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The purpose of this paper is to present a new theory of subharmonic functions for the Dunkl-Laplace operator ∆ k in R d associated to a root system and a multiplicity function k ≥ 0. In particular, we introduce and study a Dunkl-Newton kernel and the corresponding potential of Radon measures. As applications we give a strong maximum principle, a solution of the Poisson equation and a Riesz decomposition theorem for ∆ k -subharmonic functions.

Introduction

Let R be a normalized root system in R d i.e. R is a finite subset of R d \{0} such that for every α ∈ R, ∥α∥ = √ 2, R ∩ Rα = {±α} and σ α R = R, where σ α is the reflection with respect to the hyperplane H α orthogonal to α (see [START_REF] Humphreys | Reflection groups and Coxeter groups[END_REF] for details on root systems).

For ξ ∈ R d , let D ξ be the Dunkl operator defined on C1 (R d ) by

D ξ f (x) = ∂ ξ f (x) + ∑ α∈R + k(α) ⟨α, ξ⟩ f (x) -f (σ α (x)) ⟨α, x⟩ , (1.1) 
where ∂ ξ is the ξ-directional partial derivative, R + is a fixed positive subsystem of R and k : R -→ [0, +∞[ is a fixed multiplicity function i.e. k is W -invariant, where W is the Coxeter-Weyl group generated by the reflections σ α , α ∈ R (see [START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF]). These operators are related to partial derivatives by means of the Dunkl intertwining operator V k (see [START_REF] Dunkl | Hankel transforms associated to finite reflection groups[END_REF] or [START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF]) as follows

∀ ξ ∈ R d , D ξ V k = V k ∂ ξ . (1.2)
The operator V k is a topological isomorphism from the space C ∞ (R d ) 1 onto itself satisfying (1.2) and V k (1) = 1 (see [START_REF] Trimèche | The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual[END_REF]) and for every x ∈ R d , there exists a unique probability measure µ x on R d with compact support contained in

C(x) := co{gx, g ∈ W } (1.3)
(the convex hull of W.x, the orbit of x under the group W ) such that (see [START_REF] Rösler | Positivity of Dunkl's intertwining operator[END_REF] or [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF])

∀ f ∈ C ∞ (R d ), V k (f )(x) = ∫ R d f (y)dµ x (y). (1.4)
We know ( [START_REF] Gallardo | Support properties of the intertwining and the mean value operators in Dunkl's analysis[END_REF]) that if k > 0, the support of µ x is W -invariant and contains W.x.

The Dunkl-Laplace operator is then defined by ∆ k = ∑ d j=1 D 2 j , where D j = D e j , j = 1, ..., d ( (e j ) 1≤j≤d is the canonical basis of R d ) are commuting operators (see [START_REF] Dunkl | Differential-difference operators associated to reflection groups[END_REF] and [START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF]). Its action on C 2 -functions is given by

∆ k f (x) = ∆f (x) + 2 ∑ α∈R + k(α) ( ⟨∇f (x), α⟩ ⟨α, x⟩ - f (x) -f (σ α (x)) ⟨α, x⟩ 2 ) , ( 1.5) 
where ∆ (resp. ∇ ) is the usual Laplace (resp. gradient) operator,(see [START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF]).

For abbreviation, we introduce the wight function

ω k (x) := ∏ α∈R + | ⟨α, x⟩ | 2k(α) (1.6)
which is W -invariant and homogeneous of degree 2γ, with the index γ := ∑ α∈R + k(α). An important fact about the Dunkl-Laplace operator is that it generates a generalized heat semi-group which kernel is given by (see [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF])

p t (x, y) := 1 (2t) d/2+γ c k τ -x ( e -∥.∥ 2 4t ) (y), x, y ∈ R d (1.7) := 1 (2t) d/2+γ c k e -(∥x∥ 2 +∥y∥ 2 )/4t E k ( x √ 2t , y √ 2t ), (1.8) 
where E k (., .) is the Dunkl kernel defined by E k (x, y) = V k (e ⟨.,y⟩ )(x) (see [START_REF] Dunkl | Integral kernels with reflection group invariance[END_REF], [START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF] and [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF]), c k is the Macdonald-Mehta constant (see [START_REF] Etingof | A uniform proof of the Macdonald-Mehta-Opdam identity for finite Coxeter groups[END_REF]) given by

c k := ∫ R d exp(-∥x∥ 2 2 )ω k (x)dx (1.9)
and τ x is the Dunkl translation operator which acts on C ∞ (R d )-functions (see Annex A for precise definition and essential properties). However, note that when f ∈ C ∞ (R d ) is a radial function (i.e. f (x) = f (∥x∥) with f the profile function of f ), τ x f is given by

∀ y ∈ R d , τ x f (y) = ∫ R d f ( √ ∥x∥ 2 + ∥y∥ 2 + 2 ⟨x, z⟩)dµ y (z) (1.10) 
(see [START_REF] Rösler | A positive radial product formula for the Dunkl kernel[END_REF]). This formula shows that the Dunkl translation operators are positivity preserving on the set of radial functions.

Harmonic functions for the Dunkl-Laplacian, i.e. C 2 -functions u such that ∆ k u = 0, have for a long time attracted the attention of researchers involved in Dunkl theory (see ( [START_REF] Maslouhi | Harmonic functions associated to Dunkl operators[END_REF]), [START_REF] Mejjaoli | On a mean value property associated with the Dunkl Laplacian operator and applications[END_REF] and [START_REF] Rösler | A positive radial product formula for the Dunkl kernel[END_REF]) but their study was limited to C ∞ -functions f defined on whole R d or on the unit ball but having extension to whole R d . In a recent paper ( [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF]), we have found a volume mean value property characterization (see below) which allows us to study Dunkl-harmonic (D-harmonic) functions on any open W -invariant subset of R d (see [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF] and [START_REF] Gallardo | Radial mollifiers, mean value operators and harmonic functions in Dunkl theory[END_REF]). This new approach has many benefits in particular to tackle Dunkl potential theory. It is the aim of this paper to introduce, via the heat Dunkl-semigroup and our volume mean value operator, the Dunkl-Newtonian potentials and their use to study Dunkl-subharmonic functions.

Let Ω be a W -invariant open subset of R d . A function u : Ω -→ [-∞, +∞[ is called Dunkl-subharmonic (D-subharmonic) if 1. u is upper semi-continuous (u.s.c.) on Ω, 2. u is not identically -∞ on each connected component of Ω, 3. u satisfies the volume sub-mean property i.e. for all closed ball B(x, r) ⊂ Ω, we have u(x) ≤ M r B (u)(x). (1.11) Here M r B (f )(x) is the volume mean of f at (x, r) introduced by the authors ( [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF]) and defined by ,x,y)ω k (y)dy, 2(1.12)

M r B (f )(x) := 1 m k (B(0, r)) ∫ R d f (y)h k (r
where m k is the measure dm k (x) := ω k (x)dx and y → h k (r, x, y) is a compactly supported measurable function (see section 2) given by

h k (r, x, y) := ∫ R d 1 [0,r] ( √ ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩)dµ y (z).
(1.13)

Of particular importance for this paper is the Dunkl type Newton kernel which is defined, when d + 2γ > 2 (transient case), by means of the Dunkl heat kernel as follows N k (x, y) := ∫ +∞ 0 p t (x, y)dt.

(1. [START_REF] De Jeu | The Dunkl transform[END_REF] and which is finite if y is not in the W -orbit of x.

We will show that typical examples of D-subharmonic functions are the Dunkl-Newton potentials of nonpositive Radon measures. Nevertheless, in particular for lack of a noncentered Poisson kernel and because of the complexity of the Dunkl translation operators, the D-subharmonicity of these examples is not immediate and our approach to D-subharmonic functions requires some specific tools that will be presented below.

We turn now to the content and the organization of this paper. In section 2, we recall the properties of the so-called harmonic kernel h k (r, x, y) and some representation formulas involving the mean value operators. In section 3, we study the notion of subharmonicity in Dunkl setting. In particular, we will prove that D-subharmonic functions satisfy the strong maximum principle. The section 4 is devoted to give some characterizations of D-subharmonic functions. Here, an approximation result is the essential tool to extend the properties of C 2 -D-subharmonic functions to arbitrary D-subharmonic functions. The notion of Riesz measure of a D-subharmonic function will be introduced in section 5. We will study the Dunkl type Newton kernel and potential of a Radon measure on R d in section 6. In particular, we will discuss the D-harmonicity and the D-superhamonicity of these objects and we will obtain the mass uniqueness principle. Finally, in section 7, we prove a Riesz decomposition theorem for D-subharmonic functions and we describe all bounded from above D-subharmonic functions in the whole space.

Notations: Let us introduce the following functional spaces and notations which will be used throughout the paper. For Ω a W -invariant open subset of R d , we denote by:

• L 1 k,loc (Ω) = L 1 loc (Ω, m k ) the space of measurable functions f : Ω -→ C such that ∫ K |f (x)|ω k (x)dx < +∞ for any compact set K ⊂ Ω.
• D(Ω) the space of C ∞ -functions on Ω with compact support.

• D ′ (Ω) the space of distributions on Ω (i.e. the topological dual of D(Ω) carrying the Fréchet topology). ) ball centered at a and with radius ρ > 0.

• M + (R d ) the set of nonnegative Radon measures on R d . • S(R d ) the
2 The harmonic kernel and the mean value operators

Properties of the harmonic kernel

Let (r, x, y) → h k (r, x, y) the harmonic kernel defined by (1.13). We note that in the classical case (i.e. k = 0), we have µ y = δ y and h 0 (r,

x, y) = 1 [0,r] (∥x -y∥) = 1 B(x,r) (y).
The harmonic kernel satisfies the following properties (see [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF]):

1. For all r > 0 and

x, y ∈ R d , 0 ≤ h k (r, x, y) ≤ 1.
2. For all fixed x, y ∈ R d , the function r -→ h k (r, x, y) is right-continuous and non decreasing on ]0, +∞[.
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. For all fixed r > 0 and

x ∈ R d , B(x, r) ⊂ supp h k (r, x, . ) ⊂ B W (x, r) := ∪ g∈W B(gx, r). (2.1)
The first inclusion is proved in [START_REF] Gallardo | Support properties of the intertwining and the mean value operators in Dunkl's analysis[END_REF] while the second one is proved in [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF].

4. Let r > 0 and x ∈ R d . For any sequence (χ ε ) ⊂ D(R d ) of radial functions such that for every ε > 0, 0

≤ χ ε ≤ 1, χ ε = 1 on B(0, r) and y ∈ R d , lim ε→0 χ ε (y) = 1 B(0,r) (y), we have ∀ y ∈ R d , h k (r, x, y) = lim ε→0 τ -x χ ε (y). (2.2)
5. For all r > 0, all x, y ∈ R d and all g ∈ W , we have

h k (r, x, y) = h k (r, y, x) and h k (r, gx, y) = h k (r, x, g -1 y). (2.3)
6. For all r > 0 and x ∈ R d , we have

∥h k (r, x, .)∥ k,1 := ∫ R d h k (r, x, y)ω k (y)dy = m k (B(0, r)) = d k r d+2γ d + 2γ , ( 2.4) 
where d k is the constant

d k := ∫ S d-1 ω k (ξ)dσ(ξ) = c k 2 d/2+γ-1 Γ(d/2+γ) . (2.5)
Here dσ(ξ) is the surface measure of the unit sphere S d-1 of R d and c k is defined in (1.9).

7. Let r > 0 and x ∈ R d . Then the function h k (r, x, .) is upper semi-continuous on R d .

8. The harmonic kernel satisfies the following fundamental geometric inequality: if ∥a -b∥ ≤ 2r with r > 0, then

∀ ξ ∈ R d , h k (r, a, ξ) ≤ h k (4r, b, ξ). (2.6)
Note that if k = 0, this inequality says that if ∥a -b∥ ≤ 2r, then B(a, r) ⊂ B(b, 4r). 9. Let x ∈ R d . Then the family of probability measures

dη k x,r (y) = 1 m k [B(0, r)] h k (r, x, y)ω k (y)dy (2.7)
is an approximation of the Dirac measure δ x as r -→ 0. That is

∀ α > 0, lim r→0 ∫ ∥x-y∥>α dη k x,r (y) = 0 (2.8)
and if f is a continuous function on a W -invariant open neighborhood of x, then (see [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF], Proposition 3.2):

lim r→0 ∫ R d f (y)dη k x,r = lim r→0 M r B (f )(x) = f (x). (2.9) 
Let Ω be a W -invariant nonempty open subset of R d . The boundeness of h k as well as its support property (2.1) allowed us to define the volume mean of any f ∈ L 1 k,loc (Ω) at (x, r) by (1.12) whenever B(x, r) ⊂ Ω. We will need the following notations which will be used frequently in this paper:

∀ r > 0, Ω r := { x ∈ Ω; dist(x, ∂Ω) > r } , ( 2.10 
)

r Ω := sup{r > 0; Ω r ̸ = ∅}. (2.11) Clearly, we have Ω r 1 ⊂ Ω r 2 whenever r 2 ≤ r 1 and Ω = ∪ r>0 Ω r = ∪ r<r Ω Ω r . Moreover, since Ω r = { x ∈ Ω; B(x, r) ⊂ Ω } , the open set Ω r , r < r Ω , is W -invariant. The volume mean operator of f ∈ L 1
k,loc (Ω) has the following properties (the first and the second results are proved in [START_REF] Gallardo | Radial mollifiers, mean value operators and harmonic functions in Dunkl theory[END_REF] while the third is proved in [START_REF] Rejeb | Lebesgue's differentiation theorem in Dunkl setting[END_REF]):

Proposition 2.1 Let f ∈ L 1 k,loc (Ω). 1. Let r < r Ω . Then the function M r B (f ) belongs to L 1 k,loc (Ω r ). 2. Let x ∈ Ω. Then the function r → M r B (f )(x) is continuous on ]0, ϱ x [ with ϱ x := dist(x, ∂Ω).
(2.12)

For almost every

3 x ∈ Ω, we have lim r→0 M r B (f )(x) = f (x).

Representation formulas for the mean value operators

In this subsection, we will recall some representation formulas obtained by the authors in [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF] and [START_REF] Gallardo | Radial mollifiers, mean value operators and harmonic functions in Dunkl theory[END_REF]. These formulas play a key role in the study of D-subharmonic functions in sections 4, 5 and 7.

Let us begin to recall that the spherical mean for C ∞ -functions defined on whole R d as follows (see [START_REF] Mejjaoli | On a mean value property associated with the Dunkl Laplacian operator and applications[END_REF])

M r S (f )(x) := 1 d k ∫ S d-1 τ x f (ry)ω k (y)dσ(y) 4 . (2.13)
It is shown in [START_REF] Rösler | A positive radial product formula for the Dunkl kernel[END_REF] that there exists a compactly supported probability measure

σ k x,r on R d such that the spherical mean of f ∈ C ∞ (R d ) at (x, r) ∈ R d × R + is given by M r S (f )(x) = ∫ R d f (y)dσ k x,r (y), (2.14) 
with supp σ k x,r ⊂ B W (x, r) = ∪ g∈W B(gx, r).
(2.15) Formula (2.14) shows that we can define the spherical mean at (x, r) of any measurable nonnegative (resp. nonpositive, resp. bounded) function on B W (x, r).

The following crucial results, proved by the authors, on the link between the spherical and volume means hold: If f ∈ C 2 (Ω), then for every closed ball B(x, r) ⊂ Ω, r > 0, we have:

M r S (f )(x) = f (x) + 1 d + 2γ ∫ r 0 M t B (∆ k f )(x) tdt, (2.16) and M r B (f )(x) = f (x) + 1 r d+2γ ∫ r 0 ∫ ρ 0 M t B (∆ k f )(x) t dt ρ d+2γ-1 dρ.
(2.17)

Note that (2.16) and (2.17) have been proved at first for C ∞ (R d )-functions in [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF] and then have been extended by the authors to C 2 (Ω)-functions using approximation results (see [START_REF] Gallardo | Radial mollifiers, mean value operators and harmonic functions in Dunkl theory[END_REF] for more details). Furthermore, the following relation holds for continuous functions on Ω (see [START_REF] Gallardo | Radial mollifiers, mean value operators and harmonic functions in Dunkl theory[END_REF])

M r B (f )(x) = d + 2γ r d+2γ ∫ r 0 M t S (f )(x)t d+2γ-1 dt, whenever B(x, r) ⊂ Ω. (2.18)
Now, let f be an upper semi-continuous (u.s.c.) function on Ω and let B(x, r) ⊂ Ω. As f is u.s.c., by adding a constant, we can assume that f is nonpositive on the compact set B W (x, r). Therefore, using (2.1) and (2.15), we can define the Dunkl-volume and the Dunkl-spherical means of f relative to (x, r). Moreover, we have Lemma 2.1 The relation (2.18) holds for the u.s.c. function f on Ω (the two terms of (2.18) being eventually equal to -∞).

Proof: Fix x ∈ Ω and r > 0 such that B(x, r) ⊂ Ω. Since f is bounded from above on B W (x, r), there is a decreasing sequence of continuous functions (f n ) such that f n -→ f pointwise on B W (x, r). Replacing f n by f n -sup B W (x,r) f 1 and f by f -sup B W (x,r) f 1 , we may assume that f and all f n are nonpositive on B W (x, r). For t ∈]0, r], set g n (t) = M t S (f n )(x) and g(t) = M t S (f )(x). We can see that the sequence (g n ) is decreasing and from the monotone convergence theorem applied to the sequence (f n ), we get g n -→ g pointwise on ]0, r] and in particular, g is a measurable function. Let us now apply the monotone convergence theorem to the sequence (g n ), we obtain

∫ r 0 M t S (f )(x)t 2γ+d-1 dt = lim n-→+∞ ∫ r 0 M t S (f n )(x)t 2γ+d-1 dt. (2.19)
But, by the first step, 2γ

+ d r 2γ+d ∫ r 0 M t S (f n )(x)t 2γ+d-1 dt = M r B (f n )(x) (2.20)
and once again by the monotone convergence theorem, we have 

lim n-→+∞ M r B (f n )(x) = M r B (f )(x). ( 2 

Dunkl subharmonic functions

In this section, we study some properties of D-subharmonic functions (see definition (1.11)) on a W -invariant open set Ω ⊂ R d . In particular, we will prove that they satisfy the strong maximum principle and the uniqueness principle.

Let us denote by SH k (Ω) the set of D-subharmonic functions on Ω which is clearly a convex cone. Furthermore, it is not difficult to see that if u, v ∈ SH k (Ω) and if f is a convex and non-decreasing function on R, then max(u, v) and f (u) are also in SH k (Ω). As in the classical case, a function u is called D-superharmonic if -u is D-subharmonic.

Local properties of D-subharmonic functions

Proposition 3.1 Let u ∈ SH k (Ω). Then the function u belongs to L 1 k,loc (Ω). Proof: Fix Ω 0 a connected component of Ω. Let E := {x ∈ Ω 0 , uω k is integrable over some neighbourhood of x}.
Let x ∈ E. Then there exists r > 0 such that B(x, r) ⊂ Ω 0 and ∫ B(x,r) |u(y)|ω k (y)dy < +∞. For z ∈ B(x, r/2), we have B(z, r/2) ⊂ B(x, r) and hence uω k is integrable over B(z, r/2). Thus, B(x, r/2) ⊂ E and E is an open subset of Ω 0 . Now, let x ∈ Ω 0 \E. Because uω k is not integrable on any neighborhood of x, we must have ∫ B(x,R) |u(y)|ω k (y)dy = +∞ for all R > 0 such that B(x, R) ⊂ Ω 0 . Fix r > 0 such that B(x, 6r) ⊂ Ω 0 . We will prove that B(x, 2r) ⊂ Ω 0 \E. Since u is u.s.c., we can assume that u is nonpositive on the compact set K = B W (x, 6r) 5 .

Let z ∈ B(x, 2r). From (2.6) 

u(y)h k (r, x, y)ω k (y)dy ≤ h k (r/4, x, x) ∫ B(x,r/2) u(y)ω k (y)dy = -∞.
Consequently, from the previous inequality we get M 4r B (u)(z) = -∞, and therefore, u(z) = -∞ by the sub-mean property. Hence, u = -∞ on B(x, 2r) and this proves that Ω 0 \E is an open subset of Ω 0 . Finally, as u ̸ = -∞ on Ω 0 and using the connectedness of Ω 0 , we must have E = Ω 0 . The connected component Ω 0 being arbitrary, Proposition 3.1 is proved.

Let u ∈ SH k (Ω). Using the generalized Lebesgue differentiation theorem (see [START_REF] Rejeb | Lebesgue's differentiation theorem in Dunkl setting[END_REF]) and Proposition 3.1, we have u(x) = lim r→0 M r B (u)(x) for almost all x ∈ Ω. In the classical case (i.e. when k = 0), this equality holds everywhere for any subharmonic function (see for example [START_REF] Armitage | Classical Potential Theory[END_REF], Corollary 3.2.6 or [START_REF] Helms | Potential theory[END_REF], Lemma 2.4.4). In the following result, we will extend this fundamental property to D-subharmonic functions. Proposition 3.2 Let u ∈ SH k (Ω). Then, for every x ∈ Ω, we have

u(x) = lim r→0 M r B (u)(x). ( 3 

.3)

Proof: Fix x ∈ Ω and R > 0 such that B(x, R) ⊂ Ω. As above, we may assume that u is negative on the compact set B W (x, R). We distinguish two cases: First case: Suppose that u(x) > -∞. By upper semi-continuity, for all ε > 0 , there

exists α ∈]0, R] such that u(y) < u(x) + ε, whenever y ∈ B(x, α). (3.4)
From the sub-mean property and the fact that u < 0 on B W (x, R), we have

∀ r ∈]0, R], u(x) ≤ M r B (u)(x) = ∫ R d u(y)dη k x,r (y) ≤ ∫ B(x,α) u(y)dη k x,r (y),
where dη k x,r (y) is the probability measure defined by (2.7). Using (3.4), we deduce that

∀ r ∈]0, R], u(x) ≤ M r B (u)(x) ≤ (u(x) + ε) ∫ B(x,α) dη k x,r (y). (3.5) As from (2.8) lim r→0 ∫ B(x,α) dη k x,r (y) = 1, there exists β ∈]0, R[ such that ∀ r ∈]0, β], ∫ B(x,α) dη k x,r (y) ≥ 1 -ε. (3.6)
Now, if we have taken ε > 0 small enough to ensure that u(x) + ε < 0, we deduce from (3.5) and (3.6) that

∀ r ∈]0, β], u(x) ≤ M r B (u)(x) ≤ u(x) + ε(1 -ε -u(x)).
This implies that M r B (u)(x) -→ u(x) as r -→ 0. This proves the result in this case.

Second case: Suppose that u(x) = -∞. For every n ∈ N\{0}, there is a ∈]0, R] such that u(y) ≤ -n whenever y ∈ B(x, a). Therefore, ∀ r ∈]0, a], M r B (u)(x) ≤ -n ∫ B(x,a) dη k x,r (y). (3.7)
Again by (2.8), there exists b > 0 such that

∀ r ∈]0, b], ∫ B(x,a) dη k x,r (y) ≥ 1/2. (3.8) From (3.7) and (3.8) we obtain ∀ r ∈]0, min(a, b)], M r B (u)(x) ≤ -n/2. Therefore, M r B (u)(x)
-→ -∞ as r -→ 0 and the result is also proved in this case.

From the previous Proposition, we immediately obtain the uniqueness principle that a Dsubharmonic function is determined by its restriction to the complementary of a negligible set. More precisely: In the following result we consider the convergence property of a decreasing sequence of D-subharmonic functions.

Proposition 3.3 Let (u n ) be a decreasing sequence of D-subharmonic functions on Ω and u(x)

:= lim n→+∞ u n (x). If u is not identically -∞ on each connected component of Ω, then u is D-subharmonic on Ω.
Proof: Clearly u is u.s.c. on Ω as being a decreasing limit of u.s.c. functions. Let x ∈ Ω and r > 0 such that B(x, r) ⊂ Ω. By the monotone convergence theorem, we get

u(x) = lim n→+∞ u n (x) ≤ lim n→+∞ M r B (u n )(x) = M r B (u)(x).
This implies that u is D-subharmonic on Ω.

The strong Maximum principle

The following theorem is a generalization of the strong maximum principle for D-harmonic functions obtained by the authors in [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF] (Theorem 4.1).

Theorem 3.1 Let u ∈ SH k (Ω) and suppose that Ω is connected. i) If u has a maximum in Ω, then u is constant.
ii) If Ω is bounded and lim sup z→x u(z) ≤ 0, for all x ∈ ∂Ω, then u ≤ 0 on Ω.

Proof: i) Let x 0 ∈ Ω such that u(x) ≤ u(x 0 ) for all x ∈ Ω. Let Ω 0 := {x ∈ Ω, u(x) < u(x 0 )}.
Because u is u.s.c., Ω 0 is an open subset of Ω. Now, let x ∈ Ω\Ω 0 i.e. u(x) = u(x 0 ) and r > 0 such that B(x, r) ⊂ Ω. By the sub-mean property, we clearly have

u(x 0 ) = u(x) ≤ M r B (u)(x) ≤ u(x 0 ). This yields 1 m k (B(0, r)) ∫ R d [u(x 0 ) -u(y)]h k (r, x, y)ω k (y)dy = 0. Hence, u(x 0 ) = u(y) for almost every y ∈ supp h k (r, x, .) and by (2.1), u(x 0 ) = u(y) for almost every y ∈ • B(x, r). Let us now introduce the nonpositive function v(y) = u(y) -u(x 0 ), y ∈ • B(x,
r). Suppose that there exists a ∈ • B(x, r) such that v(a) < 0 and take λ ∈ R such that v(a) < λ < 0. Since v is u.s.c at the point a, there is ϵ > 0 such that B(a, ϵ) ⊂ • B(x, r) and v(y) < λ for all y ∈ B(a, ϵ). This contradicts the fact that v = 0 a.e. on • B(x, r) and this proves that u ≡ u(x 0 ) on

• B(x, r). Consequently, Ω\Ω 0 is an open subset of Ω containing x 0 . But Ω is connected, then Ω 0 = ∅ and this shows i). ii) Define the function u on the compact closure Ω of Ω by u(x) = u(x) if x ∈ Ω and u(x) = lim sup y→x, y∈Ω u(y) if x ∈ ∂Ω.
Clearly u is u.s.c. on Ω. Consequently, there exists x 0 ∈ Ω such that u(x 0 ) = sup Ω u(x). If u(x 0 ) > 0, then by our hypothesis necessarily x 0 ∈ Ω and by i) we have u(x) = u(x 0 ) > 0 for every x ∈ Ω. We obtain a contradiction to the fact that lim sup y→x u(y) ≤ 0.

Corollary 3.2 Let u ∈ SH k (Ω) and suppose that G is a connected W -invariant open subset of Ω with compact closure G ⊂ Ω. If s is D-superharmonic on Ω and u ≤ s on ∂G, then u ≤ s on G. Proof: Clearly u -s is D-subharmonic on G and for x ∈ ∂G, we have lim sup z→x [u(z) -s(z)] ≤ lim sup z→x u(z) -lim inf z→x s(z) = u(x) -s(x) ≤ 0.
Hence, the result follows from Theorem 3.1, ii).

Characterization of Dunkl subharmonic functions

Our aim in this section is give some characterizations of the ∆ k -subharmonicity. We will first do this for C 2 -∆ k -subharmonic functions. Then, an approximation method allowed us to extend the results to any ∆ k -subharmonic function.

Characterization of C 2 -D-subharmonic functions

As a first result, we have

Proposition 4.1 Let u ∈ C 2 (Ω). Then the following assertions are equivalent i) u ∈ SH k (Ω), ii) ∆ k u ≥ 0 on Ω, iii) u(x) ≤ M r S (u)(x) whenever B(x, r) ⊂ Ω. Proof: i) =⇒ ii) Suppose that ∆ k u(x) < 0 for some x ∈ Ω. By (2.9), we have lim t→0 M t B (∆ k u)(x) = ∆ k u(x). Hence, there exists r ∈]0, ϱ x [ such that 6 M t B (∆ k u)(x) ≤ 1 2 ∆ k u(x) < 0 for all t ∈]0, r]. This implies that 1 r 2γ+d ∫ r 0 ∫ ρ 0 M t B (∆ k u)(x) t dt ρ 2γ+d-1 dρ ≤ r 2 4(d + 2γ + 2) ∆ k u(x) < 0.
Therefore, by (2.17) we obtain M r B (u)(x) < u(x). A contradiction with the sub-mean property. ii) =⇒ iii) This follows immediately from the relation (2.16). iii) =⇒ i) From (2.18) and a direct integration with respect to r, we obtain the result.

The C 2 -D-subharmonicity can be characterized in terms of the monotonicity with respect to r of the spherical and volume means. More precisely, we have

Proposition 4.2 Let u ∈ C 2 (Ω). The following statements are equivalent i) u ∈ SH k (Ω), ii) for every x ∈ Ω, the function r -→ M r B (u)(x) is non-decreasing on ]0, ϱ x [ and lim r→0 M r B (u)(x) = u(x), (4.1) iii) for every x ∈ Ω, the function r -→ M r S (u)(x) is non-decreasing on ]0, ϱ x [ and lim r→0 M r S (u)(x) = u(x), (4.2) iv) u ∈ L 1 k,loc (Ω), lim r→0 M r B (u)(x) = u(x) for every x ∈ Ω and M r B (u)(x) ≤ M r S (u)(x), whenever B(x, r) ⊂ Ω.
Proof: At first, using Proposition 2.1-2), formulas (2.16) and (2.17), we deduce that the functions r -→ M r B (f )(x) and r -→ M r S (f )(x) are differentiable on ]0, ϱ x [ and the relations (4.1) and (4.2) are always satisfied for any fixed function f ∈ C 2 (Ω) and for any fixed x ∈ Ω. We note also that the first condition in assertion iv) is redundant but we will need it in order to extend this result to an arbitrary D-subharmonic function (see Theorem 4.2 below). ii) =⇒ i) As r -→ M r B (u)(x) is non-decreasing, (4.1) implies that the sub-mean property is clearly satisfied. i) =⇒ iii) We use the fact that ∆ k u ≥ 0 on Ω and we differentiate with respect to r the relation (2.16) and we get d dr M r S (u)(x) ≥ 0 i.e we obtain iii). iii) =⇒ iv) It is a direct consequence of the relation (2.18). iv) =⇒ ii) We differentiate with respect to r in the relation (2.18) and we obtain

d dr M r B (u)(x) = d + 2γ r ( M r S (u)(x) -M r B (u)(x) ) ≥ 0. This implies that r -→ M r B (u)(x) is non-decreasing on ]0, ϱ x [.

Approximation of D-subharmonic functions by C ∞ -functions

Let us consider the following radial function φ(x) := a exp (-

1 1-∥x∥ 2 )1 B(0,1) (x), x ∈ R d , where a is a constant such that x -→ φ(x)ω k (x) is a probability density. For ε > 0, define the function φ ε (x) = 1 ε d+2γ φ( x ε ). (4.3) It is well known that φ ε ∈ D(R d ) is radial with supp φ ε ⊂ B(0, ε).
In order to approximate D-subharmonic functions by smooth D-subharmonic functions, we need the following facts, proved in [START_REF] Gallardo | Radial mollifiers, mean value operators and harmonic functions in Dunkl theory[END_REF], on Dunkl convolution product

Proposition 4.3 Let u ∈ L 1
k,loc (Ω) and r Ω given by (2.11). For 0 < ε < r Ω , define the function u ε by

∀ x ∈ Ω ε , u ε (x) := u * k φ ε (x) := ∫ R d u(y)τ -x φ ε (y)ω k (y)dy. (4.4)
Then the sequence

(u ε ) ε<r Ω satisfies i) For every ε < r Ω , the function u ε is in C ∞ (Ω ε ) and we have ∆ k u ε (x) = ∆ k (u * k φ ε )(x) = u * k ∆ k φ ε (x), x ∈ Ω ε . (4.5)
ii) For every ε < r Ω and every closed ball B(x, r) ⊂ Ω ε , we have

M r B (u ε )(x) := M r B (u * k φ ε )(x) = M r B (u) * k φ ε (x). (4.6) iii) For almost every x ∈ Ω, u ε (x) -→ u(x) as ε -→ 0. iv) If u is continuous on Ω, then for every x ∈ Ω, u ε (x) -→ u(x) as ε -→ 0.
Moreover, the following associativity result

( u * k φ ε 1 ) * k φ ε 2 = ( u * k φ ε 2 ) * k φ ε 1 , on Ω ε 1 +ε 2 , ( 4.7) 
holds whenever ε 1 + ε 2 < r Ω (see [START_REF] Gallardo | Radial mollifiers, mean value operators and harmonic functions in Dunkl theory[END_REF], Proposition 3.3).

Remark 4.1

In order to prove that u * k φ ε is well defined on Ω ε , we have used the following support property (see [START_REF] Gallardo | Radial mollifiers, mean value operators and harmonic functions in Dunkl theory[END_REF])

supp τ -x φ ε ⊂ B W (x, ε) = ∪ g∈W B(gx, ε). (4.8)
Our approximate result is as follows:

Theorem 4.1 Let u ∈ SH k (Ω)
and u ε the functions defined by (4.4). Then we have

1) for every 0 < ε < r Ω , the function u ε is D-subharmonic and of class C ∞ on Ω ε ,
2) for every 0 < ρ < r Ω , the sequence (u ε ) 0<ε<ρ of C ∞ and D-subharmonic functions on Ω ρ is non-decreasing 7 and converges pointwise to u on Ω ρ as ε → 0,

3) for all B(x, r) ⊂ Ω, M r B (u ε )(x) -→ M r B (u)(x) and M r S (u ε )(x) -→ M r S (u)(x) as ε → 0. Proof: 1) By Proposition 3.1, u ∈ L 1 k,loc (Ω) and then from Proposition 4.3 we deduce that u ε ∈ C ∞ (Ω ε ). On the other hand, as u is D-subharmonic on Ω and τ -x φ ε ≥ 0, (4.6) implies that M r B (u ε )(x) ≥ u ε (x), for all B(x, r) ⊂ Ω ε . Therefore, u ε is D-subharmonic on Ω ε .
2) Choose 0 < ρ < r Ω (i.e. Ω ρ is nonempty). By 1) and i) of Proposition 4.3, we have

u ε ∈ C ∞ (Ω ρ ) ∩ SH k (Ω ρ ) for all ε < ρ.
• We will prove in two steps that the sequence (u ε ) 0<ε<ρ is non-decreasing.

Step1: Suppose that u is of class C 2 on Ω. According to [START_REF] Gallardo | Radial mollifiers, mean value operators and harmonic functions in Dunkl theory[END_REF] (see Proposition 3.2), the relation (4.4) can be rewritten in spherical coordinates as follows

u * k φ ε (x) = d k ∫ ε 0 φ ε (t)t d+2γ-1 M t S (u)(x)dt, (4.9) 
where φ ε is the profile function of φ ε and d k is the constant given by (2.5). Using the change of variables θ = t/ε in (4.9) and recalling (4.3), we deduce that

u ε (x) = d k ∫ 1 0 φ(θ) θ d+2γ-1 M θε S (u)(x)dθ. Since, r -→ M r S (u)(x) is non-decreasing (see Proposition 4.
2), we conclude that (u ε ) 0<ε<ρ is a non-decreasing sequence.

Step 2: Suppose only that u ∈ SH k (Ω). In order to use the same idea many times in the sequel of this paper, we will present the argument in the form of the following fundamental approximation lemma:

Lemma 4.1 Let v ∈ L 1
k,loc (Ω) and (φ ε ) the sequence defined by (4.3). Assume that for any ε < r Ω , the function v * k φ ε belongs to SH k (Ω ε ). Then a) for every 0 < ρ < r Ω , the sequence 

(v * k φ ε ) 0<ε<ρ is non-decreasing on Ω ρ , b) the function s : x → lim ε→0 v * k φ ε (x) is
* k φ η ∈ C ∞ (Ω ρ ) ∩ SH k (Ω ρ ). Consequently, by the statement 1) of Theorem 4.1, the functions [v * k φ η ] * k φ ε , with ε > 0 such that η + ε < ρ, are in C ∞ (Ω ρ ) ∩ SH k (Ω ρ )
. Furthermore, by the step 1, the sequence

( [v * k φ η ] * k φ ε ) 0<ε<ρ-η is non-decreasing i.e. if 0 < ε 1 ≤ ε 2 < ρ -η, then ∀ x ∈ Ω ρ , [v * k φ η ] * k φ ε 1 (x) ≤ [v * k φ η ] * k φ ε 2 (x).
By (4.7) the previous inequality can be written

∀ x ∈ Ω ρ , [v * k φ ε 1 ] * k φ η (x) ≤ [v * k φ ε 2 ] * k φ η (x).
Finally, letting η -→ 0 and using the statement iv) of Proposition 4.3, we obtain

∀ x ∈ Ω ρ , v * k φ ε 1 (x) ≤ v * k φ ε 2 (x).
This proves the assertion a). b) Let 0 < ρ < r Ω . Since the sequence (v * k φ ε ) 0<ε<ρ is non-decreasing on Ω ρ , we deduce that for any x ∈ Ω ρ , s(x) := lim ε→0 v * k φ ε (x) exists in [-∞, +∞[. On the other hand, from Proposition 4.3-iii), we see that s = v almost everywhere on Ω ρ . In particular s ̸ = -∞ on each connected component of Ω ρ . Consequently, by a) and Proposition 3.3 we deduce that s ∈ SH k (Ω ρ ) as a pointwise decreasing limit of D-subharmonic functions on Ω ρ . As ρ > 0 can be taken arbitrary small, the proof of the lemma is complete. Now, we will extend the results of Proposition 4.2 to any D-subharmonic function (see [START_REF] Armitage | Classical Potential Theory[END_REF], Corollary 3.2.6 for the classical case). Proof: i) =⇒ ii) Let u ∈ SH k (Ω). We already know that (4.1) holds (see Proposition 3.2). Let (u ε ) be the sequence defined by (4.4). By Theorem 4.1,

u ε ∈ C ∞ (Ω ε ) ∩ SH k (Ω ε ). Therefore, using Proposition 4.2, r -→ M r B (u ε )(x) is non-decreasing on ]0, dist(x, ∂Ω ε )[.
Letting ε -→ 0 and using Theorem 4.1, 3), we deduce that r

-→ M r B (u)(x) is also non- decreasing. ii) =⇒ i) This is obvious. i) =⇒ iii) If u ∈ SH k (Ω) ∩ C ∞ (Ω), the result is proved in Proposition 4.2.
Let us now suppose only that u ∈ SH k (Ω). By Proposition 4.3 and Theorem 4.1, the functions u ε defined by (4.4) 

are in SH k (Ω ε ) ∩ C ∞ (Ω ε ). Consequently, we have a) the function r -→ M r S (u ε )(x) is non-decreasing on ]0, dist(x, ∂Ω ε )[, b) for all 0 < ε < ρ, lim r→0 M r S (u ε )(x) = u ε (x), c) for all 0 < ε < ρ, u ε (x) ≤ M r S (u ε )(x), where ρ = ρ(x) > 0 is such that x ∈ Ω ε for all ε < ρ.
From a) and Theorem 4.1-3), we can see that r -→ M r S (u)(x) is also non-decreasing as a pointwise limit of non-decreasing functions. Using c) and letting ε -→ 0, we have u(x) ≤ M r S (u)(x). Moreover, since (u ε ) 0<ε<ρ is a non-decreasing sequence, we deduce that

∀ 0 < ε < ρ, u(x) ≤ M r S (u)(x) ≤ M r S (u ε )(x).
According to b), this implies that

∀ 0 < ε < ρ, u(x) ≤ lim r→0 M r S (u)(x) ≤ lim r→0 M r S (u ε )(x) = u ε (x).
Finally, letting ε -→ 0 and using Theorem 4.1-2), we deduce the desired result.

iii) =⇒ i) Let x ∈ Ω and r ∈]0, ϱ x [ be fixed and assume that u is nonpositive on the compact set B W (x, r) (using the upper semi-continuity of u). For all ρ ∈]0, r[, we have

2γ + d r 2γ+d ∫ r ρ M t S (u)(x)t 2γ+d-1 dt ≥ M ρ S (u)(x) ( 1 -(ρ/r) d+2γ
) .

Since t -→ M t S (u)(x) is nonpositive on ]0, r], letting ρ -→ 0 and using the monotone convergence theorem, Lemma 2.1 and the relation (4.2), we obtain

M r B (u)(x) ≥ u(x).
This proves that u is D-subharmonic on Ω. i) =⇒ iv) Let u ∈ SH k (Ω). We know that the function uω k is locally integrable on Ω and lim r→0 M r B (u)(x) = u(x) for every x ∈ Ω. By Proposition 4.2, the result is true when u ∈ C 2 (Ω). Now, suppose only that u is in SH k (Ω). Considering the D-subharmonic functions u ε defined in Theorem 4.1 , we get for ε small enough

M r B (u ε )(x) ≤ M r S (u ε )(x).
By Theorem 4.1, we deduce that M r B (u)(x) ≤ M r S (u)(x). iv) =⇒ i) We will use the same idea as in [START_REF] Helms | Potential theory[END_REF] (Lemma 2.4.4). First, we need the following lemma:

Lemma 4.2 Let f ∈ L 1
k,loc (Ω) be an u.s.c. function. Then for every x ∈ Ω and r > 0 such that B(x, r) ⊂ Ω, the function t -→ M t S (f )(x)t d+2γ-1 is integrable on [0, r] and we have 

M r B (f )(x) = d + 2γ r d+2γ ∫ r 0 M t S (f )(x)t d+2γ-1 dt. ( 4 
|M r B (f )(x)| ≤ C r ∫ B W (x,r) |f (y)|h k (r, x, y)ω k (y)dy ≤ C r ∫ B W (x,r) |f (y)|ω k (y)dy < +∞. Now, we turn to the proof of iv) =⇒ i). Let x ∈ Ω. Suppose that M r B (u)(x) ≤ M r S (u)(x) for every r ∈]0, ϱ x [. Since u ∈ L 1 k,loc (Ω),
d dr M r B (u)(x) = d + 2γ r ( M r S (u)(x) -M r B (u)(x) ) ≥ 0 a.e.. Thus, r -→ M r B (u)(x) is non-decreasing on [a, b] (see [2], Proposition 5.3). That is, for every 0 < t ≤ r < ϱ x , we have M t B (u)(x) ≤ M r B (u)(x).
Letting t -→ 0, we deduce that u(x) ≤ M r B (u)(x). This proves that u is in SH k (Ω) and the Theorem is completely proved.

∆ k -Riesz measure

In this section, we introduce the Riesz measure of a function u ∈ SH k (Ω). In order to do this, we will clarify some facts about the action of Dunkl operators on distributions. Let us start by recalling the following integration by parts formula see [START_REF] Dunkl | Hankel transforms associated to finite reflection groups[END_REF] or [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF]): Let f, g ∈ C 1 (Ω) such that g has compact support and D ξ be the ξ-directional Dunkl operator defined by (1.1). Then we have Note that by the intertwining relation (1.2), the operator

∫ Ω D ξ f (x)g(x)ω k (x)dx = - ∫ Ω f (x)D ξ g(x)ω k (x)dx. ( 5 
D ξ = V k ∂ ξ V -1 k : C ∞ (R d ) -→ C ∞ (R d
) is continuous for the Fréchet topology. Moreover, since D ξ leaves the space D(Ω) invariant, we deduce that D ξ : D(Ω) -→ D(Ω) is also continuous for the Fréchet topology. This justifies that D ξ T is well defined as an element of D ′ (Ω). In particular, if f ∈ L 1 k,loc (Ω) i.e. f ω k ∈ L 1 loc (Ω), the weak Dunkl-Laplacian of f ω k is given by

∀ ϕ ∈ D(Ω), ⟨∆ k (f ω k ), ϕ⟩ = ⟨f ω k , ∆ k ϕ⟩ = ∫ Ω f (x)∆ k ϕ(x)ω k (x)dx. (5.2)
Our first main result states that:

Theorem 5.1 Let u ∈ SH k (Ω).
Then there exists a nonnegative Radon measure µ in Ω such that ∆ k [uω k ] = µ in the sense of distributions. We will call µ the ∆ k -Riesz measure related to u.

Proof: As u ∈ L 1 k,loc (Ω) , uω k defines a distribution. Let ϕ ∈ D(Ω) and let (u ε ) 0<ε<ρ be the sequence of functions defined by (4.4) with ρ such that supp ϕ ⊂ Ω ρ . As 0 ≤ u ε -u ≤ u ρ -u, by Theorem 4.1 and the dominated convergence theorem, we have

⟨∆ k [uω k ], ϕ⟩ = ∫ Ω u(x)∆ k ϕ(x)ω k (x)dx = lim ε→0 ∫ Ω u ε (x)∆ k ϕ(x)ω k (x)dx.
Now, using the integration by parts formula (5.1), we deduce that

⟨∆ k [uω k ], ϕ⟩ = lim ε→0 ∫ Ω ∆ k u ε (x)ϕ(x)ω k (x)dx. (5.3) Consequently, [∆ k u ε ]ω k -→ ∆ k [uω k ] in D ′ (Ω) as ε → 0. Moreover, from (5.
3) and the fact that ∆ k u ε ≥ 0 (Theorem 4.1 and Proposition 4.1), we see that ∆ k [uω k ] is a nonnegative distribution on Ω. Then, according to [START_REF] Schwartz | Théorie des distributions[END_REF], there exists a nonnegative Radon measure µ on Ω such that ∆ k [uω k ] = µ and the proposition is proved. Now, we will establish a type Weyl's lemma for D-subharmonic functions:

Theorem 5.2 Let u ∈ L 1 k,loc (Ω). If ∆ k (uω k ) ≥ 0 in D ′ (Ω)
, then there exists a Dsubharmonic function s on Ω such that u = s a.e. in Ω.

Proof: Let us denote by µ the nonnegative Radon measure ∆ k (uω k ) and let φ ε be the function given by (4.3). We claim that

∀ ε < r Ω , ∀ x ∈ Ω ε , ∆ k (u * k φ ε )(x) = µ * k φ ε (x) := ∫ Ω τ -x φ ε (y)dµ(y) 8 .
(5.4) Indeed, by Proposition 4.3, the function u * k φ ε is of class C ∞ on Ω ε . Then, using respectively the relations (4.5), (4.4) and (A.6), we get

∆ k (u * k φ ε )(x) = [u * k (∆ k φ ε )](x) = ∫ Ω u(y)τ -x [∆ k φ ε ](y)ω k (y)dy = ∫ Ω u(y)∆ k [τ -x φ ε ](y)ω k (y)dy = ⟨uω k , ∆ k [τ -x φ ε ]⟩ = µ * k φ ε (x). Since τ -x φ ε ≥ 0, (5.4) implies that ∆ k [u * k φ ε ] ≥ 0 on Ω ε . Hence, the function u * k φ ε ∈ SH k (Ω ε ) (see Proposition 4.1)
. Thus, we obtain the result by using Lemma 4.1, b).

In the following result, we characterize the D-subharmonicity by means of the positivity of the distributional Dunkl Laplacian. 

: u ∈ L 1 k,loc (Ω), ∆ k (uω k ) ≥ 0 in D ′ (Ω) and u(x) = lim r→0 M r B (u)(x) for every x ∈ Ω.
Proof: The necessity part follows from Propositions 3.1, 3.2 and 5.1. Now, will show the sufficiency part. By Theorem 5.2, there exists a function v ∈ SH k (Ω) such that u(x) = v(x) for almost every x ∈ Ω. Therefore, for all x ∈ Ω and all r > 0 small enough, we have M r B (u)(x) = M r B (v)(x). Now, using Proposition 3.2, we deduce that u and v are identically equal in Ω and then u is in SH k (Ω).

Corollary 5.2 The cone SH

k (Ω) is closed for the L 1 k,loc (Ω) topology. Proof: Let (u n ) be a sequence of D-subharmonic functions on Ω such that u n -→ u in L 1 k,loc (Ω). As, u n ω k and uω k are in L 1 loc (Ω), we deduce that u n ω k -→ uω k in D ′ (Ω). Hence, ∆ k (u n ω k ) -→ ∆ k (uω) in D ′ (Ω). By Corollary 5.1, as ∆ k (u n ω k ) ≥ 0, we deduce that ∆ k (uω k ) ≥ 0 in D ′ (Ω)
. Now, by Theorem 5.2 there exists a D-subharmonic function s on Ω such that u = s a.e. in Ω. Then u = s in L 1 k,loc (Ω) and the result is proved. In [START_REF] Gallardo | Radial mollifiers, mean value operators and harmonic functions in Dunkl theory[END_REF], Weyl's lemma for D-harmonic functions has been proved. Here, we will give another proof of such result. In order to do this, we will prove the following lemma:

Lemma 5.1 A function u : Ω -→ R is D-harmonic if and only if it is simultaneously D-subharmonic and D-superharmonic on Ω.

Proof: It is enough to show the sufficiency part. Let ρ > 0 small enough and consider the function u ε , with ε < ρ, defined by (4.4). Clearly, by Theorem 4.1, the functions u ε and -u ε are in C ∞ (Ω ρ )∩SH k (Ω ρ ). Hence, by Proposition 4.1, we deduce that u ε is D-harmonic in Ω ρ . Again from Proposition 4.1, u ε (x) = M r S (u ε )(x) whenever B(x, r) ⊂ Ω ρ . Letting ε -→ 0 and using Theorem 4.1, we deduce that u(x) = M r S (u)(x) whenever B(x, r) ⊂ Ω ρ . Since ρ is arbitrary small, we deduce that u(x) = M r S (u)(x), for every B(x, r) ⊂ Ω. Finally, if we use (4.9), we conclude that for any ε > 0, u coincides with the D-harmonic function u ε on Ω ε . That is the function u is D-harmonic on Ω as desired.

Corollary 5.3 If u ∈ L 1 k,loc (Ω) satisfies ∆ k [uω k ] = 0 in D ′ (Ω)
, then there exists a Dharmonic function h on Ω such that u and h coincide a.e. on Ω.

Proof: From Theorem 5.2, there exist two functions u 1 , u 2 such that u 1 is D-subharmonic on Ω, u 2 is D-superharmonic on Ω and u = u 1 = u 2 almost everywhere. Moreover, by Proposition 3.2, we have

∀ x ∈ Ω, u 1 (x) = lim r→0 M r B (u 1 )(x) = lim r→0 M r B (u 2 )(x) = u 2 (x).
Therefore, the function h := u 1 = u 2 is simultaneously D-subharmonic and D-superharmonic on Ω. Hence, by the first step, h is D-harmonic in Ω and h = u almost everywhere in Ω.

Dunkl-Newtonian Potentials

In this section, we introduce the Dunkl-Newton kernel and the corresponding Dunkl-Newtonian potentials and we study some of their properties. Throughout this section, we will always suppose that d + 2γ > 2 (transient condition).

Dunkl type Newton kernel

Consider the Dunkl-Newton kernel defined by (1.14). It takes also the following form: Proposition 6.1 For every x, y ∈ R d , we have

N k (x, y) = 1 d k (d + 2γ -2) ∫ R d ( ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ ) 2-(d+2γ)
2 dµ y (z). (6.1)

Proof: From (1.7) and (1.10), we have

p t (x, y) = 1 (2t) d 2 +γ c k ∫ R d e -∥x∥ 2 +∥y∥ 2 -2 ⟨x,z⟩ 4t dµ y (z). (6.2)
Hence, by the change of variables 1/4t ↔ t in the integral (1.14) and using (2.5), we can write

N k (x, y) = 1 2d k Γ(d/2 + γ) ∫ +∞ 0 t d 2 +γ-2 ∫ R d e -t(∥x∥ 2 +∥y∥ 2 -2 ⟨x,z⟩) dµ y (z)dt.
Applying Fubini's theorem and then using the identity A -λ = 1 Γ(λ) ∫ +∞ 0 s λ-1 e -sA ds, A ≥ 0 and λ > 0 (when A = 0, the both terms are equal to +∞) by taking A = ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ and λ = d+2γ-2

2

, we obtain the result. Example 6.1 1) When k = 0 and d > 2, the Rösler measure µ x is equal to δ x (the Dirac measure at x) and then N 0 (x, y) = 2-d is the classical Newton kernel 9 .

1 (d-2)ω d-1 ∥x -y∥
2) We consider R d (d ≥ 1) with the root system R m := {±e 1 , . . . , ±e m }, where m is a fixed integer in {1, . . . , d} and (e j ) 1≤j≤d is the canonical basis of R d . For ξ ∈ R d , we will

denote ξ = (ξ (m) , ξ ′ ) ∈ R m × R d-m .
Noting that the Coxeter-Weyl group is given by W = Z m 2 and that the Z m 2 -orbit of a point ξ ∈ R d is given by

Z m 2 .ξ := {ε.ξ := (ε 1 ξ 1 , . . . , ε m ξ m , ξ ′ ), ε = (ε i ) 1≤i≤m ∈ {±1} m }.

The multiplicity function can be represented by the m-multidimensional parameter

k = (k 1 , . . . , k m ) with k j = k(e j ) > 0. Moreover, the Rösler measure is of the form µ y = µ (y (m) ,y ′ ) = µ y 1 ⊗ • • • ⊗ µ ym ⊗ δ y ′ with µ y i the Z 2 -Rösler measure at point y i .
If y i = 0, we know that µ 0 = δ 0 and if y i ̸ = 0, we have

⟨µ y i , f ⟩ := ∫ 1 -1 f (ty i )ϕ k i (t)dt, f ∈ C(R), 9 ω d-1 is the area of S d-1 .
where ϕ k i is the Z 2 -Dunkl density function of parameter k i given by (see [START_REF] Dunkl | Integral kernels with reflection group invariance[END_REF] or [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF] p.104)

ϕ k i (t) := Γ(k i + 1/2) √ πΓ(k i ) (1 -t) k i -1 (1 + t) k i 1 [-1,1] (t). Let C := [d k (d + 2γ -2)] -1 . Then the Z m 2 -Dunkl-Newton kernel is of the form N Z m 2 k (x, y) = C ∫ [-1,1] m ( ∥x (m) ∥ 2 + ∥y (m) ∥ 2 -2 m ∑ j=1 t j x j y j + ∥x ′ -y ′ ∥ 2 ) 1-d 2 -γ × m ∏ i=1 ϕ k i (t i )dt 1 . . . dt m . Proposition 6.2 Let x, y ∈ R d , with x ̸ = 0. 1) If y / ∈ W.x, then 0 < N k (x, y) < +∞.
2) When d ≥ 2 and γ > 0, we have N k (x, x) = +∞.

Proof: 1) Let y ∈ R d fixed. It is well known (see [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF] and [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF]) that

p t (x, y) ≤ 1 (2t) d 2 +γ c k max g∈W e -(∥x-gy∥ 2 )/4t . (6.3)
Hence, N k (x, y) < +∞ for all x / ∈ W.y. 2) At first suppose that x is not in the hyperplanes H α , α ∈ R (i.e. x lives in a Weyl chamber). It is enough to prove that I := ∫ 1 0 p t (x, x) = +∞. To do this, we need the following short-time asymptotic result of the Dunkl heat kernel established in [START_REF] De Jeu | Asymptotic analysis for the Dunkl kernel[END_REF] (Corollary 2): Let C be a fixed Weyl chamber. If x, y ∈ C, then

p t (x, y) ∼ t→0 ( ω k (x)ω k (y) ) -1/2 (4πt) -d/2 e -∥x-y∥ 2 4t
.

For y = x, we obtain p t (x, x) ∼ t→0 ( ω k (x) ) -1 (4πt) -d/2 and I = +∞ as desired.

When x ∈ H α for some α ∈ R, the result follows by using the lower semi-continuity of the function x -→ N k (x, x) (as non-decreasing limit of the sequence of continuous functions

x -→ ∫ n 1/n p t (x, x)dt). Indeed, if x ∈ H α , N k (x, x) = lim inf y→x N k (y, y) = +∞ because N k (y, y) = +∞ if y converges to x in a Weyl chamber limited by H α . Remark 6.1 For g ̸ = id, it is much more difficult to see if N k (x, gx) is finite or infinite.
This will be more explained in a forthcoming paper. However, from the relation (6.5) (see the next result), we can see that

N k (x, gx) = +∞ if and only if N k (x, g -1 x) = +∞.

Proposition 6.3 The Dunkl-Newton kernel satisfies the following properties:

1. For all x, y ∈ R d , we have

N k (x, y) = 1 d k ∫ +∞ 0 t 1-d-2γ h k (t, x, y)dt. (6.4) 2. For every x, y ∈ R d . Then N k (x, y) = N k (y, x), N k (gx, y) = N k (x, g -1 y). (6.5)
3. For all x, y ∈ R d with x / ∈ W.y, we have

min g∈W ( ∥x -gy∥ 2-(d+2γ) ) ≤ d k (d + 2γ -2)N k (x, y) ≤ max g∈W ( ∥x -gy∥ 2-(d+2γ)
) . (6.6)

4. For all y ∈ R d fixed, the function x -→ N k (x, y) is lower semi-continuous (l.s.c.) on R d and of class C ∞ on R d \W.y.
Proof: 1. Fix x, y ∈ R d . By (6.1) and Fubini's theorem , we have

N k (x, y) = 1 d k ∫ R d ( ∫ +∞ √ ∥x∥ 2 +∥y∥ 2 -2 ⟨x,z⟩ t 1-(d+2γ) dt ) dµ y (z) = 1 d k ∫ +∞ 0 t 1-(d+2γ) ( ∫ R d 1 [0,t] ( √ ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩)dµ y (z) ) dt = 1 d k ∫ +∞ 0 t 1-(d+2γ) h k (t, x, y)dt.
2. We obtain (6.5) by using (6.4) and the properties (2.3) of the harmonic kernel.

3.

At first, we note that from (1.3) for z ∈ supp µ y we can write z = ∑ g∈W λ g (z)gy, where λ g (z) ∈ [0, 1] are such that ∑ g∈W λ g (z) = 1. Then we have

∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ = ∑ g∈W λ g (z)∥x -gy∥ 2 . ( 6.7) 
Now, as f : t -→ t 1-d 2 -γ is a convex function on ]0, +∞[, by (6.7) we have ( ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩

) 1-d 2 -γ ≤ max g∈W ( ∥x -gy∥ 2-(d+2γ)
) .

This implies the right inequality. Again by convexity of the function f , Jensen's inequality and (6.7), we get

d k (d + 2γ -2)N k (x, y) ≥ ( ∫ R d (∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩)dµ y (z) ) 2-(d+2γ) 2 = ( ∑ g∈W ( ∫ R d λ g (z)dµ y (z) ) ∥x -gy∥ 2 ) 2-(d+2γ) 2 ≥ ( max g∈W ∥x -gy∥ 2 ) 2-(d+2γ) 2 = min g∈W ( ∥x -gy∥ 2-(d+2γ) ) ,
where in the last line we have used the fact that f is a decreasing function.

4.

The function x → N k (x, y) is l.s.c. on R d as being the increasing limit of the sequence (f n ) of continuous functions defined by f n : x → ∫ n 1/n p t (x, y)dt. As µ y is with compact support, we can differentiate locally in a neighborhood of x / ∈ W.y under the integral in the relation (6.1) and we obtain the result.

Theorem 6.1 Let x 0 ∈ R d . Then the function N k (x 0 , .) is 1) D-superharmonic on R d ,
2) locally integrable on R d with respect to the measure ω k (x)dx and we have

-∆ k ( N k (x 0 , .)ω k ) = δ x 0 in D ′ (R d ), (6.8) 
where δ x 0 is the Dirac measure at x 0 .

3) D-harmonic on R d \W.x 0 (W.x 0 the W -orbit of x 0 ).

Proof: Fix x 0 ∈ R d . We will use the following properties of the Dunkl heat kernel (see [START_REF] Rösler | Generalized Hermite polynomials and the heat equation for Dunkl operators[END_REF])

(∆ k -∂ t ) p t (x 0 , .)(x) = 0 and lim t→0 p t (x 0 , .)ω k = δ x 0 in D ′ (R d ), (6.9) 
We consider the function

S x 0 ,r (x) := ∫ +∞ r p t (x 0 , x)dt. (6.10)
1) By the monotone convergence theorem, we see that the function N k (x 0 , .) is the pointwise increasing limit of the sequence

( S x 0 ,1/n ) n .
Hence, by Proposition 3.3, it suffices to prove that for every r > 0, S x 0 ,r is D-superharmonic on R d . To do this, we will use the result of Proposition 4.1. The function p t (x 0 , .) is of class C ∞ on R d and we can differentiate under the integral sign in the relation (6.2) to obtain

∂ j p t (x 0 , .)(x) = - 1 2t 1 (2t) d 2 +γ c k ∫ R d (x j -z j )e -1 4t (∥x∥ 2 +∥x 0 ∥ 2 -2 ⟨x,z⟩) dµ x 0 (z)
and

∂ i ∂ j p t (x 0 , .)(x) = -δ ij 1 2t p t (x 0 , x) + 1 4t 2 1 (2t) d 2 +γ c k ∫ R d (x j -z j )(x i -z i )e -1 4t (∥x∥ 2 +∥x 0 ∥ 2 -2 ⟨x,z⟩) dµ x 0 (z),
where δ ij is the Kronecker symbol.

Using the fact that supp µ x 0 ⊂ B(0, ∥x 0 ∥), we deduce that

|∂ j p t (x 0 , .)(x)| ≤ ∥x∥ + ∥x 0 ∥ (2t) 1+ d 2 +γ c k , |∂ i ∂ j p t (x 0 , .)(x)| ≤ 1 (2t) 1+ d 2 +γ c k + (∥x∥ + ∥x 0 ∥) 2 (2t) 2+ d 2 +γ c k .
Let R > 0. The previous inequalities and the differentiation theorem under the integral sign imply that S x 0 ,r is of class C 2 on the open ball • B(0, R) and by (6.9) we deduce for

any x ∈ • B(0, R) that ∆ k S x 0 ,r (x) = ∫ +∞ r ∆ k (p t (x 0 , .)) (x)dt = ∫ +∞ r ∂ t p t (x 0 , x)dt = -p r (x 0 , x) < 0. (6.11) Therefore, S x 0 ,r is D-superharmonic on • B(0, R).
As R > 0 is arbitrary, we conclude that S x 0 ,r is D-superharmonic on R d as desired.

2) From the statement 1) and Proposition 3.1, we deduce that N k (x 0 , .) ∈ L 1 k,loc (R d ). By the dominated convergence theorem, we can see that

S x 0 ,r ω k -→ N k (x 0 , .)ω k in D ′ (R d ) as r -→ 0. This implies that ∆ k (S x 0 ,r ω k ) -→ ∆ k (N k (x 0 , .)ω k ) in D ′ (R d ) as r -→ 0.
On the other hand, from (6.11), (5.1) and (6.9), we have

lim r→0 ∆ k (S x 0 ,r ω k ) = -δ x 0 in D ′ (R d ).
This gives (6.8).

3) From the relation (6.8), we deduce that the function N k (x 0 , .)ω k is D-harmonic in the sense of distributions on R d \{x 0 }. Hence, by applying Weyl's Lemma (see Corollary 5.3) on the W -invariant open set R d \W.x 0 , there exists a D-harmonic function h on R d \W.x 0 such that N k (x 0 , x) = h(x) for almost every x ∈ R d \W.x 0 . Now, using the smoothness of the function N k (x 0 , .) on R d \W.x 0 , we obtain N k (x 0 , .) = h on R d \W.x 0 . This completes the proof.

Dunkl-Newtonian potential of Radon measures

Definition 6.1 Let µ ∈ M + (R d ). The Dunkl-Newtonian potential of µ is defined by N k [µ](x) := ∫ R d N k (x, y)dµ(y), x ∈ R d .
(6.12) Remark 6.2 Let µ be a signed Radon measure on R d and µ = µ + -µ -its Hahn-Jordan decomposition. We can also define the Dunkl-Newtonian potential of µ by setting

N k [µ](x) := N k [µ + ](x) -N k [µ -](x) whenever for every x ∈ R d , N k [µ + ](x) and N k [µ -](x)
are not infinite simultaneously.

Proposition 6.4 Let µ ∈ M + (R d ).
A necessary and sufficient condition for finiteness a.e. of the Dunkl-Newtonian potential of µ is that ∫

R d (1 + ∥y∥) 2-d-2γ dµ(y) < +∞. ( 6.13) 
We need the following lemma:

Lemma 6.1 Let µ be a finite nonnegative Radon measure on R d . Then N k [µ] belongs to L 1 k,loc (R d ). In particular, N k [µ] is finite a.e.. Proof: Fix R > 0. Using Fubini's theorem, we have ∫ B(0,R) N k [µ](x)ω k (x)dx = ∫ R d ∫ B(0,R) N k (x, y)ω k (x)dx dµ(y).
As µ(R d ) < +∞, it suffices to show that there exists a constant

C = C(R, d, γ) > 0 such that ∀ y ∈ R d , ∫ B(0,R) N k (x, y)ω k (x)dx ≤ C. (6.14)
Let x ∈ B(0, R) and y ∈ R d . From the relations (6.4), we can write

N k (x, y) = 1 d k ∫ 1 0 t 1-d-2γ h k (t, x, y)dt + 1 d k ∫ +∞ 1 t 1-d-2γ h k (t,
x, y)dt := I(x, y) + J(x, y).

• Since h k (t, x, y) ≤ 1, we can see that J ≤ 2) . This implies that

1 d k (d+2γ-
∀ y ∈ R d , ∫ B(0,R) J(x, y)ω k (x)dx ≤ m k [B(0, R)] d k (d + 2γ -2) = C 1 .
• Applying Fubini's theorem and then using (2.3) and (2.4), we deduce that

∀ y ∈ R d , ∫ B(0,R) I(x, y)ω k (x)dx ≤ 1 d k ∫ 1 0 t 1-d-2γ ∥h k (t, y, .)∥ L 1 (R d ,m k ) dt = 1 2(d + 2γ) = C 2 .
Finally, we obtain (6.14) by taking

C = C 1 + C 2 .
Proof of Proposition 6.4. Assume that (6.13) holds. We will show that x -→ N k [µ](x)ω k (x) is locally integrable. Let r ≥ 1. By Fubini's theorem, we have ∫

B(0,r) N k [µ](x)ω k (x)dx = ∫ ∥y∥≤2r ( ∫ B(0,r) N k (x, y)ω k (x)dx ) dµ(y) + ∫ ∥y∥>2r ( ∫ B(0,r) N k (x, y)ω k (x)dx ) dµ(y) = J 1 + J 2 .
From Lemma 6.1, J 1 < +∞. Now, by (6.6), we have

J 2 ≤ 1 d k (d + 2γ -2) ∫ ∥y∥>2r ( ∫ B(0,r) max g∈W ( ∥x -gy∥ 2-d-2γ ) ω k (x)dx ) dµ(y).
But, for all x ∈ B(0, r) and all g ∈ W , ∥x -gy∥ ≥ ∥y∥ -∥x∥ ≥ 1 2 ∥y∥ because ∥y∥ ≥ 2r. Moreover, since r ≥ 1, we also have ∥y∥ ≥ 1 2 (1 + ∥y∥). Hence, we get

∀ g ∈ W, ∥x -gy∥ ≥ 1 4 (1 + ∥y∥).
Thus,

J 2 ≤ 4 d+2γ-2 m k [B(0, r)] d k (d + 2γ -2) ∫ ∥y∥>2r (1 + ∥y∥) 2-d-2γ dµ(y) < +∞.
Conversely, suppose that (6.13) does not hold. Let x ∈ B(0, 1). Using (6.6) and the inequality ∥x -gy∥ ≤ 1 + ∥y∥ for all g ∈ W , we deduce that

d k (d + 2γ -2)N k [µ](x) = d k (d + 2γ -2) ∫ R d N k (x, y)dµ(y) ≥ ∫ R d ( max g∈W ∥x -gy∥ ) 2-(d+2γ) dµ(y) ≥ ∫ R d ( 1 + ∥y∥ ) 2-(d+2γ) dµ(y). Hence, if ∫ R d ( 1 + ∥y∥ ) 2-(d+2γ) dµ(y) = +∞, then N k [µ](x) = +∞ on B(0, 1)
and we get a contradiction.

Proposition 6.5 Let µ ∈ M + (R d ) with compact support. Then N k [µ](x) ∼ µ(R d ) d k (d + 2γ -2)
∥x∥ 2-(d+2γ) as ∥x∥ -→ +∞.

Proof: Let R > 0 such that supp µ ⊂ B(0, R). By the Cauchy-Schwarz inequality, we have

∀ z ∈ supp µ y ⊂ B(0, ∥y∥), (∥x∥ -∥y∥) 2 ≤ ∥x∥ 2 + ∥y∥ 2 -2 ⟨x, z⟩ ≤ (∥x∥ + ∥y∥) 2 .
Therefore, by (6.1) we obtain for every y ∈ B(0, R) fixed and ∥x∥ ≥ 2R

(∥x∥ + ∥y∥) 2-d-2γ ≤ C.N k (x, y) ≤ (∥x∥ -∥y∥) 2-d-2γ ,
where C = d k (d + 2γ -2). If we integrate these inequalities with respect to the measure dµ(y) and we divide by ∥x∥ 2-d-2γ , we obtain the result by letting ∥x∥ -→ +∞. ii)

If N k [µ](x) < +∞ for at least one x, then N k [µ] is D-superharmonic on R d .
Proof: i) Let µ be a compactly supported and nonnegative Radon measure on R d .

• For n ≥ 1, consider the function

F n (x) := ∫ supp µ ( ∫ n 1/n p t (x, y)dt ) dµ(y).
By the continuity theorem under the integral sign, we can see that F n is continuous on R d . Furthermore, using the monotone convergence theorem, we deduce that N k [µ] is a pointwise increasing limit of the sequence (F n ) of continuous functions. Therefore, the lower semi-continuity of the function N k [µ] on R d follows.

Let x ∈ R d and r > 0. Using Fubini's theorem and the D-superharmonicity of the function ξ -→ N k (ξ, y), we have

M r B (N k [µ])(x) = ∫ R d M r B [N k (., y)](x)dµ(y) ≤ ∫ R d N k (x, y)dµ(y) = N k [µ](x).
This implies that N k [µ] is D-superharmonic on R d .

• According to Lemma 5.1, we need only to prove that N k [µ] is D-subharmonic on Ω := R d \W.supp µ. Let B(x, r) ⊂ Ω. Again, by Fubini's theorem and the D-harmonicity of N k (., y) on R d \ W.y, we deduce that

M r B (N k [µ])(x) = ∫ R d M r B [N k (., y)](x)dµ(y) = ∫ R d N k (x, y)dµ(y) = N k [µ](x).
In particular, N k [µ] satisfies the sub-mean property. Now, it remains to show that N k [µ] is u.s.c. on Ω. In fact, N k [µ] is continuous on Ω. Indeed, fix x 0 ∈ Ω and R > 0 such that δ := dist (B(x 0 , R), W.supp µ) > 0. We know that x → N k (x, y) is continuous on Ω for every y ∈ supp µ. Moreover, from (6.3), we deduce that

∀ x ∈ B(x 0 , R), ∀ y ∈ supp µ, p t (x, y) ≤ 1 (2t) d 2 +γ c k e -δ/4t .
This implies that

∀ (x, y) ∈ B(x 0 , R) × supp µ, N k (x, y) ≤ ∫ +∞ 0 1 (2t) d 2 +γ c k e -δ/4t dt := C δ < +∞.
Consequently, by the continuity theorem under the integral sign, we conclude that N k [µ] is continuous on B(x 0 , R). This finishes the proof of i).

ii) Assume that N k [µ](x 0 ) < +∞ for some x 0 ∈ R d . We consider the sequence of functions defined by

ϕ n (x) = ∫ B(0,n) N k (x, y)dµ(y).
From i), we see that ϕ n is D-superharmonic on R 

-∆ k ( N k [µ]ω k ) = µ in D ′ (R d ). ( 6 
⟨∆ k ( N k [µ]ω k ) , φ⟩ = ∫ R d ( ∫ R d N k (x, y)dµ(y) ) ∆ k φ(x)ω k (x)dx = ∫ R d ( ∫ R d N k (x, y)∆ k φ(x)ω k (x)dx ) dµ(y) = ∫ R d ⟨∆ k ( N k (., y)ω k )
, φ⟩ dµ(y).

As N k (x, y) = N k (y, x), from (6.8) we obtain

⟨∆ k ( N k [µ]ω k ) , φ⟩ = - ∫ R d φ(y)dµ(y), as desired.
From the previous result, we can deduce the uniqueness principle which states that Corollary 6.1 Let µ, ν ∈ M + (R d ). Assume that µ and ν satisfy (6.13) and

N k [µ] = N k [ν] a.e. on R d . Then µ = ν.
In the following result, we will obtain all distributional solutions of the Dunkl-Poisson equation (see [START_REF] Lieb | Analysis[END_REF] for the classical case):

Proposition 6.8 Let f ∈ L 1 loc (R d ) such that ∫ R d (1 + ∥y∥) 2-d-2γ |f (y)|dy < +∞. Then the function N k [f ] : x → ∫ R d N k (x, y)f (y)
dy is a solution of the Poisson equation:

-∆ k (uω k ) = f in D ′ (R d ). ( 6 

.16)

Moreover, any solution u of (6.16) 

in L 1 k,loc (R d ) is of the form N k [f ] + h, where h is a D-harmonic function on R d .
Proof: By decomposing f = f + -f -, where f + = max(f, 0) and f -= max(-f, 0), we may assume that f is nonnegative. Using Proposition 6.4, we deduce that N k [f ] is finite a.e and Proposition 6.7 implies that it satisfies the Poisson equation (6.16). Now, let v be a solution of (6.16)

. Then ∆ k (vω k -N k [f ]ω k ) = 0 in distributional sense. Thus, by Weyl's lemma v = N k [f ] + h a.e for some D-harmonic function h on R d . That is v = N k [f ] + h in L 1 k,loc (R d ).
7 Decompositions of Dunkl subharmonic functions

Riesz decomposition theorems

One of the most fundamental results in the theory of classical subharmonic functions is due to F. Riesz ([20]) and states that any subharmonic function can be locally written as the sum of a Newtonian potential plus a harmonic function (see for example [START_REF] Hayman | Subharmonic functions[END_REF]). In the following result, we will obtain an analog of this result for D-subharmonic functions. Then there is a unique D-harmonic function h on Ω such that 

∀ x ∈ G, u(x) = - ∫ G N k (x, y)dµ(y) + h G (x). ( 7 
∆ k (uω k + N k [µ G ]ω k ) = 0 in D ′ (G). That is uω k + N k [µ G ]ω k is a D-harmonic distribution on G. By Weyl's lemma, there exists a D-harmonic function h G on G such that u(x) = -N k [µ G ](x) + h G (x),
∀ x ∈ Ω, u(x) = -N k [µ](x) + h(x), ( 7 
:= Ω 1 n ∩ • B(0, n),
with Ω r given by (2.10)) and let µ n = µ |On . As above, the function N k [µ n ] : x → ∫ On N k (x, y)dµ(y) is D-superhamonic on R d and also on Ω. Consequently, using the monotone convergence theorem, our hypothesis and Proposition 3.3, we deduce that N k [µ] is D-superharmonic on Ω as being an increasing pointwise limit of a sequence of D-superharmonic functions on Ω. In particular, this implies that the function N k [µ]ω k defines a distribution on Ω (by Proposition 3.1). Now, if we use (6.8) and we proceed as in the proof of Proposition 6.7, we obtain 

-∆ k (N k [µ]ω k ) = µ in D ′ (Ω). ( 7 

Bounded from above Dunkl subharmonic functions on R d

In this subsection, we will describe the D-subharmonic functions which are bounded from above on the whole space R d and we will characterize their related Riesz measures. 

u(x) = sup x∈R d u(x) -N k [µ](x), x ∈ R d . (7.4)
In the classical case, the proof of this theorem is based on the Nivanlinna theorems (see [START_REF] Hayman | Subharmonic functions[END_REF], Theorem 3.20). Here, we will give another proof. We start by the following result: (5.4). Then, for every x ∈ R d , we have

Lemma 7.1 Let µ ∈ M + (R d ) and µ * k φ ε , ε > 0, be the function defined on R d by
N k [ (µ * k φ ε )(y)ω k (y)dy ] (x) = ∫ R d N (x, .) * k φ ε (z)dµ(z) (7.5) and lim ε→0 N k [ (µ * k φ ε )(y)ω k (y)dy ] (x) = N k [µ](x). ( 7 

.6)

Note that the terms in (7.5) and (7.6) may be equal to +∞.

Proof: i) Let x ∈ R d and ε > 0. We obtain (7.5) by using respectively (6.12), (5.4), Fubini's theorem and (A. Conversely, let µ ∈ M + (R d ) satisfying (7.7) for some x 0 ∈ R d . We will partially follow the proof of Theorem 3.20 in [START_REF] Hayman | Subharmonic functions[END_REF]. Let u(x) = -N k [µ](x). Then, by (6.15), it is enough to prove that u ∈ SH k (R d ). We can write N k (x, y)dµ(y) := u 1 (x) + u 2 (x).

From Proposition 6.6, the function u 1 ∈ SH k (R d ). For n ∈ N with n > 1, we consider

v n (x) = - ∫ B W (x 0 ,n)\B W (x 0 ,1)
N k (x, y)dµ(y).

Again by Proposition 6.6, the function v n ∈ SH k (R d ). Moreover, we see that u 2 is the pointwise decreasing limit of v n on R d as n → +∞. By (6.4) and Fubini's theorem, we have

v n (x 0 ) = - 1 d k ∫ ∞ 0 t 1-d-2γ ∫ B W (x 0 ,n)\B W (x 0 ,1)
h k (t, x 0 , y)dµ(y)dt

= - 1 d k ∫ ∞ 1 t 1-d-2γ ∫ B W (x 0 ,n)\B W (x 0 ,1)
h k (t, x 0 , y)dµ(y)dt

≥ - 1 d k ∫ ∞ 1 t 1-d-2γ n k (t, x 0 )dt,
where in the second equality, the integral in t variables has been decomposed on ]0, 1[ and ]1, +∞[ and then we have used ∀ t ≤ 1, supp h k (t, x 0 , .) ⊂ B W (x 0 , t) ⊂ B W (x 0 , 1). Letting n → +∞ and using our hypothesis (7.7), we deduce that u 2 (x 0 ) > -∞. Consequently, by Proposition 3.3, u 2 ∈ SH k (R d ). Thus, since u = u 1 + u 2 , u ∈ SH k (R d ).

A Annex: The Dunkl transform and Dunkl's translation operators

• The Dunkl transform of a function f ∈ L 1 (R d , m k ) is defined by

F k (f )(λ) := ∫ R d f (x)E k (-iλ, x)ω k (x)dx, λ ∈ R d , (A.1)
where E k (x, y) := V k (e ⟨x,.⟩ )(y), x, y ∈ R d , is the Dunkl kernel which is analytically extendable to C d × C d and satisfies the following properties: for all x ∈ R d , y ∈ C d , all λ ∈ C and all multi-indices υ ∈ N d (see [START_REF] Dunkl | Integral kernels with reflection group invariance[END_REF], [START_REF] Dunkl | Orthogonal Polynomials of Several variables[END_REF], [START_REF] De Jeu | The Dunkl transform[END_REF] and [START_REF] Rösler | Dunkl Operators: Theory and Applications[END_REF]) It is well known (see [START_REF] Dunkl | Hankel transforms associated to finite reflection groups[END_REF] and [START_REF] De Jeu | The Dunkl transform[END_REF]) that the Dunkl transform F k is an isomorphism of S(R d ) (the Schwartz space) onto itself and its inverse is given by

E k (x, y) = E k (y,
F -1 k (f )(x) = c -2 k ∫ R d f (λ)E k (ix, λ)ω k (λ)dλ, x ∈ R d , (A.3)

Corollary 3 . 1

 31 If u and v are D-subharmonic functions on a W -invariant open set Ω ⊂ R d and u(x) = v(x) for almost every x ∈ Ω, then u and v are identically equal in Ω.

3 )

 3 well defined and D-subharmonic on Ω and v = s almost everywhere on Ω. Assume the result of the Lemma for the moment. By Proposition 3.1 and the statement 1) of the theorem, the hypotheses of Lemma 4.1 are satisfied. Consequently, using Lemma 4.1 and the uniqueness principle (Corollary 3.1), we obtain the statement 2). By 2), the result follows immediately from the monotone convergence theorem. Proof of Lemma 4.1: a) Fix ρ ∈]0, r Ω [ and let η ∈]0, ρ[. By our hypothesis and Proposition 4.3, the function v

Theorem 4 . 2

 42 Let u be an u.s.c. function on a W -invariant open set Ω ⊂ R d . Assume that u is not identically -∞ on each connected component of Ω. Then the statements i), ii), iii) and iv) of Proposition 4.2 are equivalent.

. 10 )

 10 Proof: Assume that f is nonpositive in the fixed Dunkl ball B W (x, r) ⊂ Ω. The formula (4.10) has been established in Lemma 2.1. Therefore, it suffices to show that M r B (f )(x) ̸ = -∞. Denoting C r := (m k (B(0, r))) -1 , by (2.1) and the fact that h k (r, x, y) ≤ 1, we get

. 1 )

 1 For a distribution T ∈ D ′ (Ω), we define the weak Dunkl ξ-directional derivative of T (ξ ∈ R d ) by ∀ ϕ ∈ D(Ω), ⟨D ξ T, ϕ⟩ = -⟨T, D ξ ϕ⟩ .

Example 5 . 1

 51 Let u ∈ SH k (Ω) ∩ C 2 (Ω). Using (5.2) and (5.1), clearly the ∆ k -Riesz measure of u is given by ∆ k u(x)ω k (x)dx.

Corollary 5 . 1

 51 Let u be a function defined on Ω. Then u ∈ SH k (Ω) if and only if u satisfies

Proposition 6 . 6

 66 Let µ be a nonnegative Radon measure on R d . i) If µ has compact support, then N k [µ] is D-superharmonic on R d and D-harmonic on R d \W.supp µ.

Proposition 6 . 7

 67 d and ϕ n (x) ↑ N k [µ](x) as n -→ +∞. Hence, from Proposition 3.3 the function N k [µ] is D-superharmonic on R d . Let µ ∈ M + (R d ) satisfying the finiteness condition (6.13). Then N k [µ] satisfies the Dunkl-Poisson equation

Theorem 7 . 1

 71 Let Ω ⊂ R d be open and W -invaraint, u ∈ SH k (Ω) and µ = ∆ k [uω k ] be the ∆ k -Riesz measure related to u. Then, for all W -invariant open set G with compact closure G ⊂ Ω, there exists a unique D-harmonic function h G on G such that

Theorem 7 . 2

 72 for almost every x ∈ G. Finally, using the uniqueness principle (Corollary 3.1) we obtain the equality everywhere on G. Now, we will give a global version of the Riesz decomposition theorem: Let Ω be a connected and W -invariant open subset of R d , u ∈ SH k (Ω) and let µ be the ∆ k -Riesz measure of u. Assume that N k [µ](x) < +∞ for at least one x ∈ Ω.

Theorem 7 . 3

 73 Let u be a bounded from above D-subharmonic function on R d and µ be the associated ∆ k -Riesz measure. Then u has a global Riesz decomposition on R d given by

NN 3 : 2 ) 3 )Proposition 7 . 1 1 t 1 . 7 ) 7 . 2 1 : 1 t 1

 3237111772111 8) as followsN k [ (µ * k φ ε )(y)ω k (y)dy ] k (x, y)τ -z φ ε (y)ω k (y)dy ) (x, .) * k φ ε (z)dµ(z).ii) As the function N k (x, .) is D-superharmonic on R d , by Theorem 4.1, N (x, .) is the decreasing pointwise limit of the sequence (N k (x, .) * k φ ε ) ε as ε → 0. Consequently, (7.6) follows from (7.5) and from the monotone convergence theorem.Proof of Theorem 7.We shall prove first the result when u is of class C 2 on R d . In this case, the relation (2.16) plays a key role. Let a := sup x∈R d u(x). We can see by (2.14) that M r S (u)(x) ≤ a for every x ∈ R d and 3. A function u (not identically -∞) defined on R d is of the form u = -N k [µ]+h where µ ∈ M + (R d ) and h is a D-harmonic function on R d if and only if u ∈ SH k (R d ) and u has a D-harmonic majorant on R d . In this case, h is the least D-harmonic majorant of u on R d .Proof: By taking µ = δ x 0 , the statement 1) is a particular case of 2). Let h be a D-harmonic function onR d such that h ≤ N k [µ]. Then the function s = h -N k [µ] satisfies: i) s ≤ 0 on R d , ii) s is in SH k (R d ) and iii) µ is the ∆ k -Riesz measure of s (by(6.15)). Therefore, by Theorem 7.3, we haves = sup R d s -N k [µ] = h -N k [µ].Thus, h = sup R d s and by i) we must have h ≤ 0. This proves 2). Suppose thatu = -N k [µ] + h. Clearly u ∈ SH k (R d ) and u ≤ h. Now, let h 1 be a Dharmonic function on R d such that u = -N k [µ]+h ≤ h 1 . This implies that h-h 1 ≤ N k [µ].Thus, by the statement 2), we obtain h ≤ h 1 . This proves that h is the least D-harmonic majorant of u on R d . Conversely, assume that u ∈ SH k (R d ) and it has a D-harmonic majorant h 1 on R d . Then the function u -h 1 is nonpositive and D-subharmonic on R d . Therefore, by Theorem 7.3,∀ x ∈ R d , u(x) -h 1 (x) = a -N k [µ](x)for some constant a ≤ 0. Thus, for h= a + h 1 , u = h -N k [µ]is the global Riesz decomposition of u and clearly we have h ≤ h 1 . Now, we will give a necessary and sufficient condition for µ ∈ M + (R d ) to be the ∆ k -Riesz measure of a bounded from above D-subharmonic function on R d . Let µ ∈ M + (R d ). Then µ is the ∆ k -Riesz measure of a bounded from above D-subharmonic function on R d if and only if there existsx 0 ∈ R d such that ∫ +∞ -d-2γ n k (t, x 0 )dt < +∞ with n k (t, x 0 ) := ∫ R d h k (t, x 0 , y)dµ(y). (7Remark In classical case (k=0), we have n 0 (t, x 0 ) = µ[B(x 0 , t)] and we can always assume x 0 = 0 by replacing the subharmonic function u of ∆-Riesz measure µ by its translate u(x 0 + .) ([START_REF] Hayman | Subharmonic functions[END_REF],Theorem 3.20). But, if k ̸ = 0 this is not possible for at least two reasons. Firstly, the Dunkl translations act only on some functional spaces and not on sets. Secondly, they are not always positive operators. In fact, evenif u ∈ C ∞ (R d ) ∩ SH k (R d ) (i.e. ∆ k u ≥ 0), we don't have necessarily τ x [∆ k u] ≥ 0 and thus τ x u is not necessarily in SH k (R d ).Proof of Proposition 7.Let u ∈ SH k (R d ) bounded from above with ∆ k -Riesz measure µ. By Theorem 7.3, u is of the form u = sup R d u-N k [µ]. This proves that -N k [µ] ∈ SH k (R d ). Using (6.4) and Fubini's theorem, we obtain for almost every x ∈ R d ∫ +∞ -d-2γ n k (t, x)dt ≤ ∫ +∞ 0 t 1-d-2γ n k (t, x)dt = d k N k [µ](x) < +∞.

  u(x) = -∫ B W (x 0 ,1) N k (x, y)dµ(y) -∫ R d \B W (x 0 ,1)

e

  x), E k (x, λy) = E k (λx, y), ∂ υ y E k (x, y) ≤ ∥x∥ |υ| max g∈W Re ⟨gx,y⟩ . (A.2)

  Schwartz space of C ∞ -functions on R d which are rapidly decreasing together with their derivatives.

	• B(a, ρ)	(	resp.	)	the closed Euclidean	(	resp.
	the open Euclidean, resp. the closed Dunkl				

• B(a, ρ), resp. B W (a, ρ) := ∪ g∈W B(ga, ρ)

  and the nonpositivity of u, we deduce that ∫

		∫	
	u(y)h k (4r, z, y)ω k (y)dy ≤	u(y)h k (r, x, y)ω k (y)dy.	(3.1)
	R d	R d	
	Now, if we apply (2.6) once again where we replace respectively r, a, b and ξ by r/4, x, y
	and x we get		
	∀ y ∈ B(x, r/2), h(r/4, x, x) ≤ h k (r, y, x)	(3.2)
	Thus, using (3.2), (2.3), (3.1), (2.1) and the fact that u ≤ 0, we obtain
	∫	∫	
	u(y)h k (4r, z, y)ω k (y)dy ≤		
	R d	B(x,r/2)	

  by Lemma 4.2, the function r -→ M r B (u)(x) is absolutely continuous on every closed interval [a, b] ⊂]0, ϱ x [ as a product of two absolutely continuous functions. Hence, it is almost everywhere differentiable on [a, b] and we have

  .15) Proof: By Proposition 6.6, N k [µ] is D-superharmonic and then the function N k [µ]ω k defines a distribution on R d . Let φ ∈ D(R d ). Using the fact that N k [µ]ω k is locally integrable, we can apply Fubini's theorem to obtain

  .1) Proof: Let G be a W -invariant open set with compact closure G ⊂ Ω and set µ G := µ |G the restriction of µ to G. Clearly, µ G is a nonnegative Radon measure on Ω with compact support contained in G. It is also the ∆ k -Riesz measure of the restriction of u to G. Furthermore, µ G can be considered as a compactly supported nonnegative Radon measure on R d . Hence, by Proposition 6.6, the function N k [µ G ] is D-superharmonic on R d (then also on G) and by the relation (6.15), we obtain

  Let (O n ) be an open W -invariant exhaustion of Ω such that for every n (large enough) the compact closure of O n is contained in O n+1 (we can take O n

.2) where N k [µ](x) := ∫ Ω N k (x, y)dµ(y).

In this case, we say that u has a global Riesz decomposition on Ω.

Proof:

  .3) Finally, we conclude the result by the same way, replacing G by Ω, as in the end of the proof of Theorem 7.1. In the relation (7.1) (resp.(7.2) on Ω), we see that h G ≥ u on G (resp. h ≥ u). In this case, we say that h G (resp. h) is a D-harmonic majorant of u on G (resp. on Ω). When Ω = R d and under the same assumptions of Theorem 7.2, we will prove in the next section that h is the least D-harmonic majorant of u on R d in the sense that if h 1 is a D-harmonic function on R d , then u ≤ h 1 implies h ≤ h 1 .

	Remark 7.1

carrying its usual Fréchet topology.

Note that if the function f is u.s.c, then f is bounded from above on compact sets and M r B (f )(x) is well-defined (eventually equal to -∞).

Note that negligible sets for the Lebesgue measure coincide with negligible sets for the measure m k .

Recalling that dσ is the surface measure on the unit sphere S d-1 of R d .

replacing u by u -maxK u.

We recall that ϱx is the distance from x to the boundary of Ω (see (2.12)).

i.e. for all fixed x ∈ Ωρ, ε → uε(x) is a non-decreasing function on ]0, ρ[.

Note that by (4.8), µ * k φε is well defined on Ωε for any nonnegative Radon measure µ on Ω.

every r > 0. Moreover, since u ∈ SH k (R d ), the function r -→ M r S (u)(x) is non decreasing (by Proposition 4.2). Consequently, h(x) := lim r→+∞ M r S (u)(x) exists and h(x) ≤ a for every x ∈ R d . On the other hand, as ∆ k u ≥ 0, by the monotone convergence theorem, we have

Now, using the relations (6.4), (2.4) and applying Fubini's theorem, we can see that

where dµ(y) = ∆ k u(y)ω k (y)dy is the ∆ k -Riesz measure of u (see Example 5.1). Hence, letting r -→ +∞ in the relation (2.16) with f = u, we deduce that

In particular, for all

Using Theorem 7.2, we deduce that u has a global Riesz decomposition on R d given by u = h-N k [µ] and the function h is D-harmonic on R d . Since h ≤ a, by Liouville's theorem for bounded from above D-harmonic functions (see [START_REF] Gallardo | A new mean value property for harmonic functions relative to the Dunkl-Laplacian operator and applications[END_REF]), h is a constant. We denote again by h this constant. Furthermore, since u is D-subharmonic, we have u(x) ≤ M r S (u)(x) ≤ h. Then, by taking the supremum of u(x) over x ∈ R d , we get a ≤ h. Finally, we obtain h = a and u = a -N k [µ]. Let us now u be a D-subharmonic function on R d and let u ε = u * k φ ε be the function defined by (4.4). We know that u ε ∈ C ∞ (R d ) ∩ SH k (R d ) and its ∆ k -Riesz measure is given by dµ ε (x) := µ * k φ ε (x)ω k (x)dx (see the relation (5.4)). Moreover, as τ -x φ ε ≥ 0 and using (A.7) (recalling that ∫ R d φ ε (y)ω k (y)dy = 1), u ε is bounded from above and we get a ε := sup u ε (x) ≤ a := sup u(x). Now, since u is the pointwise non-decreasing limit of the sequence (u ε ) (see Theorem 4.1), the sequence of real numbers (a ε ) is also non-decreasing and a ε ≥ a. This proves that a ε = a for all ε > 0. By the first step, we conclude that

Letting ε -→ 0 and using the relation (7.6), we deduce the desired result.

Corollary 7.1

1. For every x 0 ∈ R d , the zero function is the greatest D-harmonic minorant on R d of the D-superharmonic function N k (x 0 , .).

Let µ ∈ M

where c k is the constant given by (1.9). Moreover, the following Plancherel theorem holds:

The transformation c -1 k F k extends uniquely to an isometric isomorphism of L 2 (R d , m k ) and we have ∥c [START_REF] Trimèche | Paley-Wiener theorem for the Dunkl transform and Dunkl translation operators[END_REF])

where T x is the classical translation operator given by

) and using the Dunkl transform for all y ∈ R d we have (see [START_REF] Trimèche | Paley-Wiener theorem for the Dunkl transform and Dunkl translation operators[END_REF]):

The operators τ x , x ∈ R d , satisfy the following properties:

2) For all f ∈ C ∞ (R d ) and all x, y ∈ R d , we have

3) The Dunkl-Laplace operator ∆ k commutes with the Dunkl translations i.e