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Abstract
While an increasing number of human activities are studied using data produced by individuals’
ICT devices, there have been relatively few contributions investigating the robustness of results
against fluctuations of data characteristics. In particular, when ICT data contain spatial informa-
tion, they represent an invaluable new source for analyzing urban phenomena. Here, we present
a stability analysis of higher-level information extracted from mobile phone metadata passively
produced during an entire year by 9 million individuals in Senegal. We focus on two specific
information-retrieval tasks: (a) the identification of land use in the region of Dakar by analyzing
the temporal rhythms of the communication activity; (b) the identification of home and work lo-
cations of anonymized individuals, allowing for the construction of the Origin-Destination (OD)
matrices for commuting flows. Our analysis reveals that the spatial distributions of land use com-
puted for different samples are remarkably robust, with on average 80% of shared surface area
between the different spatial partitions. The OD matrix is less stable with a share of about 70%
of commuters in common when considering all types of flows. Better results can be obtained at
larger levels of aggregation. These different results confirm that ICT data are mostly a very useful
source for the spatial analysis of urban systems, but that their reliability should be tested more
thoroughly.

I INTRODUCTION
Massive amounts of geolocated data are passively and continuously generated by individuals
when they use their mobile and connected devices: smart phones, credit cards, GPSs, RFIDs
or remote sensing devices. This deluge of digital footprints is growing at an extremely fast
pace and represents an unprecedented opportunity for researchers, to address quantitatively
challenging problems, in the hope of unveiling new insights on the dynamics of human societies.
Many fields are concerned by the development of new techniques to handle these vast datasets,
and range from applied mathematics, physics, to computer science, with plenty of applications
to a variety of disciplines such as medicine, public health and social sciences for example.

Although big data have the advantage of large samples sizes (millions of observations), and
high spatio-temporal resolution, they also raise new challenging issues. Some are technical
and related to the storage, management and processing of these data (Kaisler et al., 2013), and
others are methodological, such as the statistical validity of analysis performed on such data.
For example, in the case of mobile phone data, researchers have often no control on the data
collection that is usually made for other purposes. In many cases various hidden biases can
affect the spatial behavior of anonymized individuals. Observing the world through the lenses
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of data generated by information and communications technologies (ICT) may therefore lead to
possible distortions, and possibly to erroneous conclusions (Lewis, 2015). It is thus crucial to
perform statistical tests and to develop methods in order to assess the robustness of the results
obtained with ICT data. In the research community that studies human mobility (in particular
in cities, and related urban dynamics Ratti et al. (2006); Louail et al. (2014); Calabrese et al.
(2015); Louail et al. (2015), efforts in this sense have been made in recent years, notably by
comparing the results obtained with different data sources (Tizzoni et al., 2014; Lenormand
et al., 2014; Deville et al., 2014; Alexander et al., 2015; Toole et al., 2015). However, the
robustness of results to sample selection has, to our knowledge, never been studied yet.

In the following we present two examples of such uncertainty analysis on results obtained with
mobile phone data recorded in Senegal in 2013 (de Montjoye et al., 2014). We concentrate on
two information-retrieval tasks: first, we evaluate the uncertainty when inferring land use from
the rhythms of human activity (Soto and Frı́as-Martı́nez, 2011; Frı́as-Martı́nez et al., 2012;
Toole et al., 2012; Pei et al., 2014; Lenormand et al., 2015), and second, we study the un-
certainty when identifying individuals’ most frequented locations (Ahas et al., 2010; Isaacman
et al., 2011; Lenormand et al., 2014; Toole et al., 2015). We conclude by mentioning possible
future steps to clearly assess the relevance of various ICT data sources for studying different
phenomena.

II STUDY AREA AND DATA DESCRIPTION
We focus here on the region of Dakar, Senegal. The mobile phone data consists in call de-
tail records (CDR) of phone calls and short messages exchanged by more than 9 million of
anonymized Orange’s customers. They were collected in Senegal in 2013, and were released to
research teams in the framework of the 2014 Orange Data for Development challenge (de Mon-
tjoye et al., 2014). We will use for our study the second dataset (SET2) that was made available
by Orange. It contains fine-grained location data on a rolling 2-week basis at the individual
level. For each of the 25 two-week periods, a sample of about 300, 000 mobile phone users
is selected at the country scale. Whenever one of these individuals uses his/her mobile phone
during the two-week period, the time and his/her position (at the level of serving cell tower)
is recorded. This information can be used to study human activity and mobility patterns in the
region of Dakar that is here divided into 457 spatial subunits. The partition is the Voronoi tes-
sellation constructed from the location of antennas in the city chosen as nodes. Each Voronoi
cell approximates thus the activity zone served by the antenna located at its center (see Figure
1a).

III INFERRING LAND USE FROM MOBILE PHONE ACTIVITY
Geolocalized ICT data have been widely used to infer land use from human activity (Soto and
Frı́as-Martı́nez, 2011; Frı́as-Martı́nez et al., 2012; Toole et al., 2012; Pei et al., 2014; Lenor-
mand et al., 2015). The basic idea is to divide the region of interest into zones, then extract a
temporal signal of activity for each of these zones, and finally cluster together zones that dis-
play similar signals. Each of these clusters corresponds to a certain type of activity (Residential,
Commercial, . . . ). We use here the functional approach proposed in Lenormand et al. (2015).
The method takes as input, for each cell, a signal composed of 168 points (24h×7days), each
value corresponding to the number of users located in this cell, at this hour of the day and this
day of the week. These signals are then normalized by the total hourly activity, in order to
subtract trends introduced by circadian rhythms. A Pearson correlation matrix between cells is
then computed. Two spatial units whose activity is strongly correlated in time will have a high
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positive correlation value. This similarity matrix can be represented by a undirected weighted
network, which is then clustered using the Infomap community detection algorithm (Rosvall
and Bergstrom, 2008). This method has the advantage to be non-parametric (the number of
clusters is not fixed a priori).

In order to extract temporal signals of activity in the region of Dakar, we first need to estimate
the number of people in each zone, per hour, for each of the 350 days of our original sample.
To do so, we rely on the following criteria: each person counts only once per hour. If a user is
detected in k different zones within a certain 1-hour time period, each registered position will
count as (1/k) ‘units of activity’ for each of these k cells. The average number of users per hour
and per day is 30, 500, which represents about 1% of the total population of the region of Dakar.

To assess the robustness of land use identification from mobile phone activity to sample selec-
tion, we apply the functional approach described above to 100 weeks drawn at random from our
original sample (after removing outliers). Note that the days of the weeks are drawn separately,
and they are therefore not necessarily chronologically ordered.
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Figure 1: (a) Map of the region of Dakar displaying the three clusters. Colors vary from white to the
most recurrent cluster identified in the 100 random sample. The color saturation depends on the number
of times the zone was classified as the most recurrent cluster. The color code is red for Residential, blue
for Business, green for Nightlife and orange for other types of land use. (b) Temporal patterns associated
with the three clusters. The solid lines represent the average temporal profile computed over 100 random
extractions, while the dashed lines represent the standard deviations.

First, we observe that three clusters emerge systematically, and represent on average 95% of the
total surface. The remaining 5% correspond to other clusters with no clear patterns, probably
associated with some local one-time events. We show on Figure 1b the average temporal profiles
and the variability around this average for each of these three clusters. Each of the clusters can
be roughly associated with a dominant land use:
• A Residential activity corresponds to a high probability of mobile phone use during early

mornings, evenings and week end days.
• A Business cluster displays a significantly higher activity from 9am to 5-6pm during

weekdays.
• A Nightlife activity profile is characterized by a high activity during night hours (1am-

4am).
The Nightlife cluster (in green) covers the area of the international airport, and also the neigh-
borhood of ”la Pointe des Almadies”, where live mainly wealthy people – most of the rich/so-
phisticated nightclubs are also located there. The Business cluster covers Dakar’s CBD (”Le
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Plateau”), where are located most of the companies headquarters, and also the port. Finally
the residential cluster cover the rapidly growing parts of Dakar peninsula, who profit from the
highway construction. It is worth noting that the results are consistent with the ones obtained
with another mobile phone dataset in Spain (Lenormand et al., 2015), except that in the case of
Dakar, the method is not able to distinguish between industrial (or logistic) and leisure nightlife
activities (see Lenormand et al. (2015) for more details).
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Figure 2: Uncertainty when inferring land use from mobile phone activity. (a) Area covered by the
different land use types, expressed as a percentage of the total surface. The values have been averaged
over 100 random samples, and the error bars represent the standard deviation. (b) Probability density
function of the shared surface area between each pair of spatial distributions according to the type of
land use.

As can be observed in Figure 2a, the area covered by the different types of land use is quite
stable over the 100 samples, with the residential land use type representing on average about
55% of the total surface, while we observe about 20% for the Business and Nightlife clusters.
Nevertheless, the stability of the proportion does not imply that they follow the same spatial
distribution from one sample to another. To check for the stability, we compute the surface area
shared by two spatial distributions Sl and S ′

l of a given type l and obtained with two different
samples. The expression for this quantity is

SSA(Sl, S
′
l) = 2

ASl∩S′
l

ASl
+ AS′

l

, (1)

where AS denotes the surface area of spatial distribution S. Note that in our case ASl
' AS′

l

(Figure 2a). Similarly, we can defined the total surface area shared by two spatial partitions P
and P ′ (with the same number and types of land use) of the region of interest,

SSA(P, P ′) =

∑
l ASl∩S′

l∑
l ASl

. (2)

The results are displayed in Figure 2b. The similarities between the 100 different spatial dis-
tributions is globally high, with on average 80% of shared surface area between the spatial
partitions. The agreement is larger for residential and business clusters with an average shared
surface area around 90%. For the nightlife land use type we find a result about 75%.
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A map of the region of Dakar displaying the uncertainty associated with the land use identifi-
cation is shown in Figure 1a. The colors represent the different land use types, where a zone
has been assigned to the most recurrent cluster type over the 100 land use identifications. The
color saturation is related to the uncertainty quantified with the number of times the zone was
classified as given recurrent cluster: the color is darker if the uncertainty is low, paler otherwise.
Most of the zones have been assigned the same clusters more than 80% of the time. This leads
us to the conclusion that the identification of land use from mobile phone activity shows a high
level of robustness to sample selection.

IV IDENTIFYING HOME-WORK LOCATIONS FROM MOBILE PHONE ACTIV-
ITY

Geolocalized ICT data are also widely used to identify the most visited locations of an individ-
ual during his/her daily life trajectory, allowing to extract the origin-destination (OD) matrices
of commuting flows, a fundamental object in mobility studies. A simple heuristic is that the
most frequented place of a user in the late afternoon/evening and in the early morning can be
identified as a proxy for his/her place of residence, while the most frequented area during work-
ing hours can be a proxy to his/her work (or activity) place. This simple assumption allows the
accurate determination of mobility flows at intermediate geographical scales (see for example
Tizzoni et al. (2014); Lenormand et al. (2014); Alexander et al. (2015); Toole et al. (2015)).
However, the robustness of the results to sample selection has never been investigated.

For each of the 25 two-week periods and for each user, we apply the following home and work
location extraction procedure:
• For each hour of the two weeks period (weekends excepted) during which an individual

used his/her mobile phone, we identify the most frequently visited zone during this hour
(based on his/her geolocalized mobile phone activity).
• Hours of activity are then divided into two groups, daytime hours (between 8am and 5pm)

and nighttime hours (between 7pm and 7am).
• Filter 1: We keep only the users who have been ‘active’ at least ten 1-hour periods during

daytime, and ten 1-hour periods during nighttime (spread over at least half of the days of
the two-week period) .
• For both groups of hours (daytime and nightime), we identify the spatial unit in which

the user has been localized the highest number of hours.
• Filter 2: We keep only users with a fraction of hours spent at ”home” location and ”work”

location larger than one third of the total number of locations visited during nighttime and
daytime, respectively.

The two filters allow us to discard users not showing enough regularity in order to estimate
their main nighttime (’Home’) and daytime activity (’Work’) locations. The source code of this
method is available online1.

At the end of the process, after filtering out users living and/or working outside the region of
Dakar, the remaining number of users is on average ≈ 65, 000. This number is quite stable
over the 25 two-weeks periods, varying at most by 15% around this average. The resulting 25
two-weeks commuting networks can then be compared using several similarity metrics, such
as the one described in Lenormand et al. (2016). We consider 2 commuting networks T and
T ′, where Tij is the number of users living in zone i and working in zone j, and we will use
three different metrics, that encode different network properties. First, the common fraction of

1https://github.com/maximelenormand/Most-frequented-locations
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commuters (CPC), varying from 0, when no agreement is found, to 1, when the two networks
are identical, is estimated as

CPC(T, T ′) =
2
∑n

i,j=1min(Tij, T
′
ij)∑n

i,j=1 Tij +
∑n

i,j=1 T
′
ij

. (3)

Second, we will consider the common proportion of links (CPL) that measures similarity in the
networks’ topological structure, and is calculated as

CPL(T, T ′) =
2
∑n

i,j=1 1Tij>0 · 1T ′
ij>0∑n

i,j=1 1Tij>0 +
∑n

i,j=1 1T ′
ij>0

. (4)

Third, the common share of commuters according to the distance (CPCd), assessing the simi-
larity between commuting distance distributions is given by

CPCd(T, T
′) =

∑∞
k=1 min(Nk, N

′
k)

N
, (5)

where Nk stands for the number of users with a commuting distance ranging between 2k − 2
and 2k kms.
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Figure 3: Uncertainty in the identification of the most frequently visited locations from mobile phone
activity. (a) Boxplots of the CPC (blue), CPL (red) and CPCd (green) between the 25 two-weeks com-
muting networks (1x2), 12 one-month commuting networks (2x2) and 6 two-months commuting net-
works (4x2). One-month and two-months commuting networks have been obtained by aggregation of
consecutive two-weeks commuting networks. (b) Boxplots of the CPC (blue), CPL (red) and CPCd
(green) between the 25 two-weeks commuting networks, according to the grid cell side length (1 km, 2
km and 3 km). The CPC values obtained when considering only inter-zonal flows are also displayed.

The boxplots for the CPC, CPL and CPCd values obtained by comparing the 25 two-weeks
commuting networks are displayed in Figure 3a (1x2). The results are not completely conclu-
sive, with different commuting networks showing a good agreement around 70% of commuters
in common (considering both inter- and intra-zonal flows), but with a value falling down to 35%
when only inter-zonal flows are considered. The CPL values are also quite low, around 35% of
links are in common between the different networks. An encouraging result is that the common
part of commuters according to the distance is very high, showing around 90% of similarity
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between the 25 commuting distance distributions. However, it is important to keep in mind
that these mixed results are obtained with a few thousand users for each two-weeks commuting
network, drawn at a high spatial resolution with an average surface area equal to 0.5 km2. In-
deed, as it can be observed in Figure 3, both temporal and spatial aggregations of the networks
greatly improve the results. The aggregation of consecutive two-weeks commuting networks
allow us to perform pairwise comparisons of 12 one-month commuting networks (2 × 2) and
6 two-months commuting networks (4), and we clearly observe that the temporal aggregation
improves the results. The two-weeks commuting networks can also be aggregated spatially,
by projecting the data on a regular lattice (see Lenormand et al. (2014) for more details about
the aggregation method), and results of the comparison of the two-weeks commuting networks
according to the size of the grid cells (resp. 1 km, 2 km and 3 km) are represented in Figure 3b.
Here again, we observe a significant improvement, with CPC values almost always larger than
0.75.

In order to go further, for each of the 25 two-week periods and for each user, we identify the
home and work locations for each of the two weeks considered independently, by following
the procedure described above. This allows us to assess the influence of the sampling of points
along individual trajectories when identifying the home and work locations. We then compare
the locations identified for each of the two weeks. Considering the high spatial resolution and
the small time window, a good agreement is obtained, with an accuracy of 85.3 ± 1.3% for
home (average ± standard deviation over the 25 two-week periods) and 79.1± 2.7% for work.
Moreover, 60% of the inaccurate locations are less than 2 kms distant from each other. We
can therefore conclude that the identification of users’ home-work locations from mobile phone
activity also shows a high level of robustness to sample selection.

V DISCUSSION
Data passively produced through information and communications technologies have been in-
creasingly used by researchers since the middle of the 2000’s to analyze a variety of human
processes and activities. In particular, our understanding of human mobility has been deeply re-
newed thanks to these new sources. The longitudinal tracking of anonymized individuals opens
the door to an enhanced understanding of human and social phenomena that could not be stud-
ied empirically with such a level of detail. However, these data may obviously suffer from a
number of biases (Lewis, 2015), which include in particular sample selection. Systematic tests
are then required for ensuring statistical validity, along with cross-checks between various data
sources.

With this in mind, we performed two uncertainty analysis of results obtained with mobile phone
data produced by millions of anonymized individuals and collected during an entire year. In the
first part of the analysis, we assessed the uncertainty when inferring land use from human activ-
ity, estimated from the number of mobile phone users at different moments of the week. A good
agreement was obtained between the land uses identified from 100 randomly selected samples
of individuals, with on average 80% of shared surface area between land uses in the resulting
maps. In the second part of the analysis, we investigated the influence of sample selection on
the identification of users’ home and work locations. We first examined the impact of the se-
lection of users on the journey-to-work commuting networks extracted at the city scale. In our
case-study of the city of Dakar, we showed that the level of uncertainty was highly dependent
of the spatio-temporal resolution, and that good results were reachable with a reasonable level
of aggregation. We then analyzed the effect of the sampling of locations along mobile phone
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users’ trajectories on the identification of their home and work locations. Most of the locations
identified with different samples were the same, or very close to one another.

For these two spatial information retrieval tasks, our results suggest that the level of uncertainty
associated with sample selection is low. Further work in this direction include the reproduc-
tion of such uncertainty analysis with other datasets coming from different countries and data
sources. An important aspect of the rapidly growing ‘new science of cities’ (Batty, 2013), which
heavily relies on new data sources, is to be able to reproduce results with different datasets, and
to characterize and control to what extent the information provided by different sources are
biased in a particular direction.

More studies in this spirit need to be done to strengthen the foundations of the field dedicated to
the understanding of urban mobility and urban dynamics through ICT data. From a publication
point of view, trying to reproduce previous results with different data sources, or to estimate
the robustness of previously published results, might not be as appealing as proposing new
measures and models, but is crucially important as well.
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