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Transient response of elastic bodies connected by a thin stiff viscoelastic layer with evanescent mass Réponse transitoire de corps élastiques liés par une mince et raide bande viscoélastique de faible masse
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 devoted to the dynamic response of a structure made up of two linearly elastic bodies connected by a thin soft adhesive layer made of a Kelvin-Voigt-type nonlinear viscoelastic material to the cases of stiff and very stiff adhesives whose mass vanishes. We use a nonlinear extension of Trotter's theory of convergence of semi-groups of operators acting on variable spaces to identify the asymptotic behavior of the mechan-ical state of the system, when some geometrical and mechanical parameters tend to their natural limits. The models we obtain describe the behavior of a structure consisting of two linearly elastic adherents perfectly bonded to a material deformable flat surface whose behavior is of the same kind as that of the genuine adhesive.

Résumé

Nous étendons aux adhésifs durs ou très durs, dont la masse est évanescente, l'étude menée en [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] consacrée au comportement dynamique d'un assemblage de deux corps linéairement élastiques liés par une couche adhésive mince et molle constituée d'un ma-tériau viscoélastique non linéaire de type Kelvin-Voigt. Afin d'identifier le comportement asymptotique de l'état mécanique du système lorsque des paramètres mécanique et géomé-triques tendent vers leurs limites naturelles, nous utilisons une extension non linéaire de la théorie de Trotter de convergence de semi-groupes d'opérateurs agissant sur des espaces variables. Les modèles obtenus décrivent le comportement d'une structure constituée de

Setting the problem

We extend to the situations of high and very high stiffness the results obtained in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] concerning the dynamics of elastic bodies connected by a thin soft viscoelastic layer. Let { e 1 , e 2 , e 3 } be an orthonormal basis of R 3 assimilated to the Euclidean space. For all ξ = (ξ 1 , ξ 2 , ξ 3 ) in R 3 , ξ stands for (ξ 1 , ξ 2 ). The space of all (n × n) symmetric matrices is denoted by S n and equipped with the usual inner product and norm denoted by • and | | (as in R 3 ). For all η in S 3 , η stands for the matrix (η αβ ) 1≤α,β≤2 in S 2 . We study the dynamic response of a structure consisting of two adherents connected by a thin adhesive layer which is subjected to a given loading. Let be a domain of R 3 with Lipschitz-continuous boundary ∂ . The intersection of with {x 3 = 0} is a domain S of R 2 with a positive two-dimensional Haussdorf measure H 2 (S). Let ε be a positive number and ± := ∩ {±x 3 > 0}, then adhesive and adherents occupy B ε := S × (-ε, +ε) and ε ± := ± ± εe 3 respectively; we define ε :=

ε + ∪ ε -, S ε ± := S ± εe 3 and O ε := ε ∪ B ε ∪ S ε + ∪ S ε -.
We consider a partition ( 0 , 1 ) of ∂

and, for all in { 0 , 1 }, the sets ± , ε

± and ε respectively denote ∩ {±x 3 > 0}, ± ± εe 3 and ε

+ ∪ ε -. Moreover, we
assume that H 2 ( 0 + ) > 0. The structure made of the adhesive and the two adherents, perfectly stuck together along S ε ± , is clamped on ε 0 and subjected to body forces of density f ε and to surface forces g ε on ε 1 . The adherents are modeled as linearly elastic materials with a strain energy density W ε such that

W ε (x, e) = 1 2 a ε (x)e • e, a.e. x ∈ ε , ∀e ∈ S 3 (1)
The thin adhesive is assumed to be made of a homogeneous, isotropic and "viscoelastic of Kelvin-Voigt generalized type".

Its strain energy density reads as μ w I , while its dissipation potential is denoted by b D, where μ and b are positive scalars; w I is a positive definite quadratic form on S 3 and D a convex and positively homogeneous function of degree q, 1 ≤ q ≤ 2.

Let ρ > 0, ρ M > ρ m > 0 and ρ ε a measurable function. The density γ ε of the structure is equal to ρ ε in ε and to ρ in B ε . Denoting by Lin(S 3 ) the space of linear mappings from S 3 into S 3 , we make the following assumptions on the data:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ There exists ( f , g, a, ρ) in L 2 ( ; R 3 ) × L 2 ( 1 ; R 3 ) × L ∞ ( ; Lin(S 3 )) × L ∞ ( ) such that f ε (x) = f (x ∓ εe 3 ) a.e. x ∈ ε ± , f ε (x) = 0 a.e. x ∈ B ε g ε (x) = g(x ∓ εe 3 ) a.e. x ∈ ( 1 ) ε ± , g ε (x) = 0 a.e. x ∈ ∂ S × (-ε, ε) a ε (x) = a(x ∓ εe 3 ) a.e. x ∈ ε ± ρ ε (x) = ρ(x ∓ εe 3 ) a.e. x ∈ ε ± ∃ a m , a M > 0 s.t. a m |e| 2 ≤ a(x)e • e ≤ a M |e| 2 , ∀e ∈ S 3 ∃ ρ m , ρ M > 0 s.t. ρ m ≤ ρ(x) ≤ ρ M , a.e. x ∈ (2) 
Thus, the problem (P s ) of determining the dynamic evolution of the assembly involves a quadruplet s := (ε, μ, b, ρ) of data so that all the fields will be hereafter indexed by s. In the following, t denotes the time, e(u) is the linearized strain tensor associated with the field of displacement u, and ∂ J (v) denotes the subdifferential at v of any lower semi-continuous convex function J , while D J(v) stands for the differential at v of any Fréchet differentiable function J . If U 0 s = (u 0 s , v 0 s ) is the initial state, a formulation of (P s ) could be 

(P s ) ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Find u s sufficiently smooth in × [0, T ] such that u s = 0 on ε 0 × (0, T ] u s (•, 0), ∂u s ∂t (•, 0) = U s 0 and
O ε γ ε ∂ 2 u s ∂t 2 v dx + ε a ε e(u s ) • e(v) dx + B ε μ D w I (e(u s )) + bζ • e(v) dx = = O ε f ε • v dx + ε 1 g ε • v dH 2
for all v sufficiently smooth in O ε and vanishing on ε 0

Existence and uniqueness

We assume that

( f , g) ∈ B V 0, T ; L 2 ( ; R 3 ) × B V (2) 0, T ; L 2 ( 1 ; R 3 ) (H 1 )
where, for any Banach space X , B V (0, T ; X) is the subspace of L 1 (0, T ; X) consisting of all elements whose time derivative in the sense of distributions is a bounded X -valued measure on (0, T ), and B V (2) (0, T ; X) is the subspace of B V (0, T ; X) consisting of all elements whose time derivative in the sense of distributions belongs to B V (0, T ; X).

We seek u s in the form

u s = u e s + u r s (3)
where u e s is the unique solution to

u e s (t) ∈ H 1 ε 0 (O ε ; R 3 ); ϕ s (u e s (t), v) = L(t)(v), ∀v ∈ H 1 ε 0 (O ε ; R 3 ), ∀t ∈ [0, T ] (4) 
with

ϕ s (v, v ) := ε a ε e(v) • e(v ) dx + μ B ε D w I e(v) • e(v ) dx, ∀v, v ∈ H 1 ε 0 (O ε ; R 3 ) s (v) := ϕ s (v, v) L ε (t)(v) := ε 1 g ε (x, t) • v(x) dH 2 , ∀v ∈ H 1 ε 0 (O ε ; R 3 ), ∀t ∈ [0, T ] (5) 
and where

H 1 ε 0 (O ε ; R 3 ) is the closed subspace of H 1 (O ε ; R 3 ) consisting of all elements with vanishing traces on ε 0 . Note that this notation H 1 g (G; R n ) will be systematically used for any G ⊂ R n , g ⊂ ∂ G and Sobolev space H 1 (G; R n ). As g → u e s is linear continuous from L 2 ( 1 ; R 3 ) into H 1 ε 0 (O ε ; R 3 ), we have: u e s ∈ B V (2) 0, T ; H 1 ε 0 (O ε ; R 3 ) (6)
The remaining part u r s of u s will therefore satisfy an evolution equation governed by a maximal monotone operator A s defined in a Hilbert space H s of possible states with finite total mechanical (kinetic + strain) energy. The space of velocities L 2 (O ε ; R 3 ) is equipped with the following inner product k s and the square of norm K s associated with kinetic energy:

k s (v, v ) := O ε γ ε (x)v(x) • v (x) dx, K s (v) := k s (v, v), ∀v, v ∈ L 2 (O ε ; R 3 ) (7)
while the space of displacements, H

1 ε 0 (O ε ; R 3 )
, is equipped with the inner product ϕ s defined in [START_REF] Licht | Comportement asymptotique d'une bande dissipative mince de faible rigidité[END_REF], which is equivalent to the usual one by Korn inequality. Hence

H s := H 1 ε 0 (O ε ; R 3 ) × L 2 (O ε ; R 3 ) (8)
where, for all U = (u, v) and U = (u , v ) in H s , the inner product and norm are

(U , U ) s := ϕ s (u, u ) + k s (v, v ), |U | 2 s := (U , U ) s (9) while A s is defined by ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ D( A s ) = U = (u, v) ∈ H s ; i) v ∈ H 1 ε 0 (O ε ; R 3 ) ii) ∃ (w, ξ) ∈ L 2 (O ε ; R 3 ) × ∂D(e(v)) with k s (w, v ) + ϕ s (u, v ) + b B ε ξ • e(v ) dx = 0, ∀v ∈ H 1 ε 0 (O ε ; R 3 ) A s U = (-v, 0) + { (0, -w); w satisfies ii) of definition of D( A s ) } (10) 
Proceeding as in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF], one has the following.

Proposition 2.1. The operator A s is a maximal monotone operator and, for all ψ = (ψ

1 , ψ 2 ) in H s , U s = ( u s , v s ) s.t. U s + A s U s ψ ⇔ ⎧ ⎪ ⎨ ⎪ ⎩ J s ( v s ) ≤ J s (v) ∀v ∈ H 1 ε 0 (O ε ; R 3 ) J s (v) := 1 2 K s (v) -k s (ψ 2 , v) + 1 2 φ s (v) + ϕ s (ψ 1 , v) + b B ε D e(v) dx u s = v s + ψ 1 (11) 
Then, taking into account (H 1 ), ( 3), ( 4), ( 6), (10), we check straightforwardly that (P s ) is "formally equivalent" to

⎧ ⎨ ⎩ dU r s dt + A s U r s F s U r s (0) = U o s -u e s (0), 0 (12) 
where

F s = - du e s dt , f ε /γ ε (13)
A result of [START_REF] Brezis | Opérateurs maximaux-monotones et semi-groupes de contraction dans les espaces de Hilbert[END_REF] 

H 1 ε 0 (O ε ; R 3 ) ∩ W 2,∞ 0, T ; L 2 (O ε ; R 3 ) which does satisfy ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ∃ ξ ∈ ∂D e du s dt such that O ε γ ε d 2 u s dt 2 v dx + ε a ε e(u s ) • e(v) dx + μ B ε D w I e(u s ) • e(v) dx + b B ε ξ • e(v) dx = O ε f ε • v dx + ε 1 g ε • v dH 2 , ∀v ∈ H 1 ε 0 (O ε ; R 3 ), a.e. t ∈ (0, T ] u s (0) = u 0 s , du s dt (0) = v 0 s ( 14 
)
We set

U e s = u e s , 0 , U s = U r s + U e s ( 15 
)

Asymptotic behavior

Now we regard the quadruplet s of geometrical and mechanical data as a quadruplet of parameters taking values in a countable subset of (0, +∞) 4 with a single cluster point s and study the asymptotic behavior of U s in order to obtain a simplified but accurate enough model for the genuine physical situation. We will show that two different models indexed by p ∈ {1, 2} appear at the limit depending on the relative behavior of ε and μ. We make the following assumptions:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ i) s p ∈ {0} × {+∞} 2 × [0, +∞] ii) ∃ ( μ p , b p ) ∈ (0, +∞) 2 s.t. lim s→s 2ε ε 2(p-1) 2p -1 μ, ε q(p-1) 1 + (p -1)q b = ( μ p , b p ) iii) lim s→s 2ερ = 0 iv) w I is an even function of x 3 v) ∃ ε 0 > 0 s.t. S × (0, ε 0 ) ⊂ + (H 2 )

A candidate for the limit behavior

This candidate could be determined by studying the asymptotic behavior of sequences with bounded total mechanical energy. Let

p H := p H d × p H v 1 H d := {u ∈ H 1 ( ; R 3 ); u ∈ H 1 (S; R 2 )} 2 H d := {u ∈ H 1 ( ; R 3 ); e(u) = 0 in S and u 3 ∈ H 2 (S)} p H v := L 2 ( ; R 3 ), p = 1, 2 (16) We introduce p ϕ(u, u ) := ae(u) • e(u ) dx + μ p S D w K L I ( e p (u)) • e p (u ) dx, p (u) = p ϕ(u, u), ∀u ∈ p H d (17)
with w K L I (ξ ) = Inf {w I (q); q = ξ } for all ξ in S 2 and e 1 (u ) = e(u ), e 2 (u ) = D 2 u 3 for all u in p H d , where D 2 stands for the second derivative in the distributional sense. We also define

p k(v, v ) = ρ v • v dx, p K (v) = p k(v, v), ∀v ∈ p H v , p = 1, 2 (18) 
so that, for all U i = (u i , v i ) in p H , the inner product and norm are given by

((U 1 , U 2 )) p := p ϕ(u 1 , u 2 ) + p k(v 1 , v 2 ), ||U || 2 p := ((U , U )) p (19) Let T ε be the mapping from L 2 (O ε ; R 3 ) into L 2 ( ; R 3 ) defined by (T ε w)(x) := w(x ± εx 3 ), ∀x ∈ ± (20) Note that if w belongs to H 1 ε 0 (O ε ; R 3 ) then T ε w belongs to H 1 0 ( \ S; R 3
). For any w in H 1 ( ± ; R 3 ), we denote the trace of w on S by γ ± S (w). Thus, for any w in H 1 ( \ S; R 3 ), the jump of w across S, denoted by

[ [w] ], is γ + S (w + ) -γ - S (w -),
w ± being the restriction of w to ± . Moreover, for any element w of H 1 ( ; R 3 ), its trace on S is denoted by γ S (w).

Lastly, for any η > 0, let V K L (B η ) be the space of Kirchhoff-Love displacements defined by:

V K L (B η ) := {u ∈ H 1 (B η ; R 3 ); e i3 (u) = 0, 1 ≤ i ≤ 3} = {u ∈ H 1 (B η ; R 3 ); ∃ (u M , u F ) ∈ H 1 (S; R 2 ) × H 2 (S) s.t. (21) u( x, x 3 ) = u M ( x ) -x 3 ∇u F ( x ), u 3 ( x, x 3 ) = u F ( x )} We have Lemma 3.1. For all sequences U s = (u s , v s ) in H s such that |U s | 2 s is bounded, there exists p U = ( p u, p v) in p H and a not relabeled subsequence such that i) -T ε u s weakly converges in H 1 ( \ S; R 3 ) toward p u, -1 2ε ε -ε u s dx 3 weakly converges in H 1 (S; R 2 ) toward p u, -1 ε 3 ε -ε x 3 e(u s ) dx 3 weakly converges in L 2 (S) toward -2 3 D 2 ( 2 u 3 ) when p = 2, -p ( p u) ≤ lim s→s s (u s ), ii) -T ε v s weakly converges in L 2 ( ; R 3 ) toward p v, -p K ( p v) ≤ lim s→s K s (v s ).
Proof. First, the boundedness of s (u s ) implies that there exists w in H 1 0 ( \ S; R 3 ) and a sequence ρ s in the space R of rigid displacements such that ((T ε u s ) + , (T ε u s ) -+ ρ s ) converges weakly in

H 1 0 + ( + ; R 3 ) × H 1 0 -( -; R 3 ) toward (w + , w -). As [ [T ε u s ] ] = ε -ε ∂ 3 u s dx 3 , (γ - S ((T ε u s ) -)) 3 converges strongly in L 2 (S) to (γ + S (w + )) 3 due to the boundedness of s (u s ), which, combined with ∂ 3 (u s ) α = 2e α3 -∂ α (u s ) 3 and B ε (u s ) 2 3 dx ≤ 2ε S | γ + s (T ε u s ) | 2 d x + 2ε B ε | ∂ 3 (u s ) 3 | 2 dx implies the convergence in the sense of distributions of γ - S ((T ε u s ) -) toward γ + S (w + ). As ρ s = (T ε u s ) -+ ρ s -(T ε u s ) - lives in a finite dimensional space, γ - S (ρ s ) converges strongly in L 2 (S; R 3 ) toward γ - S (w -) -γ + S (w + ) and, consequently, γ - S (u - s ) converges strongly in L 2 (S; R 3 ) toward γ + S (w + ). This implies that T ε u s converges weakly in H 1 0 ( \ S; R 3 ) toward some p u and [ [ p u] ], the strong limit in L 2 (S; R 3 ) of [ [T ε u s ] ], vanishes, that is to say p u belongs to H 1 0 ( ; R 3 ). Of course, the proof is simpler when H 2 ( 0 -) > 0!
Next, the boundedness of s (u s ) allows us to easily identify the weak limit in

H 1 (S; R 2 ) of 1 2ε ε -ε u s dx 3 = γ + s ((T ε u s ) + ) - 1 2ε ε -ε ε x 3 ∂ 3 u s dt dx 3
which implies that p u belongs to p H d . Concerning 1

ε 3 ε -ε x 3 e(u s
) dx, we may proceed as in [START_REF] Acerbi | Thin inclusions in linear elasticity: a variational approach[END_REF] or as follows. Let S ε be the mapping from

H 1 (B ε ; R 3 ) into H 1 (B 1 ; R 3 ) defined by S ε w( x, x 3 ) = ε w( x, εx 3 ), (S ε w) 3 ( x, x 3 ) = w 3 ( x, εx 3 ), for all x = ( x, x 3 ) in B 1 .
Then, the boundedness of s (u s ) implies the boundedness of

B 1 | e(ε, S ε u s ) | 2 dx
, where e(ε, w) = I ε e(w) I ε

and

I ε = e 1 ⊗ e 1 + e 2 ⊗ e 2 + 1
ε e 3 ⊗ e 3 . This implies that there exists u in V K L (B 1 ) and ρ s in R such that, up to a subsequence, S ε u s + ρ s weakly converges toward u in H 1 (B 1 ; R 3 ). As for all τ in L 2 (S; S 2 ) one has

S τ ( x ) 1 ε 3 ε -ε x 3 e(u s ) dx 3 d x = B 1 τ ( x )x 3 e(S ε u s ) dx one deduces that 1 ε 3 ε -ε x 3 e(u s ) dx 3 converges weakly in L 2 (S; S 2 ) toward +1 -1 e(u) dx = +1 -1 x 3 ( e(u M ) -x 3 D 2 (u F )) dx 3 = - 2 3 D 2 (u F )
But the trace on S + e 3 of (S ε w) 3 being equal to (γ + S ((T ε u s ) + ) 3 , one deduces that u F = (γ s ( 2 u)) 3 . Finally, the lower bound for s (u s ) is obtained by a simple use of the Jensen inequality and a standard lower semicontinuity argument, which is the source of the term w K L I .

The point ii) is obvious. 2

We can now define the limit evolution operator p A through

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ D( p A) = U = (u, v) ∈ p H; i) v ∈ p H d ii) ∃ (w, ξ) ∈ L 2 ( ; R 3 ) × ∂D K L ( e p (v)) s.t. p k(w, v ) + p ϕ(u, v ) + b p S ξ • e p (v ) dx = 0, ∀v ∈ p H d p AU = (-v, 0) + { (0, -w); w satisfying ii) } (22) 
D K L being defined in the same way as w K L I .

Similar to the case of A s , it can be checked easily that p A is maximal monotone and, more specifically, that for all ψ = (ψ 1 , ψ 2 ) in p H :

p U = ( p u, p v)s.t. p U + p A p U ψ ⇔ ⎧ ⎪ ⎨ ⎪ ⎩ p J ( p v) ≤ p J (v) := 1 2 p K (v) -p k(ψ 2 , v) + 1 2 p (v) + + p ϕ(ψ 1 , v) + b p S D K L ( e p (v)) dx, ∀v ∈ p H d p u = p v + ψ 1 (23) 
Consequently, the same statement as that of Theorem 2.1 is valid for the following equation, which will be shown to describe the asymptotic behavior of u s :

d p U r dt + p A p U r p F := - d p u e dt , f /ρ , p U r (0) = p U r0 (24) with p u e ∈ B V (2) (0, T ; p H d ); p ϕ( p u e (t), u ) = L(t)(u ), ∀u ∈ p H d , ∀t ∈ [0, T ] L(t)(u ) = 1 g(x, t) • v(x) dH 2 (25) 
We set p U e = p u e , 0 , p U = p U e + p U r (26)

Convergence

As in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF], to prove the convergence of u s toward p u = p u e + p u r , we will use the framework of a nonlinear version of Trotter's theory of convergence of semigroups acting on variable spaces (see [START_REF] Trotter | Approximation of semi-groups of operators[END_REF][START_REF] Licht | Comportement asymptotique d'une bande dissipative mince de faible rigidité[END_REF] and Appendix of [START_REF] Iosifescu | Nonlinear boundary conditions in Kirchhoff-Love plate theory[END_REF]) because u r s and p u r do not inhabit the same space. To establish the convergence of the mechanical state, we need to compare the elements of p H to those of H s . We therefore define p P s by:

(u, v) ∈ p H → p P s (u, v) = (u * s , v * s ) ∈ H s (27) with -u * s ∈ H 1 ε 0 (O ε ; R 3 ); ϕ s (u * s , u ) = p l ε (u, u ), ∀u ∈ H 1 ε 0 (O ε ; R 3 ) p l ε (u, u ) = a ε e(u) • e(u ) dx + μ B ε D w K L I ( e( p ν)) • e(u ) dx where 1 ν, 2 ν ∈ V K L (B ε ) with ( 1 ν M , 1 ν F ) = (γ S ( u ), 0), ( 2 ν M , 2 ν F ) = (0, γ S (u 3 )), -v * s (x) = v(x ∓ εx 3 ), a.e. x ∈ ε ± , v * s (x) = 0 a.e. x ∈ B ε .
Taking advantage of the variational definition of u * s , Lemma 3.1 and the classical procedure of mathematical justification of Kirchhoff-Love theory of plates (cf. [7]) imply that p P s enjoys the following fundamental property. 

i) T ε u s converges strongly in H 1 ( \ S; R 3 ) toward u, ii) 1 2ε ε ε u s dx 3 converges strongly in H 1 (S; R 2 ) toward u, iii) p (u) = lim s→s s (u s ), iv) T ε v s converges strongly in L 2 ( ; R 2 ) toward v, v) p K (v) = lim s→s K s (v s ).
Lastly, we conclude by using a suitable nonlinear version (see [START_REF] Licht | Comportement asymptotique d'une bande dissipative mince de faible rigidité[END_REF][START_REF] Iosifescu | Nonlinear boundary conditions in Kirchhoff-Love plate theory[END_REF]) of Trotter's theory of convergence of semigroups, where it suffices to make an additional assumption (H 3 ) about the initial states and to establish the following "static" result.

Proposition 3.3. We have i) ∀ψ ∈ p H, lim s→s | p P s (I + p A) -1 ψ -(I + A s ) -1 p P s ψ| s = 0, ii) lim s→s | p P s p U e (t) -U e s (t)| s = 0 uniformly on [0, T ], iii) lim s→s T 0 | p P s p F (t) -F s (t)| s dt = 0.
As regards point i), we use the same strategy as in [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] by due account of (11) and (23). Taking advantage of Lemma 3.1 and the variational definition of P s , we obtain that a subsequence of minimizers of J s defined by

J s (v) = 1 2 K s (v) -k p (ψ 2 , T ε v) + 1 2 s (v) + ϕ s (ψ 1 * s , v) + b B ε D(e(v)) dx (29) 
converges to an element v in H d satisfying p J ( v ) ≤ lim s→s J s (v s ). Indeed, v is the unique minimizer of p J because, due to Proposition 3.1, for all w in p H d , one has lim s→s J s (w * s ) = p J (w). Similar arguments as those of [START_REF] Licht | Dynamics of elastic bodies connected by a thin soft viscoelastic layer[END_REF] establish ii) and iii). Thus, we deduce the convergence uniformly on [0, T ] in the sense of Trotter of the solution to (12) toward that to (24) with p U r0 := p U 0 -p U e (0) and the additional conditions of convergence and compatibility between the initial state and loading: This can be rephrased in a more explicit way with respect to (P s ): 16) and (17), respectively. Hence, the limit behavior describes the dynamic response to the real loads ( f , g) of a structure consisting of two linearly elastic adherents occupying ± , which are perfectly bonded to a material deformable flat surface whose behavior is of the same kind as the genuine adhesive (i.e. non-linear viscoelasticity of Kelvin-Voigt generalized type). Moreover, the mass of the adhesive being evanescent, there is no inertial term in the interface condition. The case p = 1 corresponds to membrane deformations, whereas the case p = 2 corresponds to flexural deformations. The Proposition 3.3 covers the static situation which has been considered in [START_REF] Bessoud | Multi-materials with strong interface: variational modelings[END_REF]. Our limit interface condition agrees with the one of [START_REF] Acerbi | Thin inclusions in linear elasticity: a variational approach[END_REF], which studied a resembling problem (the adherents occupying the complementary of B ε in a fixed domain ).

∃

  p U 0 ∈ p U e (0) + D( p A); U 0 s ∈ U e s (0) + D( A s ) and lim s→s | p P s p U 0 -U 0 s | s = 0 ( H 3 )

  therefore yields Theorem 2.1. T ; H s ) and the first line of (12) is satisfied almost everywhere in [0, T ]. Hence, there exists a unique u s in W 1,∞ 0, T ;

	Theorem 2.1. If ( f , g) satisfies (H 1 ) and U o s ∈ u e s (0), 0 + D( A s ), then (12) has a unique solution such that U r s belongs to
	W 1,∞ (0,

  There exists a strictly positive constant C such that | p P s U | s ≤ C ||U || p , ∀U ∈ p H. ii) When s tends to s, | p P s U | s converges toward U p for all U in p H. U s in H s converges in the sense of Trotter toward U in p H if lim Even if this is the right mechanical notion, it could be of interest to consider this convergence with respect to some classical conventional notions. For all U = (u, v) in p H, U s = (u s , v s ) in H s converges in the sense of Trotter toward U if and only if:

	Proposition 3.1.		
	i) Next we state that:		
	s→s	| p P s U -U s | s = 0	(28)
	Proposition 3.2.		

  A s (U s -U e s ) (0, f ε /ρ ε ), U s (0) = U 0 A( p U -p U e ) (0, f / ρ), p U (0) = p U 0 (t)| s = p U (t) p uniformly on [0, T ].It is worthwhile to write (31) in a variational form:∃ ξ ∈ ∂D K L e p (v) such that ρ d 2 p u dt 2 • ϕ dx + ae( p u) • e(ϕ) dx + μ p dH 2 , ∀ϕ ∈ p H dwhere p H d and e p (•) are defined in (

	Theorem 3.1. The solution to
	dU s		s	(30)
	converges toward the solution to
	d p U			(31)
	in the sense lim s→s	| p P s	p U (t) -U s (t)| s = 0, lim
	4. Concluding remarks
			D w K L I	e p ( p u) • e p (ϕ) dx + b p	ξ • e p (ϕ) dx
			S	S
			=

dt + dt + p s→s |U s f • ϕ dx + 1 g • ϕ