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Effect of Certain Discontinuities on the Pressure Distribution in a Loaded Soil 

M. A. BIOT, Graduate School of Engineering, Harvard University 

(Received June 21, 1935) 

The pressure distribution due to a concentrated load on 
a semi-infinite elastic body is given by the well-known 
Boussinesq solution for either the two-dimensional or 
three-dimensional case. We here investigate the effect on 
such a pressure distribution, taken at the depth h, of the 
presence at that depth of a slippery rigid bed (case (b»; 
of a perfectly rough rigid bed (case (c»; and of a perfectly 
flexible but inextensible thin layer embedded in the 

GENERAL SOLUTION OF THE EQUATIONS OF 

ELASTICITY 

I N the following paper, solutions of the equa­
tions of elasticity are needed which give both 

the stresses and the displacements. Therefore it 
will be easier to start from the equations relating 
the displacements u, v, w. 

1 a8 
V' 2u+-- -=0, 

1-2v ax 

1 ae 
V' 2v+---=0, 

1-2v ay 

1 ae 
y-2W + ___ =0 

1- 2v az 

a2 a2 a2 

where V'2=_+_+_, 
ax2 ay2 az2 

au av aw 
e=-+-+-, 

ax ay az 

v is the Poisson ratio of the material. 

(1) 

It was established by Neuber! that a general 
solution of these equations may be found as 
follows. 

We call 1>0 a scalar function of x, y, z satisfying 
the Laplace equation V'2rpO = 0. 

We call cI> a vector, such that each of its 

1 Neuber, "Ein neuer Ansatz ziir L(isung raumlicher 
Probleme der Elastizitatstheorie," Zeits. f. angew. Math. 
und Mechanik 14, 4 (1934). 

material (case (d». Both pressure distributions in the two 
and three-dimensional problems are calculated for each 
case, Fig. 5 and Fig. 6. Several authors have already in­
vestigated case (b) and case (c) in two dimensions (2), 
(3). Their results are in perfect accordance with ours. 
The author is indebted to Dr. A. Casagrande for suggesting 
this investigation as a contribution to the field of soil 
mechanics. 

Cartesian components rpx rpy rpz satisfies the 
Laplace equation 

V'2rpx = 0, V'2rpy = 0, V'2rpz = o. 

A very general solution of the equations of 
elasticity (1) can then be expressed as 

u = - (al ax) (rpo+xrpx+yrpy+zrpz) +4(1- v)rpx, 

v= - (alay)(rpo+xrpx+yrpy+zrpz)+4(1- v)rpy, (2) 

w = - (ajaz) (rpo+xrpx+yrpy+zrpz) +4(1- v)rpz; 

or in vectorial notation 

u= -grad (rpo+r·cI»+4(1- v)cI>. 

The expression for 8 becomes in terms of the 
arbitrary functions above 

8=div U= -div grad rpo-div grad r·cI> 

+4(1- v) div cI>. 

Since div grad rpo=v 2rpo=0 

we find 8=2(1-21') div cI>. (3) 

The vertical stress component () z and the 
horizontal shear TxzTyz are the only stress com-
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368 M. A. BlOT 

ponents we shall need 10 the following theory. 
They are given by 

(}z aw lie 
-=-+--, 
2G az 1-211 

Txz aw au 
-=-+-, 
G ax az 

Tyz aw av 
-=-+-, 
G ay az 

(4) 

where G is the shear modulus of the material 
and II the Poisson ratio. 

It is important to note that the factor (1 - 2 II) 
disappears in the value of () z when using the value 
of 8 given by (3), 

(}z/2G=aw/az+211 div 4>. 

This shows that the value of the term 118/(1-211) 
when II = t, e = 0, tends toward the limit 2 II div 4>. 

THE Two-DIMENSIONAL PROBLEM 

Let us consider first the two-dimensional 
problem where the load is concentrated on a 
line and has the value P per unit length (Fig. 1). 
We shall assume that the ground is elastic, of 
elasticity modulus E, and shall restrict ourselves 
to the case where the Poisson ratio is lI=t, 
which means that the material of the ground is 
supposed to be incompressible. Four cases will 
be investigated. 

(a) The ground is infinitely extended and deep. The 
pressure distribution at the depth h is given by the well­
known Boussinesq solution. 

(b) The ground is infinitely extended but of finite depth 
h. It is resting on a rock base, perfectly rigid; no friction 
forces are supposed to act between the rock and the upper 
ground. They can slip with respect to each other without 
the slightest resistance (Fig. 2). This case has been calcu­
lated by various authors.' Their result, derived by a dif­
ferent method, is found in proper accordance with ours. 

(c) The same case as in (b) but where perfect adhesion is 
supposed to exist between the upper ground layer and the 
rock surface. No slippage whatever is allowed to occur; the 
two materials are assumed to stick together perfectly. 
This case was investigated by Marguerre 3 for 11=0. Com­
parison with his paper shows that there is no practical 
difference between the cases 11=0 and II=!. The pressure 
distribution is calculated at the rock surface (depth h). 

(d) There is a horizontal infinite inextensible but per­
fectly flexible layer at the depth h. The pressure distribu­
tion on that layer due to P is calculated. This case corre­
sponds to the problem of a clay substratum containing a 
thin horizontal sand layer. 

p 

h 

~~~"""'~""""""~~;:---x f r G. 2 
I 
I 
I 
p:. 

In cases (a) and (b) the pressure distribution 
is found to be independent of t~e elasticity 
constants of the ground, while it depends on the 
Poisson ratio II for cases (d) and (c). Hence the re­
sult for cases (a) and (b) is not affected by the 
restrictive assumption that II = t. 

Case (a) 

We take the z axis directed positive downward, 
the x axis being at the surface of the ground, and 
we assume that all the xz planes are identical. 
I t is possible to find solutions of the elasticity 
equations for which all the variables are cosine 
or sine functions of x by the assumption: 

(5) 

where A, E, C, D, A, are arbitrary constants. 
By substituting this· into Eqs. (2), (4) and 

(4r), we obtain; 

Txz 2a[acpo acpz ] 
-= -- -+z--(1-211)CPz . 
G ax az az 

(6) 
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PRE S SUR E DIS T RIB UTI 0 N INS 0 I L S 369 

Since we assume incompressibility, v=t, p 

(J z/2G = - a2cpo/ az2 - zacpz/ az2+acpz/ az, 

Txz/G= - 2(a/ ax) [acpojaz+zacpz/ az]. 
(7) 

At infinite depth we m~st have (Jz=Txz=O and 
this is only possible if A = C=O. We then have 

Txz/G=2"A sin "Ax[ -B"Ae-xz-zD"Ae-xz ]. 

By introducing the condition that the surface 
carries only a normal load and no shear, Txz 
must be zero for z = 0, hence B = 0, The expression 
for (J z then reduces to 

(Jz/2G= -D"Ae-xz (1+z"A) cos "Ax. 

This last relation shows that if the surface z = ° 
is loaded with a normal pressure distribution, 
-(Jzo=qo cos "Ax, the pressure at the depth 
z=h is 

Now an arbitrary surface loading Po(x) may 
be represented by means of the Fourier integral 
as a superposition of sine loadings of various 
wave-lengths. 

(OO f+oo 
Po(x)=(1lrr)Jn d"A d~Po(~)cos"A(x-~). 

o --co 

The pressure distribution q(x) at the depth h is 
derived from relation (8) and the above Fourier 
integral. 

lfOO foo q(x) =- d"A d~pome-Xh(l +h"A) cos X(x- ~), 
'Ir 0 --co 

which can be written 

1 [+00 ],00 
q(x)=- Po(~)d~ d"Ae-Xh(l+h"A)cos"A(x-~). 

7f' --oJ 0 

If the surface loading Po(x) is concentrated 
within a small region (- €, + €) such that the 
total load is 

The pressure distribution at a depth h due to 
that load is 

I 
I 

------t---
I 
I 

p 
FIG. 3. 

h 

h 

q(x) = (P / 'Ir) 100 
e-Xh(l +Ah) cos "Axd"A, 

o 

q(x) = (P / 'lrh) looe-CX(l +a) cos a(x/h)da. 
o . 

(9) 

As will be seen, this yields the well-known 
Boussinesq solution. 

Case (b) 

The soft ground is supposed to rest on a rigid 
rock base, no friction occurring at the surface of 
contact (Fig. 2). This case is identical with the 
symmetrical loading illustrated by Fig. 3. In 
order to proceed as in case (a) and use the 
Fourier integral, we first have to consider a 
sinusoidal loading which is symmetrical with 
respect to the plane at depth h. 

We take the x axis at the rock surface, the 
surface of the ground being at z = h and its 
symmetrical image at Z= -h, (Fig. 3). A sym­
metrical solution of the equations of elasticity is 
found by putting 

CPo = cosh "Az cos "Ax, CPz = A sinh "Az cos "Ax. 

The application of formula (7) gives the value 
of the horizontal shear. 

Txz/G= 2"A sin "Ax ["A sinh "Az+Az"A cosh "AzJ. 

Since no shear is acting at the boundaries z = ±h, 
we have the condition 

or 

sinh "Ah+hA cosh "Ah=O 

A = -sinh "Ah/h cosh h"A. 

With this value of A the value of (Jz is given by 
Eq. (7). 

~=[:. sinh"Ah sinh "Az 

2G h cosh"Ah 

sinh "Ah cosh "Az ] 
-------cosh "Az 

"Ah cosh"Ah 
X"A2 cos Xx. 
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370 M. A. BlOT 

This last relation shows that if a pressure 
go cos 'Ax is acting at z = - h, the pressure g on 
the plane of symmetry z = 0, which represents 
the rock surface, is 

2(sinh 'Ah+'Ah cosh 'Ah) 
g= go cos 'Ax. 

sinh 2'Ah+2'Ah 

Proceeding as in case (a) by the use of the 
Fourier integral, we find the pressure distribution 
at z=o due to a concentrated load P at the 
surface z= -h 

2P [00 a cosh a+sinh a X 
p = - cos a-da. 

7rh • 0 sinh 2a+2a h 
(10) 

This checks with the fonnula found by Melan. 2 

I t gives the pressure p at the rock surface when 
no friction occurs as a function of the horizontal 
distance x from the vertical line of application of 
the load P. 

Case (c) 

This case considers the same material, soft 
ground lying on rigid rock, but here the upper 
soft material is supposed to stick perfectly to the 
rock surface. 

We take the x axis at the rock surface and the 
z axis directed positive downward, as in case (b), 
(Fig. 2), and start from a solution which is 
sinusoidal along x 

CPo = (Ae AZ + Be-AZ ) cos 'Ax, 

cpz= (CeAz+De- AZ) cos 'Ax, 

CPx= cPy=o. 

We have three boundary conditions 

(11) 

u=Oatz=O, w=Oatz=O, Txz=Oatz= -h. (12) 

We remember that we assume the soft material 
to be incompressible (v=t). With this value of 
the Poisson ratio, we get from formulae (2) 
and (7) 

u= 'A sin 'Ax[AeAZ+Be-AZ+zCeAZ+zDe-AZ], 

w= -cos 'Ax[(AeAZ-Be-AZ)'A 

+ Ce Az ('Az-1) - De-AZ('Az+ 1)], 

2 L. N. G. Filon, Phil. Trans. Roy. Soc. London, 1903; 
E. Melan, Beton und Eisen 18 (1919). 

TxjG = 2'A sin Ax[ (Ae AZ - Be-AZ)'A 

+z'A( Ce AZ - De-AZ )], 

fI z /2G='A cos Ax[CeAz (1-'Az) 

-De-AZ (1 +'Az) -'A(AeAZ+Be-AZ). (13) 

The three boundary conditions determine three 
of the constants ABC D in terms of the fourth 
one. Calculating the coefficients BCD in terms 
of A, we find that the value of fI Z at the rock 
surface (z=O) is 

fI z/2G= 2A'A2 cos 'Ax(cosh Ah 

+ h'A sinh 'Ah) /'Ah cosh 'Ah 

and at the surface of the ground (z= -h) it is 

fIz/2G=2A'A2 cos 'Ax(cosh2 'Ah+(h'A)2)/'Ah cosh 'Ah. 

This shows that if a pressure go cos 'Ax acts at 
the surface of the ground, a pressure 

q = (cosh 'Ah+Ah sinh 'A)/ (cosh2 'Ah+ ('Ah)2) 

is acting at the surface of the rock. 
Using the Fourier integral as in the previous 

cases, we find the pressure distribution p at 
the surface of the rock due to a concentrated 
load P acting at the surface of the ground. 

P [00 cosh a+a sinh a X 
p(x) =- -- cos a-da. 

7rh. 0 cosh2 a+a2 h 

This formula coincides with Marguerre's result 
for the case v = t.3 
Case (d) 

The soft ground is here supposed to be 
infinitely deep and to contain at the depth h an 
inextensible but perfectly flexible thin layer to 
which the soft ground sticks perfectly so that 
only vertical motion at that depth is permissible. 

We take the x axis at depth h on the in­
extensible layer and the z axis positive downward, 
and a sinusoidal solution in x as in case (c). The 
only difference with the preceding case is the 
boundary condition (12). The vertical displace­
ment w at z = ° is not zero, but is related to the 
normal stress on that layer. To find this relation, 

3 Marguerre, "Druckverteilung durch eine elastische 
Schicht auf starrer rauher Unterlage," lng. Archiv 2 
(1931). 
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PRESSURE DISTRIBUTION IN SOILS 371 

let us consider a sinusoidal solution applying to 
the infinitely deep material located below that 
layer. This is a case analogous to case (a). 
Since the material is infinitely deep, we must 
have A = C= 0 and the horizontal displacement 
u deduced from formula (2) with I' = t is found 
to be 

The condition that the horizontal displacement 
be zero on the inextensible layer (z=O) IS 

B=O. 
The vertical displacement at z=O is 

and the normal stress 

The relation between wand IY z at the surface of 
the inextensible layer is 

(Jz/2G= -"Aw. 

The boundary conditions for the upper soft 
ground are then 

(a) u=O at z=O, 

(b) (Jz/2G= -"Aw, z=O, 

(c) Txz=O, z=-h. 

As in case (c) we may write the relation (13) and 
introduce these boundary conditions to find the 
value of BCD in terms of A. 

The value of the normal stress (J z at the rock 
surface z = 0 is found to be 

(J z cosh "Ah +"Ah sinh "Ah 
-=2"A2A . cos "Ax 
2G h"Ae hX 

and the value of (J z at the ground surface is 

(Jz 2"A2A 
-=--[h"A(h"A cosh h"A-h"A sinh h"A-cosh h"A) 
2G h"A 

+cosh h"A+h"A sinh h"A]. 

From this we conclude that a pressure dis­
tribution qo cos "Ax at the ground surface trans­
mits a pressure on the inextensible layer 

q= ~.-----------------. 

1 +h"A[h"A/(1 +h"A tanh h"A) -1J 

p 

By using the Fourier integral as in the previous 
cases, we find the pressure distribution p trans­
mitted to the inextensible layer when the surface 
carries a concentrated load P 

P 100 

e-
a 

x p=- cos a-dOl. 
'lrh 0 1-0I[1-0I/(1+OItanhOl)J h 

THE THREE-DIMENSIONAL PROBLEM 

The same cases (a) (b) (c) (d) are investigated 
if the load P is not concentrated on an infinite 
straight line but concentrated on a point, (Fig. 4). 
The stress distribution must then be axial­
symmetrical around the load. Solutions of the 
problem may be found by using axial-sym­
metrical potential functions with cylindrical 
coordinates r, z. 

c/>o= (Aexz+Be-Xz)Jo("Ar), 

c/>z= (Cexz+De-Xz)Jo("Ar) , 

c/>y=O, c/>x=O. 

We have a vertical displacement wand a radial 
displacement u. Eqs. (2) and (3) become 

u= - (a/ar) [c/>o + zc/>zJ, 

w= - (ajaz)[c/>o+zc/>zJ+4(1- I')c/>z. 

If we call T the horizontal shear acting in the 
radial direction, we have equations entirely 
similar to Eqs. (4), (4 1), 

(Jz/2G= aw/az+ l'e/(1- 21'), 

T /G = awl ar+au/ az. 

As before, we shall assume that I'=t. These 
equations show that the problem of determining 
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372 M. A. BlOT 

the constants ABC D is the same as in the two­
dimensional case. For instance, if in the two­
dimensional case to a load distribution at the 
surface qo cos Xx corresponded a pressure at 
depth h 

q=g(Xh)qo cos Xx 

we may conclude that in the corresponding 
three-dimensional case to a load distribution 
qoJo(Xr) at the surface corresponds a pressure at 
depth h 

q = g(Xh )qoJo(Xr) 

and we do not have to repeat the above calcula­
tions to find the function g(Xh). 

Case (a) 

The case of a concentrated load P acting on 
an infinitely deep ground is found from the dis­
tribution qoJo(Xr). At a depth h the vertical 
pressure p transmitted is found by using the 
solution of the two-dimensional problem g(hX) 
=e-xh(l+hX) 

p = e-hX(l +hX)qoJo(Xr). 

An arbitrary load q(r) could be represented by 
using the identity 

q(r) = [COdXf"'Jo(XP)Jo(Ar)q(p)Xpdp. 
• 0 0 

This shows that the corresponding pressure dis­
tribution at depth h is 

per) = f:-Xh(l+Xh)Jo(Xr)AdA r~o(Xp)q(p)pdp. 
o .10 

If the load is concentrated at the origin on a 
circle of radius € 

P= 271" f'q(p)pd p. 
o 

The corresponding pressure distribution at depth 
his 

per) = (P /h) fro Xe-Xh(l +Xh)Jo(Xr)dX 
o 

or 

per) = (P /hh2) fro ae-a (1 +a)Jo(ar/h)da. 
o 

The same method may be used for all other 
cases (b), (c), (d). We find: 

Case (b) 

P fro a cosh a+sinh a ( r) 
per) =-- 2a J o a- da. 

271"h2 0 sinh 2a+2a h 

Case (c) 

P fro cosh a+a sinh a ( r) 
per) =-- a J o a- da. 

271"h2 0 cosh2 a+a2 h 

Case (d) 

per) =_P- f"'a ____ e-_a __ _ 
hh2 

0 l-a[l-a/(l+atanha)] 

XJo( a~)da. 

NUMERICAL EVALUATION OF THE INFINITE 

INTEGRALS 

The problem reduces to the evaluation of 
either 

(p/7I"h)f
rog

(a) cos (ax/h)da 
o 

for the two-dimensional problem, or 

(P /271"h2) fro ag(a)Jo(ar /h)da 
o 

in the three-dimensional problem. The function 
g(a) has the form 

g(a) = (1 +a)e-a 

a cosh a+sinh a 
g(a) =2-----· 

sinh 2a+2a 

cosh a+a sinh a 
g(a)=-----

e-a 

case (a), 

case (b), 

case (c), 

g(a) = case (d). 
l-a[l-a/(1+a tanh a)] 

We start from the two identities 
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p/ff' 
/ 110 

FIG. 5. Pressure distribution p/(2P /lrh) in the two-dimensional problem. 

Case (a) --- Boussinesq distribution. Maximum value of pressure p =2P /1J:h. 
Case (b) --- Slippery rigid bed. Maximum value of pressure p =1.441·2P/1rh. 
Case (e) --- Rough rigid bed. Maximum value of pressure p = 1.291 ·2P j,rh. 
Case (d) -.-.- Inextensible flexible layer. Maximum value of pressure p =0.935 ·2P j,rh. 

,-----,.-------,-.. ------~~------r-----~r_-_, 

l'/:Nr,. 
I 

/ 
I 
I 

~--~-------~----7 

I 
I 
I 
I 
I 
I 
I 

\ 
\ 
\ 
.~----+­

\ 
\ 
\ 
\-1> 

c \ 
\ 
\ 

I 
.~l__-Ic'\r_----+--------- ---.--

1 
o 

r 
h 

FIG. 6. Pressure distribution p/(3P /27rh2 ) in the three-dimensional problem. 

Case (a) --- Boussinesq distribution. Maximum value of pressure p =3P /21rh2• 
Case (b) - - - Slippery rigid bed. Maximum value of pressure p = 1. 711 ·3P /21rh2• 
Case (e) --- Rough rigid bed. Maximum value of pressure P = 1.557 '3P /21rh2• 

Case (d) -.-.- Inextensible flexible layer. Maximum value of pressure p =0.942 ·3P/2"k2• 
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l""e-axJo(bX)dx= (a2+b2)-t. 
o 

Taking the derivatives with respect to a, we get 

This shows that the integrals would be evaluated 
readily if the functions g(a) where all expressed 
as a sum of terms of the type ane- ka , where n is 
an integer. 

Case (a) 

In case (a) there is no difficulty in expressing 
these integrals. For the two-dimensional problem 

Case (b) 

we get 

p(X) = (P /1rh) 1"" (1+a)e-a cos (ax/h)da, 
o 

For the three-dimensional problem 

per) = (P /27rh2) f"" a(1 +a)e-a Jo(ar /h)da, 
o 

per) = (3P /2'1TN) [1 + (r /h )2]-5/2. 

These are both the well-known Boussinesq 
solutions. 

The two-dimensional distribution 

is represented by curve (a) in Fig. 5 and the 
three-dimensional distribution per) / (3P /27rh2) by 
curve (a) in Fig. 6. 

The function g(a) may be represented with an error smaller than 1 percent by 

The pressure distribution for the two-dimensional case is 

2P[ 2 0.5 1-6(X/4h)2+eX/4h)4] 
p(x) =- -0.059 . 

7rh (1+x2/h2)2 (1 + (x/2h)2J2 [1 + (x/4h)2J4 

The dimensionless quantity p(x)/(2P/7rh) is plotted in Fig. 5 by curve (b). 
For the three-dimensional case we have 

~
p 2 0.25 1-3(r/4h)2+Hr/4h)4] 

per) = -0.039. 
27rh2 [1+(r/h)2J5/2 [1 + (r/2h)2J 5/2 [1+er/4h)2J9/2 

The ratio p(r)/(3P/27rh2) is represented in Fig. 6 by curve (b). 

Case (c) 

The function g(a) may be represented with an error smaller than 1 percent by 

(cosh a+a sinh a)/ (cosh2 a+a2) = (2a cosh a+sinh a)/ (sinh 2a+2a) - 2.80a4e-3a - 56a4e-8. 8a. 

The pressure distribution in the two-dimensional case is 

2P[ 2 0.5 1-6(x/4h)2+(x/4h)4 1-lOex/3h)2+5(x/3h)1 
p(x) =- 0.059 -0.138 

7rh [1+x2/h2J2 [1 + (x/2h)2J2 [1 + (x/4h)2J4 [1+ex/3h)2J5 

1-10(X/8.8h)2+5ex/8.8h)4] 
-0.012 . 

[1 + (x/8.8h)2J5 
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The ratio p(x)/(2Pj-rrh) is represented in Fig. 5 by curve (c). The pressure distribution in the three­
dimensional case is 

3P [2 0.25 1-3(r/4h)2+Hr/4h)4 
p(r)=- -0.039'-------

27fN [1+(r/h)2J5/2 [1 + (r/2h)2J 5 /2 [1 + (r/4h)2J 9 /2 

1-5(x/3h )2+ (15/8) (x/3h )4] 
-0.154 . 

[1 + (x/3h)2JIl/2 

The ratio p(r)/(3P/hh2) is represented in Fig. 6, by curve (c). 

Case Cd) 

The function g(a) may be represented with an error less than 1 percent as follows: 

The pressure distribution in the two-dimensional problem is 

2P[ 1 1-6(X/3h)2+(X/3h)4] 
p(x) =- -0.065 . 

7rh (1+x2/hZ)2 [1 + (x/3h)3J4 

The ratio p(x)/(2P/7rh) is represented in Fig. 5 by curve (d). 
The pressure distribution in the three-dimensional problem is 

3P [1 1-3(r/3h)2+Hr/3h)4] 
per) =- 0.058 . 

27rh2 (1+r2/h2)5/2 [1+(r/3h)2J 9/ 2 

The ratio p(r)/(3P/hh2) is represented in Fig. 6 by curve (d). 
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