Weighted Lattice Walks and Universality Classes - Archive ouverte HAL Access content directly
Journal Articles Journal of Combinatorial Theory, Series A Year : 2017

Weighted Lattice Walks and Universality Classes

Abstract

In this work we consider two different aspects of weighted walks in cones. To begin we examine a particular weighted model, known as the Gouyou-Beauchamps model. Using the theory of analytic combinatorics in several variables we obtain the asymptotic expansion of the total number of Gouyou-Beauchamps walks confined to the quarter plane. Our formulas are parametrized by weights and starting point, and we identify six different asymptotic regimes (called universality classes) which arise according to the values of the weights. The weights allowed in this model satisfy natural algebraic identities permitting an expression of the weighted generating function in terms of the generating function of unweighted walks on the same steps. The second part of this article explains these identities combinatorially for walks in arbitrary cones and dimensions, and provides a characterization of universality classes for general weighted walks. Furthermore, we describe an infinite set of models with non-D-finite generating function.
Fichier principal
Vignette du fichier
CoMeMiRa-Rev-arx.pdf (1021.97 Ko) Télécharger le fichier
GB-800-2.pdf (10.98 Ko) Télécharger le fichier
GB-wt-800.pdf (10.92 Ko) Télécharger le fichier
Gessel.pdf (43.43 Ko) Télécharger le fichier
Simple.pdf (43.51 Ko) Télécharger le fichier
Tandem.pdf (85.68 Ko) Télécharger le fichier
ab-diagram-big.pdf (68.23 Ko) Télécharger le fichier
drift.pdf (43.21 Ko) Télécharger le fichier
fig1.pdf (18.51 Ko) Télécharger le fichier
kaya.pdf (15.92 Ko) Télécharger le fichier
paths.pdf (3.76 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Origin Files produced by the author(s)
Origin Files produced by the author(s)
Origin Files produced by the author(s)
Origin Files produced by the author(s)
Origin Files produced by the author(s)
Origin Files produced by the author(s)
Origin Files produced by the author(s)
Origin Files produced by the author(s)
Origin Files produced by the author(s)
Origin Files produced by the author(s)

Dates and versions

hal-01368786 , version 1 (20-09-2016)
hal-01368786 , version 2 (22-06-2017)

Identifiers

Cite

J Courtiel, Stephen Melczer, Marni Mishna, Kilian Raschel. Weighted Lattice Walks and Universality Classes. Journal of Combinatorial Theory, Series A, 2017, ⟨10.1016/j.jcta.2017.06.008⟩. ⟨hal-01368786v2⟩
410 View
560 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More