

Proof:

Upperbound: The proof follows the lines of the proof of part (b) of Theorem 4.5.3 in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF]. Note that since the sequence (X n , Y n ) is exponentially tight it suffices to show the upper bound for compact sets. Furthermore, the rate is necessarily good, since, if in (3.1) we set x * = 0 (resp. ϕ = 0) it reduces to Theorem 2.1 (resp. Theorem 2.2).

Lowerbound: As usual, it is enough to consider a neighbourhood ∆ 1 × ∆ 2 of (x, y) where I(x, y) < ∞, take lim inf n→∞

1 n log P((X n , Y n ) ∈ ∆ 1 × ∆ 2 )
and get a lower bound tending to I(x, y) when the infimum over all neighborhoods is taken. Actually, due to the density assumption 2. it is enough to study the lower bound of P(

X n ∈ ∆ 1 , Y n ∈ ∆ 2 ) when x ∈ F and I Y (y) < ∞.
As in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] (Proof of Lemma 4.4.6), let ϕ : Y → [0, 1] be a continuous function, such that ϕ(y) = 1 and ϕ vanishes on the complement ∆ c 2 of ∆ 2 . For m > 0, define ϕ m := m(ϕ -1). Note that

J(ϕ m ) ≥ -I Y (y) .
We have

P(X n ∈ ∆ 1 , Y n ∈ ∆ 2 ) = E ½ {Xn ∈∆ 1 } ½ {Yn ∈∆ 2 } e n x *
,Xn +nϕm(Yn) e -n x * ,Xn -nϕm(Yn) . Now -ϕ m ≥ 0 and on ∆ 1 ,x * , X n ≥x * , xδ for a δ > 0, so that

(3.2) P(X n ∈ ∆ 1 , Y n ∈ ∆ 2 ) ≥ E ½ {Xn ∈∆ 1 } ½ {Yn ∈∆ 2 }
e n x * ,Xn +nϕm(Yn) e -n x * ,x -nδ .

Denoting Yn) and P the new probability on X × Y such that d P dP = e n x * ,Xn +nϕm(Yn)-nLn , we get

ℓ n = 1 n log Ee n x * ,Xn , L n := 1 n log Ee n x * ,Xn +nϕm(
(3.3) P(X n ∈ ∆ 1 , Y n ∈ ∆ 2 ) ≥ P(X n ∈ ∆ 1 , Y n ∈ ∆ 2 )e -n x * ,x -nδ+nLn .
For the exponential term we have

(3.4) lim inf n→∞ 1 n log e -n x * ,x -nδ+nLn ≥ x * , x -δ + G X (x * ) + J(ϕ m ) ≥ -G * X (x) -I Y (y) -δ.
We may choose δ arbitrarily small by choosing ∆ 1 sufficiently small, so that it will be enough to prove that

(3.5) P(X n ∈ ∆ 1 , Y n ∈ ∆ 2 ) ---→ n→∞ 1
or equivalently, that

(3.6) P(X n ∈ ∆ c 1 ) + P(Y n ∈ ∆ c 2 ) ---→ n→∞ 0 .
For the first term, note that under P the moment generating function of

X n satisfies lim n→∞ 1 n log E[e n z * ,Xn ] = lim n→∞ 1 n log E[e n z * +x * ,Xn +ϕm(Yn)-nLn ] = G X (z * + x * ) + J(ϕ m ) -G X (x * ) -J(ϕ m ) = G X (z * + x * ) -G X (x * ) =: G X (z * ),
for z * ∈ D := {z * : x * + z * ∈ D}. We may then follow the argument on p.159-160 in [START_REF] Dembo | Large Deviations Techniques and Applications[END_REF] (as an auxiliary result in their proof of the lower bound). Using that x * ∈ D is an exposing hyperplane, we get lim sup

n→∞ 1 n log P(X n ∈ ∆ c 1 ) < 0.
Considering the second term in (3.6), we have, on ∆ c 2 d P dP = e -nm+n x * ,Xn -nLn so that

P(Y n ∈ ∆ c 2 ) ≤ e -nm+nℓn-nLn .
Taking the logarithm, this implies lim sup

n→∞ 1 n log P(Y n ∈ ∆ c 2 ) ≤ -m + G X (x * ) -G X (x * ) -J(ϕ m ) = -m -sup z∈Y {ϕ m (z) -I Y (z)} ≤ -m + I Y (y)
which tends to -∞ when m → ∞.

To summarize, we have proved (3.6), i.e. (3.5), which with (3.3) and (3.4) gives lim

∆ 1 ↓x,∆ 2 ↓y lim inf n→∞ 1 n log P(X n ∈ ∆ 1 , Y n ∈ ∆ 2 ) ≥ -G * X (x) -I Y (y) ,
which leads to the lower bound of the LDP. 2

4 Joint LDP for measure and truncated eigenvalues

In Section 4 of [START_REF] Gamboa | Sum rules via large deviations[END_REF], we studied the joint moment generating function of a non-negative measure μ(n) I(j) on a compact set [α -, α + ] and a collection of j extremal support points λ ± M (j) ∈ R 2j , restricted to the compact set [-M, M ]. For the sake of a clearer notation, we drop here the dependency on j. It is shown in Theorem 4.1 in [START_REF] Gamboa | Sum rules via large deviations[END_REF], that λ ± M satisfies the LDP with speed n and good rate I M,λ ± . Furthermore, the sequence of μ(n) I is exponentially tight and if

G n (f, s) = E exp n f dμ (n) I + n s, λ ± M , then for all f such that log(1 -f ) is continuous and bounded and all s ∈ R 2j , lim n→∞ 1 n log G n (f, s) = G(f ) + H(s), (4.1) 
with G * strictly convex on a set of points dense in {G * < ∞}.

However, the rate I M,λ ± might be non-convex and hence the dual H * is not strictly convex on a dense set. The convergence in (4.1) is therefore not enough to conclude the joint LDP for (μ where

G(f ) = -log(1 -f ) dµ V
for a probability measure µ V . Moreover, in Section 4 of [START_REF] Gamboa | Sum rules via large deviations[END_REF] it is shown that every measure on [α -, α + ] with a strictly positive continuous density h with respect to µ V is an exposed point and the exposing hyperplane is the function f = 1h -1 . Since f is continuous and strictly less than 1, γf ∈ D for γ > 1 small enough. By the same arguments as in [START_REF] Gamboa | A functional large deviation principle for quadratic forms of Gaussian stationary processes[END_REF], any measure µ with G * (µ) < ∞ may be approximated weakly by measures µ n with such a strictly positive continuous density such that G * (µ n ) converges to G * (µ). This approximation is also made

Theorem 2 . 1 (

 21 Bryc's Inverse Varadhan Lemma) Suppose that the sequence (Y n ) of random variables in Y is exponentially tight and that the limit Λ(ϕ) := lim n→∞ 1 n log Ee nϕ(Yn) exists for every ϕ ∈ C b (Y). Then (Y n ) satisfies the LDP with the good rate function I(y) = sup ϕ∈C b (Y) {ϕ(y) -Λ(ϕ)} . Furthermore, for every ϕ ∈ C b (Y), Λ(ϕ) = sup y∈Y {ϕ(y) -I(y)} .

I 1 n

 1 , λ ± M ) directly from the classical Theorem 2.2. To show the joint LDP, we will apply Theorem 3.1. Indeed, let D be the set of bounded continuous functions f from [α -, α + ] to R such that sup x f (x) < 1. If we define for ϕ : R 2j → R continuous and bounded and f ∈ D Ĝn (f, ϕ) = E exp n f dμ(n) I + nϕ(λ ± M ) ,then the same arguments as in Section 4 of[START_REF] Gamboa | Sum rules via large deviations[END_REF] show lim n→∞ log Ĝn (f, ϕ) = G(f ) + J(ϕ), (4.2)