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ABSTRACT
With the end of Moore’s law in sight, we need new computing
architectures to satisfy the increasing demands of big data
processing. Neuromorphic architectures are good candidates
to low energy computing for recognition and classification
tasks. We propose an event-based spiking neural network
architecture based on artificial synapses. We introduce a
novel synapse box that is able to forget and remember by in-
spiration from biological synapses. Two different volatile and
nonvolatile memristor devices are combined in the synapse
box. To evaluate the effectiveness of our proposal, we use
system-level simulation in our Neural Network Scalable Spik-
ing Simulator (N2S3) using the MNIST handwritten digit
recognition dataset. The first results show better perfor-
mance of our novel synapse than the traditional nonvolatile
artificial synapses.
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1. INTRODUCTION
Neuromorphic computing has the potential to bring very

low power computation to future computer architectures and
embedded systems [1]. Indeed parallel neuromorphic comput-
ing, by doing computation and storage in the same devices
can overcome the Von-Neumann bottelneck. Neuromorphic
computing is introduced as an appropriate platform for Big
Data analysis and Cloud Computing. Furthermore, many
huge projects are running based-on neuromorphic system
such as the EU Human Brain Project [2], the DARPA/IBM
SYNAPSE project [3] and deep learning research by Google
and Facebook among others.
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Recently, emerging devices in nano-scale have demon-
strated novel properties for making new memories and un-
conventional processing units. One of those is the memristor
that was hypothetically presented by Leon Chua in 1971 [4]
and after a few decades, HP was the first to announce the
successful memristor fabrication [5]. The unique properties
in memristor nano-devices such as, extreme scalability, flexi-
bility because of analog behavior, and ability to remember
the last state make the memristor a very promising candidate
to apply it as a synapse in Spiking Neural Network (SNN) [6].

In the recent years, there have been several research works
using non-volatile resistive nanodevice as a synapse to build
a SNN hardware [1, 6, 7]. Forgetting in the biological brain
is an important key of adaptive computation, as without
forgetting the biological memory soon becomes overwhelmed
by the details of every piece of information ever experienced.
Consequently, some studies have been done using volatile
memory as a synapse in brain-like computing [8, 9, 10]. In
this work, we combine both volatile and non-volatile types
of artificial synapses. It leads to make a synapse which can
forget if the information is not important as well as remember
if it is significant data.

Thanks to close collaboration with the nano-electronics
research center in the University of Lille (IEMN), we have
the opportunity of studying the suitability of different kinds
of memristors (TiO2, NOMFET, magnetoresistive, magneto-
electric) to build a spiking neural network hardware platform.
Due to the demonstrated potential of NOMFET (Nanoparti-
cle Organic Memory Field-Effect Transistor) [8, 9] to play
the role of a synapse, we use it as a volatile synapse in
neuromorphic accelerator. The non-volatile device could be
any solid-state memristor. We have chose here the resistive
memory presented in [11] as non-volatile memory.

We evaluate the synapse box proposal by comparing it with
a single non-volatile memory synapse by simulation on the
MNIST handwritten digit recognition benchmark. We use
Leaky Integrate and Fire (LIF) neurons in Restricted Boltz-
mann Machine (RBM) network topology. To run the simu-
lations, we introduce the Neural Network Scalable Spiking
Simulator (N2S3), a simulation framework for architecture
exploration of neuromorphic circuits.

In the next section we describe the architecture includ-
ing the neuron and synapse models, as well as the network
topology and the unsupervised training algorithm. Then,



in Section 3 we present the experimental evaluation of the
two different synapses using the MNIST handwritten digit
dataset and the new spiking neural network simulator we
propose, N2S3.

2. CIRCUIT DESIGN OF NEURON AND
SYNAPSE IN RBM NETWORK

In the biological brain, neurons are computing units. Here
we define our computing unit by inspiration from a biological
neuron model. The synapse operates as a plastic controller
between two neurons. The manufacturability is out of scope
of this paper, however in the synapse box, we have applied
the real parameters of volatile synapse beside the model of
nonvolatile Resistive RAM. As there are varieties of non-
volatile memristor fabrications, finding appropriate one that
is compatible with NOMFET seems not too complicated. It
worth mentioning that most of the nanodevices have been re-
ported as Resistive RAMs (nonvolatile) as well as NOMFET
(volatile) are compatible with CMOS circuits [9].

2.1 Leaky Integrate-and-Fire neurons
The Leaky-Integrate-and-Fire (LIF) neuron model is a

well-studied model of neuron. There are three reasons for
using LIF in our platform.

• The fabricated model with recent CMOS technology is
avail able [12, 13].

• LIF works effectively in spiking and event-based net-
works [14].

• LIF models are quite fast to simulate, and particularly
attractive for large-scale network simulations [15].

Neurons integrate the spike inputs from other neurons they
are connected to. These input spikes change the internal
potential of the neuron, it is known as neuron’s membrane
potential or state variable. When this membrane potential
passes a threshold voltage due to integrated inputs, the action
potential occurs, in other words, the neuron fires.

The model is described by the neuron membrane potential:

τn
dv

dt
= −v(t) +RIsyn(t) (1)

Isyn(t) =
∑
j

gij
∑
n

α(t− t(n)
j ) (2)

where, v(t) represents the membrane potential at time
t, τn = RC is the membrane time constant and R is the
membrane resistance. Equation 1 describes a simple parallel
resistor-capacitor (RC) circuit where the leakage term is
due to the resistor and the integration of Isyn(t) is due to
the capacitor. The total input current, Isyn(t), is generated
by the activity of pre-synaptic neurons. In fact, each pre-
synaptic spike generates a post-synaptic current pulse. The
total input current, injected to a neuron is the sum over all

current pulses which is calculated in Equation 2. Time t
(n)
j

represents the time of the nth spike of post-synaptic neuron
j, and gij is the conductance of synaptic efficacy between
neuron i and neuron j. Function α(t) = qδ(t), where q is the
injected charge to the artificial synapse and δ(t) is the Dirac
pulse function. If Isyn(t) is big enough where action potential
can pass the threshold voltage, neuron fires. It means there
are enough input spikes in a short time window. When there
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Figure 1: a) Simulation of a single LIF neuron in
Matlab, the input spikes are applied in t=[10, 30,
40, 50] ms. Between 10 and 30 there is more de-
crease than between 30 and 40. b) Memorization in
biology. c) The data is stored in Long-Term Memory
(LTM) if the spikes are repeated in a certain time-
window, otherwise Short-Term Memory (STM) will
store temporary data.

is no or only a few spikes in a time window, the neuron is in
the leaky phase and the state variable decreases exponentially.
The duration of this time window depends on τn = RC. The
equation is analytically solvable and thus we use the answer of
Equation 1 in the network simulation when there is an input
spike to improve the simulation performance. In Figure 1.a,
you can see the Matlab model of a single neuron. When
the input voltage passes the threshold, the neuron fires and
resets to resting state. The membrane potential stays for an
definite period, which is called the refractory period, below
the reset value.

2.2 Artificial synapse
Before the discovery of a memristor nanodevice, by us-

ing state-of-the-art technology, 12 transistors were combined
to mimic the behavior of memristor to perform the STDP
learning method [16]. Therefore, using a two-terminal and
scalable device such as the memristor could save remarkable
amount of power and cost specially in modeling large scale
Spiking Neural Networks. To model biological synapses, not
only do we need a device to be able to store the last activity,
but it must also have enough flexibility to achieve Spike
Timing-Dependent Plasticity (STDP) for learning. Using
memristor as a nonvolatile synaptic memory has been pro-
posed in several works [8, 6, 17, 18]. By using nonvolatile
memory, we can guarantee to store the last synaptic weight
which is necessary for network training but the synapse can
not forget. To be able to have a synapse which is able to
forget, scientists used a volatile memory cell [9, 10].

Forgetting is a memory mechanism that helps brain having
better functionality. In fact, it is believed that forgetting
helps the brain to remember. However, remembering details
of many daily activities and information such as shopping list,
novel book details or newspapers not only are unnecessary to
remember but also might interfere with brain functionality
for innovative thinking and data analysis. Basically human
brain skips details of insignificant information and remem-
bers the most important, unique and surprising events and
information. In neuroscience, memorization is believed to
achieve as a result of two types of synaptic plasticity: Short-
Term Potentiation (STP) and Long-Term Potentiation [19].
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Figure 2: Artificial synapse: a) Schematic view of
the NOMFET as a volatile memory, b) TiO2 based
nonvolatile memory, c) Synapse box schematic, d)
Equivalent circuit with simple elements

STP is achieved through the temporal changing of a synaptic
connection and the decrease to its initial state soon after. In
LTP, stimulation iteration causes permanent synaptic weight
achievement as it is depicted in Figure 1.b and 1.c. Shorter
iteration interval leads to more efficient LTP. By inspiring
of this biological theory, we propose a new artificial synapse
with the ability to forget insignificant data while storing
significant information. The novel synaptic box includes one
organic transistor and one resistive RAM.

Resistive RAM is modeled in our previous work [20] and
is used here as a nonvolatile memristor in the synapse box.
As it is shown in Figure 2.b by changing the doped-undoped
regions of device, the conductance will be changed. Bigger
doped region leads to more conductivity. Therefore by con-
trolling this boundary between two regions, the conductivity
is controlled. The behavior of memristor can be modeled as
follows [5]:

v(t) = Rmi(t) (3)

Rm = RON
w(t)

D
+ROFF

(
1− w(t)

D

)
(4)

where Rm is the variable resistance of memristor, w(t) is the
width of the doped region, D is the overall thickness of de-
vice, RON and ROFF are device resistances while the active
region is completely doped (w = D) and mostly undopped
(w → 0) respectively (Figure 2.b). To model the changing
of the conductance, we use the model extracted from Equa-
tion 4 and introduced in [11, 21] by considering gmax = 1

RON

and gmin = 1
ROFF

as the maximum and minimum device

conductance respectively.
Organic synaptic memory is a novel memristive device

with capability of mimicking synaptic properties especially
forgetting ability. Nano-particle Organic Memory Field Ef-
fect Transistor (NOMFET) is an organic memristive de-
vice made of conjugated molecules and metal nanoparticles
(NPs) which is fabricated by the Institute of Electronics,
Microelectronics and Nanotechnology (IEMN) at Lille uni-
versity [8]. We use NOMFET as our volatile device in the
synapse box. In the most recent fabrication process [10],
NOMFET works at 1 V with a typical response time in the
range 100–200 ms. NOMFET is designed particularly for
neuro-inspired computing architectures [9]. NOMFET uses

charge trapping/detrapping in an array of gold nanoparticles
(NPs) with the SiO2/pentacene interface designed to mimic
dynamic plasticity of a biological synapse as depicted in Fig-
ure 2 [9]. The NOMFET is used as a two-terminal device by
connecting drain (D) and gate (G) together and using this
terminal as an input. The source (S) is used as output of
the device. Equation 5 shows the behavior of NOMFET as
a memristor:

ids(t) = g(qnp(t), vds(t), t)vds (5)

where g is the conductance of the device, vds(t) is the applied
voltage and qnp is the charges trapped in the NP. For more
details of physical structure and behavior of NOMFET refer
to [9, 10].

Figure 2.c is the synapse box schematic that we apply
in our simulation platform to take the advantages of both
nonvolatile and volatile artificial synapses. The equivalent
circuit of transistor is depicted in Figure 2.d. Actually,
weight modification follows the STP rule until reaching the
LTP threshold in NOMFET. The modification of nonvolatile
device is based on STDP learning. Indeed the NOMFET
reacts similar to a high-pass filter (HPF). The stimuli spikes
with low frequency are not qualified to pass in forgetting
Phase. In LTP, stimuli spikes which have more frequency
pass to interfere in learning phase (Figure 1.c).

2.3 Network topology and learning
By using unsupervised learning inspired by biological neu-

ral networks, we propose a fully connected network archi-
tecture similar to Restricted Boltzmann Machine [22]. To
figure out the correlation between the data, STDP helps to
adjust the weight if the sensory input spikes are frequent
enough to pass the STP and remain in LTP phase. In STDP,
if there is output spike in pre-synaptic neuron and shortly
after in post-synaptic neuron, the conductance of the synapse
between two neurons increases. On the other hand, if the
post-synaptic neuron spikes shortly before the pre-synaptic
neuron, the conductance of synapse between two neurons
decreases. More comprehensive explanation for STDP is
beyond the scope of this research, however if readers want
to know how plasticity in memristor helps targeting STDP
achievement we refer you to [23].

The simulator architecture in our work is event-driven,
there is no clock to synchronize the inputs and outputs.
Furthermore, by inspiring of biological behavior of brain
computing, we apply lateral inhibition to reduce the activity
of the neighbors of winner neurons. This method is known
as winner-take-all (WTA) strategy [24]. The neuron which
reaches the threshold first sends an inhibitory signal to all
other neurons in the same layer to reset their states during
inhibition time.

The last issue in network architecture that we should ad-
dress is homeostasis. In STDP learning, the connectivity
between two neurons (i.e. the synaptic weight or conduc-
tance) is increased when the post synaptic neuron fires shortly
after the presynaptic neuron. This process may be repeated
frequently specially with WTA lateral inhibition. Homeosta-
sis is a neuron property that regulates the firing threshold
to prevent a neuron to be hyperactive [25]. The idea is to
use an adaptive threshold for the membrane potential. If the
neuron is too active in a short time window the threshold
grows gradually; likewise, when a neuron is not active in a
certain time window the threshold is reduced slightly.



3. EXPERIMENTAL VALIDATION
In order to check the effectiveness of the synapse, we pro-

pose a spiking neural network simulator. Our requirements
for the simulator are: speed (thus event-driven simulation
and concurrency), scalability (thus high-level abstraction
and distributability), and adaptability (possibility to model
different synapses, soma, and network topology). After the
presentation of the simulator, we describe our experimen-
tal setting and discuss the simulation results that show an
improvement in recognition rate for the synapse box with
respect to the simple nonvolatile synapse.

3.1 N2S3 (Neural Network Scalable Spiking
Simulator)

The most popular neural network simulators in the neu-
roscience community such as Neuron [26], Brian [27] or
NEST [28] can provide different levels of abstraction. How-
ever, they are clock-driven and the model of memristor as
a synapse is not considered. Xnet [29] is an event-driven
simulator but its capabilities do not address some of our re-
quirements such as scalability and concurrency. Furthermore,
Xnet is not available to us. We have thus developed a new
simulator dedicated to the design of nanoelectronic spiking
neural networks.

N2S3 (Neural Network Scalable Spiking Simulator, pro-
nounced “Nessy”) is an event-driven simulator: it does not
iteratively solve differential equations but uses the analyti-
cal solution of these equations and updates the states of
the neurons only upon the arrival of input spikes. To
address our concurrency and distributability requirements
(ability to scale out a simulation on several computers to
handle large networks) we have chosen to use the Scala
programming language [30] along with the Akka actor li-
brary [31]. The internals of N2S3 are thus based on the
exchange of messages between actors, mimicking the ex-
change of spikes between neurons. N2S3 has been developed
from the ground up for extensibility, allowing to model var-
ious kinds of neuron and synapse models, various network
topologies (it is not restricted to Boltzmann machines), var-
ious learning procedures, various reporting facilities, and
to be user friendly with a domain specific language to ex-
press the experiments the user wants to simulate. It will be
available as open source software before the end of 2016 at
https://sourcesup.renater.fr/projects/n2s3.

At the moment, N2S3 can read AER files and the MNIST
files and convert them to spikes that are sent to an artificial
neural network of any topology (we currently have shortcuts
to model fully connected multilayer networks such as Re-
stricted Boltzmann Machines and are working on deep belief
network topologies). The spikes are carried by messages
between actors representing some subsets of the neurons
of the network, and are fully or partially synchronized to
offer a tradeoff between accuracy and concurrency. In the
experiment below, messages are fully synchronized, and thus
ordered by timestamps so that the accuracy of the simulation
is maximized. A full description of N2S3 is out of the scope
of this paper and will be the object of future article.

3.2 MNIST recognition improvement
We have used the MNIST training dataset of handwritten

digits [32] to train and test the performance of neural net-
works based on the synapse box. The training set consists of
60000 digits between 0 and 9 and each handwritten number

Figure 3: Synaptic weights (conductance of non
volatile memristor) learned in simulation using the
synapse box with 100 output neurons. The weights
in the corners are random because they were always
filtered out by the volatile memristor and thus are
never modified or even read.

is a 28 × 28 pixel image. In this simulation, we present the
full dataset (60000 images) and full images. Each pixel is con-
nected to one input buffer neuron. Pixel intensity is between
0 to 255 and is transfered to 0 to 22 Hertz spiking frequency
using a Poisson distribution during a 350 ms presentation
window. Based on previous similar work [33], we have chosen
a delay of 150 ms between two images. Therefore, there is
sufficient time for membrane potentials of all neurons to reset
back to initial values. The network connection weights are
between 0 and 1 initialized using a Gaussian distribution.

The hardware platform is a 4 core i7-3687U CPU (2.10GHz
× 4). We have simulated different network topologies con-
sisting of 2 fully interconnected layers, with a fixed input
neuron number (28× 28 = 784) and different output neuron
number. The neuron model is LIF and we evaluate two types
of synapses: non-volatile (NV) and proposed synapse box
(volatile/nonvolatile or VNV).

To measure and evaluate the network classification accu-
racy after a fully unsupervised learning period consisting
of the presentation of the full MNIST data set, we label
the output neurons using 10000 samples of MNIST: After
training, we stop all synaptic modification processes such
as STDP, STP and LTP. We assign a number class to the
output neuron which has most frequent firing rate during
the presentation of the 10000 labelling samples. Using these
labels, we then evaluate the recognition rate of the network
on 10000 different test samples by comparing the known class
of the input with the class of the most firing output neuron.

As it was observed in similar works [33] and [11], the recog-
nition rate depends on the number of neurons and synapses,
and the number of repetitions of the presentation of the
dataset to the network. In the experiments, we present
60000 digit the dataset the smallest number of time that is
necessary for learning. That is 1 time for less or equal to
50 output neurons, 2 times for less or equal to 100 output



Figure 4: Recognition rate as a function of number
of output neurons. In the box plot for each number
of neuron, we compare the recognition rate of the
two synapse models. The whiskers of the box plot
represent the minimum and maximum recognition
rates of the 10 simulations.

neurons and 3 times for more output neurons. With these
numbers of presentations, we obtain recognition rates that
are comparable to the state of the art. The running time of
the simulations are also comparable to those of similar exper-
iments though it is difficult to make accurate comparisons.

An example of the conductance weights learned in N2S3
on the MNIST dataset is shown in Figure 3 for 100 output
neurons. As it is obvious in the figure, the border of each
digit did not pass the NOMFET high-pass filter because of
low frequency changes. This is the impact of forgetting prop-
erties in synapse box to skip unimportant data or noise. To
demonstrate the functionality of the synapse box, we compare
the recognition rate of networks of the same topology but
using different synapse models: a simple nonvolatile synapse
(NV) model and the volatile-nonvolatile (VNV) synapse box
model. We have run 10 simulations for each number of out-
put neuron and each synapse. The results are summerized in
Figure 4 showing the distribution of the recognition rates for
each configuration. We can conclude that using the synapse
box improves the recognition rate in average by a small but
consistent margin.

Although it is not shown in Figure 4, we have also made the
comparison using 300 output neuron and the best recognition
rate we have obtained is 89.4 %.

4. CONCLUSION
In this study, we have introduced a novel synapse box

with the possibility to forget and remember inspired from
biological synapse properties. This synapse box is composed
of a volatile memristor (NOMFET) followed by a nonvolatile

resistive RAM. The volatile memristor acts like a high-pass
filter to enhance short term plasticity and the nonvolatile
resistive RAM enables long term potentiation. Both work to-
gether in the spike timing dependant plasticity unsupervized
learning process.

In addition, in this work we have also announced a new
event-based simulator, N2S3 (Neural Network Scalable Spik-
ing Simulator). It is specifically designed to simulate hard-
ware spiking neural networks. N2S3 is quite flexible to ex-
plore different network architectures, synapse and neuron
models to help design hardware architectures and VLSI cir-
cuits. To evaluate and verify the new synapse box as well as
the functionality of the simulator, we have used the MNIST
handwritten digit dataset. The first results demonstrate an
improvement in recognition rate by using the synapse box
over a single nonvolatile memristor synapse. We will continue
to explore the various parameters and device combinations
to help design the most efficient hardware neural networks
as possible.

For future works, we also propose to study different neural
network topologies such as deep belief, recurrent and convo-
lutional neural networks to evaluate the synapse box benefits
and costs (area, energy, manufacturability, variability) in
other contexts.
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