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Blast wave attenuation in liquid foams: role of
gas and evidence of an optimal bubble size†

Martin Monloubou,a Myrthe A. Bruning,a Arnaud Saint-
Jalmes,a Benjamin Dolleta and Isabelle Cantat ∗a

Liquid foams are excellent systems to mitigate pressure
waves such as acoustic or blast waves. The understanding
of the underlying dissipation mechanisms however still
remains an active matter of debate. In this paper, we
investigate the attenuation of a weak blast wave by a liquid
foam. The wave is produced with a shock tube and impacts
a foam, with a cylindrical geometry. We measure the wave
attenuation and velocity in the foam as a function of bubble
size, liquid fraction, and the nature of the gas. We show
that the attenuation depends on the nature of the gas and
we experimentally evidence a maximum of dissipation for a
given bubble size. All features are qualitatively captured by
a model based on thermal dissipation in the gas.

1 Introduction

Pressure wave propagation in liquid foams is very peculiar,
with a low sound velocity, of the order of 50 m/s, and a
high level of attenuation. This feature is of high interest
in the context of soundproofing or of blast wave attenua-
tion1–7. Recent progress has been made in the identification
of the local processes controlling the propagation velocity
and the attenuation length. In his seminal work, Wood8

described the foam as an effective continuum, which aver-
age density and average compressibility are deduced from
the bulk phase properties and from the volumetric liquid
fraction φl . The sound velocity predicted on the basis of
these effective quantities, called Wood’s velocity, is in good
agreement with the experimental observations for bubble
size below a frequency dependent critical value9,10. Above
this bubble size, a resonant behaviour is observed: the en-
ergy absorption and the sound velocity reach maximal val-
ues11,12. In this regime, the liquid and gas phases, having
very different inertia, do not follow the same trajectory and
the simple continuum approximation made in Wood’s model
is not valid anymore. Finally in the large bubble size limit,
most of the liquid phase stays at rest, as proposed by Kann’s
model13, and the velocity decreases toward its Kann’s value,
still larger than the Wood’s prediction. These different mod-
els focus on the local deformations and motions induced by
the pressure wave, but do not model the resulting energy
dissipation. This dissipation is simply neglected in Wood’s
and Kann’s models and taken into account by a single phe-
nomenological internal time scale in the resonant model12.

Other studies focused in contrast on the fundamental ori-
gin of the energy dissipation. For a single bubble in an
unbounded liquid, Prosperetti first modeled the high ther-
mal dissipation induced by the large contact area between
the gas phase, which temperature varies with the pressure,
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and the liquid phase, which remains at constant tempera-
ture14,15. This model has been used for foams in9,16, as-
suming a continuum deformation, as in Wood’s regime. The
thermal dissipation model predicts a maximum of dissipa-
tion for a given bubble size, as the resonant model. In this
paper, we present results on the propagation of a short over-
pressure, characteristic of a blast wave, in a liquid foam. We
measure the pulse velocity and the maximal pressure atten-
uation, as a function of the bubble size R, the liquid fraction
φl , the initial pressure amplitude P1 and the nature of the
gas. This strongly broadens the parameter space already ex-
plored in our previous paper16, in which a single gas and
a single liquid fraction had been used. It thus allows us to
establish two important results: (i) the pressure attenuation
depends on the nature of the gas, and that (ii) a maximum
of attenuation is obtained for a critical bubble size, at a fixed
liquid fraction. The first one is a very discriminant piece of
information in order to build the right model of dissipation,
whereas the second one may be useful to optimise the foam
properties for practical use. Comparison with both resonant
and thermal models allows us to conclude that the observed
maximum of dissipation is due to the non monotonic vari-
ation of the thermal dissipation in the gas phase with the
bubble size.

2 Experimental setup
In all experiments described in this paper, a foam is subject
to a blast wave. In this Section, we describe the foaming
solution and gas (Sec. 2.1), the foam production and char-
acterisation (Sec. 2.2), the blast wave generation and the
pressure measurements (Sec. 2.3) and the measurement of
the wave velocity (Sec. 2.4).

2.1 Foaming solution and gas

The foam is produced with a solution of sodium dodecyl
sulfate (SDS) at a concentration of 10 g/L, larger than the
critical micellar concentration (cmc) which equals 2.8 g/L.
The gas is either nitrogen (N2) as in16, or hexafluoroethane
(C2F6). The thermal properties of these two gases are re-
ported in Table 1.

Property N2 C2F6
Density ρg (kg·m−3) 1.18 5.84
Thermal conductivity κ (W·m-1·K-1) 0.024 0.0135
Specific heat cp (J·kg−1·K−1) 1040 760
Molar mass M (g·mol−1) 28.0 138.0
Thermal diffusivity DT (10−5 m2·s−1) 1.95 0.304

Table 1 Gas properties of N2 and C2F6
17.

2.2 Foam production and characterisation

The two experimental set-ups used in this paper are denoted
by V and H (as vertical and horizontal)16.

In set-up H, the foam is produced by a turbulent mix-
ing method18 and injected between two horizontal plexi-
glass plates separated by a distance h. The liquid fraction
is controlled by the balance between the gas and solution
flow rates and pressures and can be varied over the range
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φl ∈ [0.02− 0.3]. For each experiment, it is measured by
weighing a known volume of foam. The initial bubble ra-
dius is constant and close to R = 30 µm.

The foam coarsening leads to the bubble size increase
and this parameter is thus tuned by changing the waiting
time between the foam production and the blast. The set-
up allows to vary independently the control parameters R
and φl over a certain range, limited by several processes.
The waiting time τc required to double the bubble radius
varies as R2/(DHe), with He the Henry coefficient, which
measures the gas solubility, and D the gas diffusivity in the
liquid phase. This characteristic time is of the order of a
few seconds for R = 30 µm and N2, and is much larger for
C2F6, which is 30 times less soluble than N2

19,20. Moreover,
τc increases with liquid fraction. Another ageing process is
gravitational drainage. The liquid phase begins to leave the
foam and to leak on the bottom plate after a time τdr scal-
ing as 1/R2 and decreasing with liquid fraction. The cell is
thus turned upside down during the coarsening process at a
frequency larger than 1/τdr to maintain a homogeneous liq-
uid fraction. Finally, this set-up can be used when the total
coarsening time is smaller than 15 minutes and the draining
time larger than 10 seconds. The resulting maximal bubble
radius is typically 300 µm for φl = 5% and N2 foams.

To extend the accessible range of parameters, the set-up
V has been designed. In that case, the foam is produced
by blowing gas in porous glass frits immersed in the foam-
ing solution (see Fig. 1) and the bubble size is modified
by changing the porosity of the frits. The foam then rises
between two vertical plexiglass plates, and overflows at the
top of the cell. Once a steady state is reached, a sample of
known volume of the foam is weighed to measure the liq-
uid fraction as with H. The latter is governed by the upward
foam velocity, and can be tuned by changing the inlet pres-
sure, which controls the global flux in the frits. Additionally,
the individual flux in each frit is controlled by a valve (see
Fig. 1). Indeed, as the bubble size slightly depends on the
flux through the frit, it is important to get the same flux in
each frit. When the foam looks homogeneous, and while it
is still flowing, it is subject to the blast wave.

We checked in16 for a given set of parameters that the
pressure wave propagation is the same in set-up H and V.
Results obtained with both set-ups can thus be directly com-
pared.

For N2 foams, the bubble size distribution of each foam
sample is measured by spreading a few hundred bubbles on
top of a thin layer of the foaming solution. The bubbles form
a monolayer of spherical bubbles and their radius distribu-
tion can be obtained by image processing10. The size of a
bubble in the foam is thus measured by the radius Rs of the
sphere of same volume.

For C2F6 foams, the diffusion of the outside air into the
bubbles is too fast to use this spreading method21 and an in
situ measurement must be performed. We record an image
of the layer of bubbles touching the transparent plexiglass
plate and the contact area between the bubbles and the wall
is determined by image processing. A calibration has been

Shock tube base

Pressure sensors

40 cm

3 cm

70 cm

8 cm

Gas

Figure 1 Sketch of the vertical set-up. Pressure is monitored at the exit of
the gas bottle and the flux in each frit is controlled by a valve (blue patches
on the figure).

done using both techniques with N2 foams to convert the
contact area distribution into the Rs distribution. The av-
erage value R = 〈Rs〉bubbles is the bubble radius used in the
paper to characterise the bubble size in the foam. Each data
point reported in this paper, at a target value of bubble ra-
dius, liquid fraction, blast strength, and gas, is the result of
at least three independent experiments. All standard devia-
tions and error bars come from the dispersion of the results
of these individual experiments. The normalised standard
deviation of the bubble distribution is close to 0.4 for all
foams, which quantifies the foam polydispersity.

2.3 Blast wave generation and pressure measurements

A rigid PVC shock tube is connected at one end to the front
plexiglass plate, in the middle of the plate (see Fig. 1).
At the other end of the tube, a chamber is sealed by an
aluminium foil, and connected to a gas bottle. To gener-
ate the pressure wave, we let the gas flow into this cham-
ber; when the pressure in this chamber reaches a critical
value, the foil breaks and a pressure wave propagates in
the tube. A shock wave (i.e. a stiff pressure step followed
by a finite interval of sustained high pressure) forms in the
tube and evolves into a blast wave (i.e. a short overpres-
sure followed by an underpressure) when exiting the tube.
This blast wave then propagates in the foam. The pres-
sure in the foam is recorded using four pressure sensors
(PCB - piezotronics, model 113B28) installed at distances
ri = [3.1,5.1,7.2,9.2] cm (i = 1 to 4) from the symmetry axis
of the experiment, corresponding to the center of the tube.
They are connected to an oscilloscope (tektronics, model
TDS 2004 B), which has a sampling time of 4 µS. Fig. 2
shows typical signals at sensors 1 and 4. At sensor 1, a
rapid pressure increase is followed by a slower pressure de-
crease and an underpressure, also called rarefaction wave.
This kind of profile is known as a Friedlander profile22,23.
The duration of the pressure increase is of the order of
0.1 ms, which is about 100 times larger than the nominal
pressure sensor rise time. The duration of the overpressure
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Figure 2 Typical pressure signals in a C2F6 foam measured at sensor 1
and sensor 4, for R = 422µm and two aluminium foils. The time origin
corresponds to the arrival of the blast wave on sensor 1.

is of the order of 2 ms. We observed that these two charac-
teristic quantities do not depend on the foam, and that the
shape of the pressure signals are quite reproducible (Fig. 2).
Henceforth, for the sake of simplicity, we will thus consider
that the pressure wave is entirely determined by its maximal
value at sensor 1, denoted by P1 in the following. It is var-
ied by changing the number of aluminium foils used to close
the high pressure chamber. The maximal value recorded at
sensor 4 is P4 and we define the pressure ratio as α = P4/P1.
The first reflection of the wave on the external boundary of
the foam reaches the sensor 4 at t ≈ 5 ms, leading to a sec-
ond overpressure. We only consider events occurring before
this first reflection.

To test the influence of the cell geometry, we compared
pressure signals obtained from pairs of sensors placed at the
same distance from the center, respectively on the top and
the bottom plates, with a 3 cm gap, in the H geometry. At
the position of the first sensor (r' 3 cm), the bottom signals
amplitudes are always greater than the top ones by a factor
in the range [1 - 1.5]. However both signals always super-
impose at the position of sensor 4 (r ' 9 cm), with differ-
ences smaller than the experimental reproducibility. We also
varied the H cell thickness from 1.7 cm to 8 cm. The pres-
sure decrease from sensor 1 to sensor 4 (on the top plate)
was not modified for gaps between 1.7 cm and 3 cm. For
larger gaps, a faster decrease was observed, interpreted as
a transition from a cylindrical (at small gap) to a spherical
(at large gap) wave propagation. In Appendix A, we present
comparisons between the pressure decreases obtained with
the 3 cm and 8 cm gaps which confirm quantitatively this in-
terpretation, thereby ensuring that geometrical effects have
been correctly taken into account in the following data and
interpretations.

In the following, we present experiments made in the
cylindrical regime, with a 3 cm gap both in the H and V
geometries.

2.4 Wave velocity measurements

The pressure wave deforms during its propagation, because
of the non-linearities and of the viscous and dispersive na-
ture of the medium (see Fig. 2). The wave velocity can

thus be defined in different ways, leading to slightly dif-
ferent results. Experimentally, the maximal pressure Pi is
well defined on the pressure signal i, but its arrival time
is difficult to determined accurately, as it turned out that
the signal is quite flat around the maximum. In contrast,
the arrival time of the pressure Pi/2, denoted by t1/2,i is a
well defined quantity. We thus define the wave velocity as
v = (r4− r1)/(t1/2,4− t1/2,1).

In parallel to a velocity based on the pressure signals, op-
tical measurements can also be performed. In that case,
the foam sample is lit with an intense white light, used in
transmission. The foam dynamics are recorded using a high-
speed camera (Photron FastCam SA3), which is triggered
by the same signal as the pressure sensors: both measure-
ments are therefore synchronised. The dynamics remaining
axisymmetric, we reduced the field of view to a narrow rect-
angle (640×32 pixel2), allowing to record images at 57,000
frames per second. A spatio-temporal diagram is obtained
from the images, on which different gray levels are clearly
visible, produced by the spatial fluctuations of the transmis-
sion coefficient of the foam (see Fig. 14 in Appendix B). Be-
fore the pressure wave arrives, these fluctuations are static
and vertical lines are thus visible on the diagram. The sud-
den inflection of these lines at a position r and time t im(r) is
the signature of the pressure wave front reaching the posi-
tion r. The wave velocity is deduced from the value t im(r) as
detailed in Appendix B.

Both definitions of the wave velocity, based on the pres-
sure signals or on light transmission, are equivalent, as evi-
denced in Fig. 14, Appendix B.

With the optical measure, we get the front velocity at any
position during the propagation. For r < r1 a high velocity
transient is observed (see Fig. 14, Appendix B), but the ve-
locity becomes independent on r for r > r1 in all our exper-
iments. This steady velocity increases with P1, as expected
for a non-linear propagation16. However, for P4 < 10 kPa,
the wave velocity variation due to the pressure is smaller
than the experimental dispersion. Therefore, the velocities
discussed in the following are the average over all the ex-
periments we performed which verifies P4 < 10 kPa.

3 Results

3.1 Influence of the gas and of the bubble radius

The set-up V was used with glass frits of three different cal-
ibrated porosities 2, 1 and 0 to produce a C2F6 foam with
bubble radii in the range 200 to 800 µm. The pressure at-
tenuation and the wave velocity are measured as a function
of the bubble radius and of the pressure amplitude. To al-
low comparison with the previous study on N2 foams16, the
liquid fraction φl was adjusted as close as possible to 4.8 %
by tuning the gas flux through each frit. The bubble radius
range of the previous study was also enlarged by adding a
point at R = 840 µm for a N2 foam.

3.1.1 Wave attenuation.

We report in Fig. 3 the pressure ratio αexp = P4/P1 as a func-
tion of P1 obtained for these experiments, and one data se-

3



ACCEPTED M
ANUSCRIP

T

ries from Fig. 3 in16, for sake of comparison. The pressure
ratio increases with the pressure intensity. This behavior has
been reproduced numerically by a slightly nonlinear numer-
ical model in16. These simulations show an almost affine
behavior, with a slope independent on the material attenu-
ation. The extrapolation at P1 = 0 is in contrast a signature
of the attenuation properties, and the remaining part of the
paper will thus focus on this extrapolated value. The affine
fits at constant slope are indeed in good agreement with
the data, even if a quantitative comparison is made diffi-
cult by the large experimental noise observed with some
series. Only the N2 foam with the largest bubble radius
(R = 840 µm) is not compatible with such a fit as it exhibits
a much faster increase of αexp with P1. This last data series
corresponds to a different regime, as discussed in section 4
and is first discarded in the following discussion.

P1 (kPa)
6 8 10 12 14 16 18 20 22 24

0.4

0.5

0.6

0.7

®
ex

p

Figure 3 Pressure attenuation as a function of the shock amplitude.
C2F6 foams: • R = (218± 5)µm, φl = (5.6± 0.5)%; N R = (422± 13)µm,
φl = (4.4± 0.4)%; � R = (794± 28)µm, φl = (4.2± 0.3)%. N2 foams:
××× R = 210µm, φl = (4.8± 0.3)% (already published in 16, Fig. 3); +
R = 840µm, φl = (4.9± 0.2)%. Black dashed line: geometrical attenua-
tion corresponding to a cylindrical propagation. Coloured dashed lines:
affine fits with the imposed slope k0 = 5.410−3 kPa−1.

An important result of this paper is that the pressure ratio
α depends on the nature of the gas. A direct comparison
can be made in Fig. 3 for R ' 210 µm: the pressure ratio is
significantly larger with C2F6 than with N2 over the whole
pressure range, which is the proof of a smaller attenuation
with C2F6. This is a crucial hint to determine the fundamen-
tal nature of the dissipation processes leading to the wave
attenuation. Indeed, as the bubble radius, the liquid fraction
and the surfactants are the same for both series, the dissipa-
tion in the liquid phase and at the interfaces is not modified
and thus cannot explain the attenuation variation between
both series. This evidences that the dissipation in the gas
itself contributes significantly to the total dissipation.

Moreover, for all P1 values, the pressure ratio for C2F6
foams first decreases with the bubble radius and then
increases at larger bubble radius. This surprising non-
monotonous behaviour is discussed in the next paragraph.
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Figure 4 Attenuation length for C2F6 foams (�) and for N2 foams (•), as
a function of the bubble size, for a liquid fraction φl = 4.8%. Solid lines:
prediction of eq. (3) (isothermal regime), with the prefactor λT = 0.4 for
both gases (red : N2, black: C2F6). Dashed lines: predictions of eq. (4)
(adiabatic regime) with λa = 12, for both gases.

3.1.2 Attenuation length.

In the small amplitude regime, and in a non-dissipative,
non-dispersive medium, the pressure attenuation only de-
pends on the space dimension. A propagation with a cylin-
drical symmetry induces a pressure ratio α ref

2D(r) =
√

r1/r be-
tween two points at the distance r and r1 of the symmetry
axis. Dissipation in the medium will induce an additional
pressure decrease which can be characterised in the linear
regime by an attenuation length `a. The pressure ratio is in
this case α(r) = α refe−(r−r1)/`a . The attenuation length is the
intrinsic property of the material, which must be measured
to quantify attenuation.

To measure `a, we extrapolated at P1 = 0 the affine fits
made in Fig. 3 to obtain the experimental value of α (for
r = r4) in the low pressure limit, i.e. in the linear regime.
The low pressure data of each series (P1 < 20 kPa), in-
cluding those of Fig. 3 in16, were first fitted by the law
α = k1P1 + k2, with k1 and k2 fitting parameters which de-
pends on the bubble size R and on the nature of the gas
g. The obtained slopes k1 were then averaged over all the
series (excepted the N2 series at R = 840 µm), leading to
k0 = 〈k1〉R,g = 5.410−3 kPa−1. The different series were fi-
nally fitted by the one-parameter law αexp = k0P1 +α0(R,g),
as shown in Fig. 3. The experimental attenuation length is
finally given, for each bubble radius and each gas, by

1
`

exp
a

=
1

r4− r1
ln

√
r1/r4

α0(R,g)
. (1)

As discussed in Appendix A, more data points have been
obtained in spherical propagation geometry, and they were
found to be consistent with the data obtained with a cylin-
drical propagation.

Fig. 4 shows 1/`a as a function of the bubble radius, for
the two gases. As discussed in the previous section, the at-
tenuation is larger in N2 foams than in C2F6 foams in the
investigated bubble radius range. The non-monotonous be-
haviour of the C2F6 foams appears more clearly in this rep-
resentation: the attenuation in C2F6 foams exhibits a max-
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imum for a bubble radius around 500 µm, as was conjec-
tured in16 for N2 foams. This result is important for prac-
tical reasons, as the optimal pressure attenuation is sought
in many applications. It is also a very discriminant exper-
imental information to test different theoretical models of
dissipation, as discussed in section 4.
3.1.3 Wave velocity.

The velocity v of the pressure wave front is plotted in Fig. 5
as a function of the bubble radius. The velocity in the C2F6
foams (same experiments as in Fig. 4) is shown in the top
graph and was measured from the pressure signal. One ad-
ditional point at R = 45 µm has been obtained in cell H at
large gap (spherical propagation). As the wave velocity is
independent on the geometry, this data point can be com-
pared to the other ones. The velocities for the N2 foams
have been measured on the images (same experiments as
in16), close to sensor 4. The point at R = 840 µm is a new
experiment, with a velocity measured with the pressure sig-
nal.
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Figure 5 (Top) Wave front velocity for C2F6 foams as a function of the bub-
ble radius for φl = 4.8% (�). Theoretical Wood’s velocity given by eq. (2)
for isothermal (◦◦◦) and adiabatic (���) regimes. (Bottom) Wave front velocity
for N2 foams and Wood’s predictions, same symbols.

A classical prediction for the wave velocity in the lin-
ear regime is Wood’s velocity8. This model assumes that
the foam behaves as an effective medium of compressibil-
ity χ0 and density ρ0, averaged over the volume fractions
of the liquid and the gas phases. As the liquid phase is al-
most incompressible, χ0 is based on the gas compressibility:
χg = 1/(κ̄ p0), leading to χ0 = (1−φl)/(κ̄ p0), with φl the liq-
uid fraction measured at the atmospheric pressure p0, and
κ̄ the polytropic exponent14. The gas is modeled as an ideal
gas with κ̄ = γ or κ̄ = 1 for an adiabatic or isothermal com-
pression, respectively. Here, γ is the ratio of specific heats;
it equals 1.4 for N2, and 1.085 for C2F6

24. The foam density

is given by ρ0 = φlρs+(1−φl)ρg where ρs and ρg are respec-
tively the solution and gas densities8,25. Wood’s velocity is
thus:

c2
w =

1
χ0 ρ0

=
κ̄ p0

1−φl

1
φlρs +(1−φl)ρg

. (2)

The adiabatic and isothermal Wood’s velocities cw,a and cw,T
have been computed for each experiment, on the basis of
the measured liquid fraction φl . The obtained values are
reported in Fig. 5. The experimental wave velocities re-
main close to Wood’s velocities for small bubbles, and be-
come larger than this prediction for bigger bubbles. The ve-
locity is indeed 2.5 times larger than Wood’s prediction for
the largest bubble radius and the C2F6 foam, and it reaches
twice the predicted value for the N2 foam with the largest
bubble radius. This last sample is the one which also shows
a specific behaviour in Fig. 3. A departure from Wood’s
velocity is a strong indication that a gas bubble and its con-
tiguous liquid environment do not move with the same am-
plitude when the pressure wave arrives. The menisci, i.e.
the liquid channels at the intersection of three films, having
a much larger inertia that the thin films, have a different
dynamics than the gas and the films. This effect is at the
basis of the resonance observations and models established
in11,12 and becomes important above a critical bubble ra-
dius.

Fig. 5 shows that for the bubble radius corresponding to
the maximum of dissipation, i. e. R ≈ 450 µm, the wave
velocity is still close to the Woods’ velocity. This is a first
indication that the maximum cannot be explained by the
resonance.

3.2 Influence of the liquid fraction

The influence of the liquid fraction has been investigated for
N2 foams in the large bubble limit (R close to 900 µm) using
the setup V and in the small bubble limit (R close to 95 µm)
using the setup H. The shock was always produced with a
single aluminum foil (low pressure range). For both series,
the velocity is measured from the pressure signals.

3.2.1 Wave attenuation.

The pressure ratio for large bubbles is plotted in Fig. 6 and
shows a decrease of α with the liquid fraction, i.e. an in-
crease of attenuation. For a given frit porosity, the bubble
radius fluctuates over a certain range and we kept only the
experiments with bubble radius in the range 800 to 950 µm.
The bubble radius is indicated for each data point by a
colour code in Fig. 6. For the different liquid fractions, the
largest value of α is obtained either for the smallest or for
the largest bubble sizes. For bubbles larger than 900 µm,
we expect that α increases with the bubble size (see Fig.
3), but the bubble size scatter in this figure is small enough
for this dependency to be unobservable. The variation of α

is thus solely due to the liquid fraction variation. Similarly,
we only kept P1 values in the range 4.8 to 6 kPa. From the
value of α, we deduce the attenuation length of the foam
using eq. (1), shown in Fig. 9. As the pressure intensity has
not been varied, the pressure ratio cannot be extrapolated
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to P1 = 0, and the parameter α0 in eq. (1) is identified with
the raw data αexp.

The same study was performed for small bubble radius,
as shown in Fig. 7. In that case, the pressure attenua-
tion is equal to the geometric attenuation, within the ex-
perimental error bars. This means that the attenuation due
to the medium itself is not detected. We can therefore not
conclude about a potential dependency with the liquid frac-
tion in this small bubble regime. This result also confirms
that foams with small bubbles do not attenuate much sound
waves, in agreement with Figs. 4 and 13.
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Figure 6 Pressure ratio αexp = P4/P1 as a function of the liquid fraction φl
for a N2 foam in the V cell. Colours indicate the bubble radius in µm for
each experiment. The average radius is R = 870µm. The dashed line rep-
resents the pressure ratio α ref associated to the geometrical attenuation.
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Figure 7 Attenuation α = P4/P1 for a bubble radius R = (95± 13)µm, ob-
tained for a N2 foam in the H cell. The dashed line is the geometrical
attenuation.

3.2.2 Wave velocity.

The wave velocity measured from the pressure signals is re-
ported in Fig. 8 as a function of the liquid fraction for small
bubble radii (R = 95 µm, same experiments as in Fig. 7)
and for large bubble radii (R = 870 µm, same experiments
as in Fig. 6, and additional points at φl < 1 with R in the
range 900 to 1100 µm). Wood’s velocities for an adiabatic
and an isothermal propagation (eq. 2) are plotted on the
same graph, without fitting parameter. A very good agree-
ment is obtained between the small bubble series and the
isothermal Wood’s velocity, whereas for the large bubble the
experimental velocities are larger than Wood’s velocity by a
factor which reaches 2.5 for φl close to 5%. This confirms
that the wave propagation is in the Wood regime at small

bubble size, and departs from it at larger bubble size. The
transition is difficult to quantify, but Fig. 5 indicates that it
is around R = 800 µm.
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Figure 8 Wave front velocity for N2 foams as a function of the liquid
fraction, deduced from the pressure signals. (◦◦◦) Small bubble radius:
R = 95µm (same experiments as in Fig. 7); (�) Large bubble radius:
R = (870± 44)µm for φl > 1% (same experiments as in Fig. 6) and R
in [900−1100] µm for φl < 1%. Wood’s prediction is represented with a full
line for the isothermal regime, and dashed line for adiabatic regime. The
data at φl = 4.8% have already been shown in Fig. 5.

4 Models

4.1 Thermal dissipation model

The thermal model developed in9,14,15 and already used
in16 assumes that the energy dissipation is mainly of ther-
mal origin. The gas in the bubbles is compressed by the
pressure wave, its temperature thus increases and dissipa-
tive heat transfers occur between the gas phase and the
liquid phase, the latter acting as a thermostat. Such dis-
sipation is strongly enhanced in foams because of the large
contact area between the liquid phase and the gas phase,
which temperatures differ strongly after the sharp pressure
increase. At the end of the overpressure, the gas is ther-
malised by the liquid on a shell of thickness `T =

√
DT τ

around each gas bubble, with DT the heat diffusivity given
in Table 1 and τ the overpressure duration. For τ = 2 ms
(Fig. 2), we thus compute `T = 200 µm for N2 and 80 µm
for C2F6. A priori, if the bubble radius R is much smaller
than `T , the propagation is almost isothermal, and in the
other limit, the process is almost adiabatic. The attenuation
lengths in these two regimes are respectively16:

1
`T

a
= λT

R2cw,T ρ0

κT τ2 , (3)

1
`A

a
= λA

cw,Aρ0

ρgcpT R

√
κ

ρgcpτ
, (4)

with T the temperature, cw,A and cw,T the wave velocities for
adiabatic and isothermal propagations given by eq. (2), ρ0
the foam density and κ, cp and ρg the gas properties given
in Table 1. The parameters λA and λT are dimensionless fit-
ting parameters, and all the other quantities are known for
the two gases. A direct comparison with our experimental
data can thus be made, to identify the origin of the observed
dependencies with the liquid fraction, the bubble radius and
the nature of the gas.
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Figure 9 Attenuation length as a function of the liquid fraction (same data
as in Fig. 6). The red dashed line is the prediction of the thermal model in
the adiabatic regime (eq. 4) with a prefactor λA = 5.

The model predicts an attenuation 1/`a which increases
with the liquid fraction φl , both in the small and large bub-
ble radius limits. Indeed, even if this model considers only a
dissipation in the gas phase, 1/`a depends on the liquid frac-
tion through Wood’s velocity, scaling as φ

−1/2
l , and through

the foam density scaling as φl . The attenuation lengths de-
duced from the pressure ratios shown in Fig. 6 (N2 foam)
are plotted in Fig. 9. As the bubble radius for these data is
R = 870 µm, which is in the large bubble regime, they are
compared with the prediction in the adiabatic regime. Fig.
9 shows a good agreement between the experimental data
and the prediction of eq. (4) for a prefactor λA = 5. This
value is close to the value λA = 7 used in16 to reproduce the
experimental data obtained with N2 foams.

The dependency of 1/`a with the bubble radius predicted
by the model is more complex. It predicts an increase of the
attenuation as R2 for small bubbles (eq. 3), followed by a
decrease as 1/R for large bubbles (eq. 4). We show in16 that
the attenuation in N2 foams is well fitted by this model for
the couple of parameters (λT = 0.4; λA = 7). The prefactor
λA = 7 is too small to reproduce the data at large bubbles of
Fig. 4, obtained with C2F6, that would be best fitted with λA
close to 35. The prediction of the model using the couple of
parameters (λT = 0.4;λA = 12), chosen as a best compromise
between the two gases, is shown in Fig. 4 together with the
experimental data.

All important qualitative features are reproduced by this
thermal model, despite the lack of quantitative agreement:
a maximum of attenuation is observed for a bubble radius
close to the thermal length; the attenuation is smaller for
C2F6 foams than for N2 foams in the investigated parameter
range; the order of magnitude of the predicted attenuation
is in the right range; the attenuation increases with the liq-
uid fraction at large bubble radius.

This allows to conclude that the thermal dissipation is
non-negligible in the investigated parameter range, and that
it is probably at the origin of the observed maximum of at-
tenuation. The discrepancy between the model and the ex-
periment may be explained by the fact that other dissipative
and dispersive processes also contribute to the global pres-
sure attenuation, with different scaling laws. For instance,

viscous effects within the liquid phase, which are ubiqui-
tous in foam rheology26, are also expected to play a role.
The thermal model itself could be refined: in particular, the
liquid films are so thin that the assumption that they act as
thermostats is questionable, especially at large bubble size.

Furthermore, the thermal model implicitly assumes the
validity of Wood’s prediction. The velocity increase at large
bubble radius is thus not predicted in this model, and is po-
tentially related to the proximity of the resonant behaviour
evidenced in11,12, as discussed in the next section.

4.2 Resonant film-meniscus model

Wood’s model is based on the assumption that the foam be-
haves as a continuum and that, locally, the gas, the liquid in
the films and the liquid in the menisci move at the same ve-
locity ~v(~r, t), which varies at the scale of the acoustic wave-
length. However, at very large frequencies, the menisci do
not move any more, and only the thin films, with a much
smaller inertia, are displaced by the pressure wave13. Pierre
et al. recently gave an extensive description, both theoreti-
cal and experimental, of the transition from one regime to
another, at a critical frequency (for a given bubble radius)12

or at a critical bubble radius (for a given frequency)27. This
transition coincides with a maximum of dissipation and oc-
curs for parameter values (bubble radius, time scale...) close
to our experimental parameter range. More precisely, Fig. 3
in12 shows that Wood’s regime breaks down for a frequency
f such that f (R/R0)

1.5 = 105 Hz, with R0 = 40 µm. Since the
overpressure duration is in the ms range, it corresponds to
typical frequencies in the kHz range. With f = 1 kHz, we
thus obtain that Wood’s regime breaks down at R = 0.9 mm,
in agreement with our data on velocity (Fig. 5). It may thus
a priori explain the maximum of dissipation which we ob-
serve, and is an alternative to the thermal model that must
be carefully analysed. In contrast with the previous ap-
proach, this maximum of dissipation is not related to an
especially efficient dissipative process at the bubble scale,
but to an enhanced deformation of the film/meniscus struc-
ture. In this case, the dissipation is assumed to occur mainly
in the connection between films and menisci and is simply
modelled by a phenomenological time scale τd , that does
not depend on the bubble radius, nor on the frequency. The
model developed in12 predicts a specific dispersion relation
for the plane wave propagation, in the linear regime. In or-
der to compare our observations with the predictions of this
model, we computed the propagation of a pressure pulse
using this dispersion relation. The incoming signal, at the
position z = 0, is assumed to be p1 = sin(πt/τ) for t ∈ [0,τ]
and 0 elsewhere, with τ = 1 ms the duration of the overpres-
sure. This ansatz mimics well the shape of the overpressure
signal at sensor 1 (Fig. 2), apart from its slight asymme-
try, and neglects the rarefaction wave. With this simplified
form, the Fourier transform of the signal has an analytical
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expression, namely

p̂(ω) =
∫

τ

0
eiωt sin(

πt
τ
)dt (5)

=
2πτ

π2−ω2τ2 eiωτ/2 cos
(

ωτ

2

)
. (6)

The main Fourier components are in the range [0,3π/τ], i.e.
for ω smaller than 104 s−1. The pressure at distance z can
then be determined by the relation

p(t,z) =
1
π

Re
{∫

∞

0
p̂(ω)e−i[ωt−k(ω)z]dω

}
. (7)

The dispersion relation which we used is based on eq. (2)
in12:

k(ω)2 =
ω2ρeff

p0
, (8)

with ρeff = (1−φl)ρg +φ ′ρs the foam effective density, built
on the complex number φ ′, playing the role of an effective
liquid fraction. It equals the actual liquid fraction at low
frequency and Wood’s velocity is recovered in this limit. In
the high frequency limit, the liquid phase contained in the
menisci does not move any more, and φ ′ is the volumetric
fraction of the thin films. This is the Kann regime13. In the
intermediate regime, a resonant behaviour is observed, with
a maximal modulus of φ ′. The full expression for φ ′ is12:

φ
′ =

φl

1+ x2 φl
φ f
[1−H (qa)]− iωτdxH (qa)

, (9)

with q = ω
√

ρse/(2σ), e ∼ 100 nm the thin film thickness,
σ = 36 mN/m the surface tension, τd = 10−5 s, x the fraction
of the bubble area covered by the thin films, which equals
0.38 for φl = 4.8%28, and a=

√
xR the radius of the thin film.

The function H (u) = 2J1(u)/[uJ0(u)] is built from the Bessel
functions of order 0 and 1 and φ f = 3(1−φl)x2e/(4R) is the
volume of liquid contained in the thin films per unit foam
volume. Using the approximate value for H (u) for u� 1,
a simple expression is obtained for the resonant frequency:
ωr =

√
12σ/(x2ρsφlR3). For R = 500 µm, this yields ωr =

2 · 104 s−1, which is thus just above the highest frequencies
of the incoming signal.

Fig. 10 shows the pressure signal at sensor 4 obtained
with eq. (7) for bubble radius in the range 200 to 1100 µm,
for N2. The signal is deformed due to the viscous and dis-
persive properties of the medium, but a well defined over-
pressure is still observable. The maximal pressure decreases
with the bubble radius, as well as the slope of the initial
pressure increase. However, the velocity deduced from t1/2
is almost independent of the bubble radius and remains
close to Wood’s velocity.

The attenuation length is obtained from the P4/P1 ratio,
using the relation `a = (r4− r1)/ ln(P4/P1), because the sim-
ulated propagation is unidirectional, so there is no geomet-
ric attenuation. The experimental data of Fig. 3 are com-
pared with the numerical attenuation length in Fig. 11,
for three values of the fitting parameter τd , in the range
[2−10]×10−5 s. The results obtained numerically for C2F6

time (ms)
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Figure 10 Imposed pressure signal at the position z = 0 as a function of
time (black line) and pressure signal at the position z = 6 cm determined
numerically from eqs. (7), (8) and (9), for N2 and for the bubble radius R =

(200,500,800,1100)µm (the attenuation increases with the bubble radius).
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Figure 11 Experimental attenuation length of Fig. 4 compared with the
attenuation length obtained numerically for N2 and τd = 2 · 10−5 s (solid
line), 5 ·10−5 s (dotted-dashed line) and 10−4 s (dashed line).

are almost identical, as the density does not play a impor-
tant role in the attenuation. As already visible in Fig. 10, the
attenuation increases with the bubble radius. However it is
impossible to explain the maximum of attenuation observed
at R = 500 µm with the resonant model. We checked that
until at least R = 3 mm (last computed value) the attenua-
tion 1/`a keeps increasing with R. This strongly reinforces
our conclusion that the thermal dissipation in the gas is at
the origin of the observed maximum.

The resonant model nevertheless predicts the right order
of magnitude of the attenuation length for bubble around
800 µm, and a transition from a thermal origin of the dis-
sipation toward an origin based on the resonance model is
possible. However, the wave velocity deduced from the nu-
merical simulation varies by only 2% on the bubble radius
range 200 to 1100 µm, so the fast velocity observed for N2
foams at R = 800 µm remains unexplained.

Finally, we made the same comparison with the experi-
mental data of Fig. 6, with a bubble radius R = 870 µm.
In that case, with a value of the adjustable dissipative time
τd ∼ 5 · 10−5 (to be compared with τd = 10−5 obtained for
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Figure 12 Experimental data of Fig.6 compared with the attenuation length
obtained numerically for τd = 2 ·10−5 s (solid line), 5 ·10−5 s (dotted- dashed
line) and 10−4 s (dashed line).

another foam in12), the agreement with the prediction of
the model is fair (see Fig. 12). As the thermal and reso-
nant models both predict the increase of 1/`a with φl , these
data does not bring additional information to discriminate
between both models. However, the thermal model shown
in Fig. 6 allows for a slightly better fit of the data.

5 Conclusions
In this paper, we have reported an extensive study of blast
wave propagation and attenuation in liquid foams, mostly
in the weak wave regime, where comparison with linear
acoustics remains relevant. Thanks to our careful control
of the foam production and parameters, we were able to
study independently the influence of bubble size, liquid frac-
tion, and gas. We showed for the first time that attenuation
reaches a maximum for a certain bubble size, and depends
on the gas. We also showed that attenuation increases at
increasing liquid fraction.

These measurements of attenuation were compared to a
model accounting for thermal dissipation in the gas phase
in contact with the liquid interfaces. It reproduces all the
aforementioned qualitative experimental features, although
it does not yield a quantitative agreement with the data. The
propagation velocity of the blast wave agrees with Wood’s
velocity at small bubble size, but becomes larger for bub-
ble sizes above 0.5 to 0.8 mm. This is in qualitative agree-
ment with a resonance model recently proposed12. We also
showed that such a model could not explain the attenuation
maximum.

These unprecedented results pave the way toward a more
rational optimisation of shock and blast wave mitigation by
liquid foams. It also opens several perspectives. First, we
did not model the nonlinear regime, nor the dependence
of attenuation on the blast wave amplitude. Second, and
related to the first point, the possible destruction of part
of the foam by a strong enough blast, and its influence on
propagation and attenuation of the blast wave, remains to
be addressed. We obtained some recent data along this di-
rection, which will be presented in a subsequent study. We

thus hope that the current study is a first but crucial bridge
between the most recent developments of linear acoustics
of liquid foams and the regime of strong shocks and blasts.
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Appendix A
In order to test our assumption of a cylindrical propagation
in the 3 cm gap cell, we performed additional experiments
in the H cell with a larger gap h = 8 cm, with φl = 4.8%
and R in the range 50 to 300 µm. With this larger gap, it is
clearly visible on the pressure signals that the maximal over-
pressure reaches sensor 4 before the first reflection on the
bottom plate reaches the top plate. The signal measured
by the sensor placed on the top plate is thus the same as
a signal propagating in a half 3D space. As the foam was
observed to slip at the top plate, we consider that the prop-
agation is the same as in a full 3D space, and the reference
attenuation α ref

3D(r) = r1/r can be used. For this test, we have
not systematically varied the overpressure. We assumed that
the attenuation is of the form, at sensor i:

α(ri) =
r1

ri
(e−(ri−r1)/`a +KsphP1) = α0(ri)+ k(ri)P1 . (10)

This involves an attenuation length `a, which is the intrinsic
material property we want to determine, the geometrical at-
tenuation r1/ri which corresponds to a linear propagation in
a spherical geometry, and the non-linear correction KsphP1.
The slope Ksph is assumed to be independent of the bubble
radius and of the nature of the gas, as in the cylindrical ge-
ometry (see Sec. 3.1.1). Its value Ksph = 710−3 kPa−1 has
been determined from a single data set obtained at differ-
ent pressure values with C2F6, R = 45 µm, and ri = r3. This
value is then used to compute the value of α0 for all data
obtained in the spherical geometry. The deduced attenua-
tion lengths `a, averaged over several data points for each
bubble radius, is plotted in Fig. 13. The values are compat-
ible with the ones obtained for the same gas N2 and same
liquid fraction φ = 4.8% in the cylindrical geometry, thus
confirming that the propagation between the two plates has
a cylindrical symmetry, and that `a does not depend on the
cell geometry.

Appendix B
A spatio-temporal diagram of the foam is shown in Fig. 14
(top). The gray level fluctuations produce vertical lines
when the foam is at rest, and oblique curves when it moves.
The transition between both behaviours appears sharply on
the diagram and corresponds to the front wave arrival time.
It has been determined by image processing and is repre-
sented by the black line on the diagram. The slope of this
line is the front wave velocity. The times t im

i are defined as
the times corresponding to the positions of the four sensors
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Figure 13 Attenuation length as a function of the bubble radius for N2
foams in cylindrical geometry (•) (data from 16) and in spherical geometry
(∗).

on this line. They have been reported on the pressure sig-
nals in Fig. 14 (bottom). At each sensor, the time t im

i roughly
coincides to t1/2,i, defined as the time for which the pres-
sure reaches half its maximal value at sensor i. This justifies
that the velocity deduced from the image and t im

i represents
the same physical quantity as the velocity deduced from the
pressure signal and t1/2,i.
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