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Jp axial moment of inertia 
L effective length of transducers 

M torque 
X winding turns of a coil 
p Laplace operator 

Szz strain 
t time 

Tzz stress 

r (œ/v) 
u displacement 

VL longitudinal velocity 
Vs shear (torsional) velocity 

Y0 Young's modulus 
Y•s short circuit transfer admittance 

Z0 characteristic impedance 
Z•o open circuit transfer impedance 

a attenuation constant 

• propagation constant 
e dielectric constant 

u magnetic susceptibility 
p density 

(9 torsional angle 
• transformer ratio 
co angular frequency 
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Generalized Theory of Acoustic Propagation in Porous Dissipative Media* 

M. A. B•oT 

Shell Development Company, Houston 1, Texas 
(Received November 3, 1961) 

The theory of acoustic propagation in porous media is extended to include anisotropy, viscoelasticity, and 
solid dissipation. A more refined analysis of the relative motion of the fluid in the pores is also developed by 
introducing the concept of viscodynamic operational tensor. The nature of this operator is analyzed by 
applying variational and Lagrangian methods. Viscoelasticity and solid dissipation are introduced by apply- 
ing the correspondence principle as derived from thermodynamics in earlier work by the author. Various 
dissipative models are discussed and the corresponding operators and relaxation spectra are derived. The 
physical chemistry of the multiphase porous medium including surface effects lies within the scope of the 
thermodynamic theory. The nature of thermoelastic dissipation and electrokinetic effects in relation to the 
thermodynamic theory is also brought out. 

I. INTRODUCTION 

HE propagation of acoustic waves in porous 
media has been the object of theoretical analyses 

by various authors? 4 A more systematic treatment of 
acoustic propagation in a porous elastic matrix contain- 
ing a viscous fluid has been given by the writer. 5,6 It 

* A short outline of the present paper was presented under the 
title "Thdorie generalisle de la propagation acoustique dans un 
solide poreux dissipatif" at the Colloquium on Propagation in 
Nonhomogeneous Media, CNRS, Marseilles, September 11-16, 
1961, and published in the CNRS Proceedings No. 111, pp. 57- 
65 (1962). 

• J. Frenkel, "On the Theory of Seismic and Seismoelectric 
Phenomena in Moist Soils," J. Phys. U.S.S.R. 8, 230 (1944). 

• C. Zwikker and C. W. Kosten, Sound Absorbing Materials 
(Elsevier Publishing Company, Inc., New York, 1949). 

3L. L. Beranek, "Acoustical Properties of Homogeneous, 
Isotropic Rigid Tiles and Flexible Blankets," J. Acoust. Soc. Am. 
19, 556-568 (1947). 

4 R. W. Morse, "Acoustic Propagation in Granular Media," 
J. Acoust. Soc. Am. 24, 696-700 (1952). 

5 M. A. Biot, "Theory of Propagation of Elastic Waves in a 
Fluid-Saturated Porous Solid--I. Low Frequency Range," 
J. Acoust. Soc. Am. 28, 168-178 (1956). 

0 M. A. Biot, "Theory of Propagation of Elastic Waves in a 
Fluid-Saturated Porous Solid--II. Higher Frequency Range," 
J. Acoust. Soc. Am. 28, 179-191 (1956). 

was derived by adding inertia terms into the equations 
of consolidation developed in earlier theories. TM 

An extension of the acoustic propagation theory to 
include anisotropy and viscoelasticity was briefly out- 
lined recently in the wider context of the mechanics of 
porous media. ø In the present treatment the new 
features of the theory are developed in more detail and 
further generalized by the introduction of a "visco- 
dynamic operator." This provides an exact procedure 
for the evaluation of the dynamic properties of the 
fluid in its motion relative to the solid. While it con- 

stitutes an important refinement, it also leads to a new 
and simplified derivation of the fundamental equations 
of propagation. In addition, a more detailed analysis 
is given of viscoelastic and solid dissipation, and a 
number of models are discussed as illustrative examples. 

7 M. A. Biot, "General Theory of Three-Dimensional Con- 
solidation," J. Appl. Phys. 12, 155-164 (1941). 

8 M. A. Biot, "General Solutions of the Equations of Elasticity 
and Consolidation for a Porous Material," J. Appl. Mech., Trans. 
Am. Soc. Mech. Engrs. 78, 91-96 (1956). 

• M. A. Biot, "The Mechanics of Deformation and Acoustic 
Propagation in Porous Media," J. Appl. Phys. 33, 1482-1498 
(1962). 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  195.221.196.65 On: Wed, 21 Sep 2016

10:05:18



POROUS DISSIPATIVE MEDIA 1255 

Attention is called to the inclusion of physical-chemical 
phenomena into the present theory. 

The concept of a viscodynamic operator, which is 
introduced in Sec. II, offers the advantage of embodying 
the dynamic features of the fluid motion in the pores. 
A major portion of the theory is thereby reduced to an 
evaluation of the viscodynamic operator. Various 
methods for the evaluation of this operator are discussed 
in Secs. III, IV, and V. A scaled-model test is suggested. 
This model is applicable for fluid velocities which are 
beyond the range of validity of the present theory, 
causing amplitude-dependent effects which are of 
hydrodynamic origin and involve the Reynolds number. 
Analytic procedures are also developed. In particular 
it is shown that Lagrangian and variational techniques 
including the the use of normal coordinates may be ap- 
plied to derive exact or approximate expressions for the 
viscodynamic operator. Such methods yield results 
which are valid in both the low- and high-frequency 
ranges. It is also shown that in anisotropic media the 
viscodynamic operator is a second-rank symmetric 
tensor and that its principal directions may involve 
different characteristic frequencies. 

An interesting result is obtained by the use of 
Lagrangian equations. In Sec. III it is shown that use 
of the Poiseuille microvelocity field for the evaluation 
of the kinetic energy and the dissipation function 
yields results which are satisfactory in the low-frequency 
range up to frequencies where the viscous and inertia 
forces are of the same order. For a pore size of 10 -2 cm 
and water at normal temperature, this frequency is 
about 300 cps. The viscoelastic properties, relaxation 
effects, and solid dissipation are included in the theory 
by applying the equation of deformations of a porous 
medium derived earlier from the thermodynamics of 
irreversible processes. •ø The formulation is based on 
the correspondence principle proposed by the writer in 
its general form and shown to be valid for porous 
media? We have discussed various dissipative models 
which involve intergranular effects, small fluid-filled 
cracks, relaxation effects due to fluid bulk viscosity or 
caused by nonequilibrium processes of chemical and 
physical nature at fluid-solid interfaces. The dissipative 
effect of microscopic air bubbles is also discussed. 
This brings in the additional feature of inertia forces 
in the "internal" coordinates. All these models are 

translated into specific operators as particular cases 
of the general thermodynamic theory. 

More specifically in Sec. VI attention is called to the 
behavior of contact areas between grains and the 
behavior of fluids in the microscopic spaces in regions 
of quasi-contact and cracks. In such regions the 
physical chemistry of surface effects and special inter- 
molecular forces will generally play an important role 
and contribute to the over-all rigidity and dissipation 
effects. These phenomena are included in the present 

•0 M. A. Biot, "Theory of Deformation of a Porous Viscoelastic 
Anisotropic Solid," J. Appl. Phys. 27, 459-467 (1956). 

treatment and may be evaluated thermodynamically 
if we know the free energy and dissipation function of 
the physical-chemical system. 

The acoustic propagation is assumed to be associated 
with amplitudes small enough so that intergranular 
dissipation remains in the linear range. In that case 
the dissipation is of the relaxation type and should fall 
within the scope of linear thermodynamics. However 
extension into the nonlinear range is possible as an 
empirical procedure by introducing an amplitude 
dependence into the parameters of the linear theory. 

It is to be expected that the phenomena associated 
with the properties of microscopic fluid gaps play an 
important part in the variation of acoustic properties 
of porous rock when tested under high and low effective 
pressure. 

Thermoelastic dissipation is briefly mentioned and 
it is indicated that it is included in the present analysis 
and may be expressed by the use of the operators of the 
same thermodynamic theory. 

Electrokinetic effects and the associated acoustic 

dissipation are also discussed. Two types of effects are 
considered. One of these may be included directly in 
the present treatment. The other type may be evaluated 
by the use of existing theories. • It is pointed out that 
a more systematic treatment leading to coupled equa- 
tions for the electrical and mechanical variables may 
be derived from the thermodynamic principles. 

Dissipation due to scatter is neglected; therefore, it 
must be assumed that the wavelength is large relative 
to the pore size. 

II. FUNDAMENTAL EQUATIONS 

Consider a porous elastic matrix, fluid-saturated 
and statistically isotropic. The stress-strain relations 
derived in previous work •,•' are 

tO--- 2•eijq--bij(Xce--aM•'), 
(2.1) 

Ps= --aMeq-M•'. 

The physical quantities in these equations are defined 
as follows: 

u= displacement of solid of components ui, 

w= displacement of fluid relative to solid of com- 
ponents w; (measured in volume per unit area), 

« , 

e= divu, 

g= -- divw, 

ps= fluid pressure in the pores, 

r •.j= total stress in the medium, 

bo = Kronecker symbol. 

The other quantities in Eqs. (2.l) are elastic coefficients. 
A detailed derivation and discussion of Eqs. (2.l) has 
also been given in a recent paper. 9 
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Dynamical equations were derived in previous papers 
by various methods. 3-5 A new and more general form 
of these equations is obtained as follows. One of the 
dynamical equations expresses the time derivative of 
total momentum of the mixed fluid-solid system and 
is written 

Orq/Ox•= pi&-t- p•, (2.2) 

where p is the mass density of the mixed medium and 
pl that of the fluid. 

A second equation expresses the law of relative 
motion of the fluid in the pores, i.e., 

--Opi/Ox,-- p•a,= 7P (p)zb,. (2.3) 

The left side represents the effective body force per 
unit volume acting on the fluid in relative motion. The 
operator Y(p) is a function of the differential operator 

p=d/dt. (2.4) 

For simple harmonic motion at the angular frequency 
co, this quantity becomes a pure imaginary 

p= (2.5) 

The operator Y embodies the dynamics of the fluid in 
relative motion. We shall refer to it as the viscodynamic 
operator. It depends on the fluid inertia, its viscosity, 
and the geometry of the pores. Its evaluation is dis- 
cussed below in Secs. III and IV for the isotropic 
medium and in Sec. V for the anisotropic case. 

If we substitute the values (2.l) for the stress into 
Eqs. (2.2) and (2.3), we obtain 

tz X72u+ grad[- (tz+ Xc)e--aM•']= (02lOt 2) (pu+ psw), 
grad (age--MD= (O2/Ot2) (pyu) (2.6) 

+ ?Ow/Ot. 

These equations for acoustic propagation are written 
here in a form corresponding to the case of uniform 
rigidity (tz= const). 

IlL VISCODYNAMIC OPERATOR IN THE 

LOW-FREQUENCY RANGE 

In previous work 3-5 we have formulated the dynami- 
cal equations directly in Lagrangian form. The same 
Lagrangian procedure is used here to derive the 
operator Y. This is done by introducing the dissipation 
function 

D= (rff2k)(zb•+zbu2+zbz2), (3.1) 

•1 x 

20 • -- > x 

Fro. 1. Two-dimensional Poiseuille flow between 
parallel boundaries. 

and the kinetic energy of the fluid in relative motion 
I ' 2 (3.2) 

The fluid viscosity is denoted by r• and k is Darcy's 
coefficient of permeability. The coefficient m is derived 
by integrating the kinetic energy of the microvelocity 
field of the fluid in relative motion. In carrying out 
these evaluations we assume that the microvelocity 
field is the same as in Poiseuille flow. This is equivalent 
to stating that they correspond to the case where the 
inertia forces are neglected. The components vi of this 
velocity field may be written as linear functions of the 
vector w 

vi=aozbj, (3.3) 

where aq depends on the coordinates. The dissipation 
function is 

where the volume integral extends to the fluid in the 
unit volume of mixed material and the microstrain 
rate in the fluid is 

,•= « (Ov gOx•q-Ov•/OxO , (3.5) 
or 

eq= « (Oa•/Ox•+Oa•/Oxi)zb•. (3.6) 

Substituting this value in the integral and assuming 
that the medium is statistically isotropic, we find an 
expression of the type (3.1). As already pointed out 
elsewhere, øaø this calculation amounts to a derivation 
of Darcy's coefficients from thermodynamic principles. 
In this connection it should be noted as already pointed 
out earlier ø that the thermodynamic derivation is 
applicable to the much more general case where the 
entropy production involves other mechanisms than 
purely viscous friction such as slip flow or more complex 
interfacial effects. 

Similarly the kinetic energy is written 

T= f f f. a,a,aa, (3.7) 
which yields the coefficient m. 

The Lagrangian equations in relative motion are 
written 

op• pd/g = , (3.8) 
Ox• Ovb• dt Ovbd 

or 

--Op//Ox,--pfii•= (n/k)zb,+m•. (3.9) 

Comparing with Eq. (2.3) this yields, for the visco- 
dynamic operator, 

?(p)= (n/k)+mp. (3.10) 

At zero frequency (p=0) the operator yields Darcy's 
law. 
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The microvelocity field used in the above derivation 
is that of Poiseuille flow which implies that the inertia 
forces are negligible in comparison with the effect of 
the viscosity. One may well ask how valid Eq. (3.10) 
remains at increasing frequencies. One answer to this 
question is readily obtained by comparison with an 
exact solution already evaluated previously. Consider 
a fluid confined between two parallel plane boundaries 
separated by a distance 2a (Fig. 1). The problem of 
the relative motion of this fluid parallel to the boundar- 
ies under oscillatory driving forces is well known. In a 
previous paper ø it was derived in the form 

where 

OPs • z 2 
.... pfi/x= tb, (3.11) 

Ox a 2 1-- (l/z) tanhz 

z=a(p/•,) «, •=•7/p/. (3.12) 

The flow field is two-dimensional and in the plane of 
the figure. The average velocity of the fluid relative to 
the wall is 

v•v=½. (3.13) 

The wall displacement is denoted by ux and dpf/dx is 
the pressure gradient along the axis. The viscodynamic 
operator for this case is 

•7 •2 
=-- . (3.14) g(P) a 2 1-- (l/z) tanhz 

We may put this in the form 

Y(p)= (3n/a 2) (Flq-«z2), (3.15) 

where F1 has been evaluated as a function of z in an 

earlier paper. u 
Now this same problem may be solved by the 

Lagrangrian procedure outlined above. This is done by 
calculating the dissipation function and kinetic energy 
corresponding to the parabolic velocity profits associ- 
ated with Poiseuille flow. The viscodynamic operator 
thus derived is 

Y(p)= (3rt/a2)+ (6/5)pj.p, (3.16) 

which may be written 

= ) y(p) (3r//a2)(1 22. (3.17) 

From the numerical value of F1 it is found that in the 

range 0 'z Ix/J it may be represented with excellent 
accuracy by the approximation 

Fi= 1+ (1/lS)z -ø. (3.18) 

For z=v3 the error is of the order of 5%. With this 
approximation the viscodynamic operator (3.15) co- 
incides with the value (3.17) derived by the Lagrangian 
method. Even in the range v3 i z f2v3 the error does 
not become significant. 

n The real and imaginary values of F1 are plotted in Fig. 2 of 
reference 6. Due to a misprint, the abscissa in that figure represents 
•(8/3)• instead of •[-•=a(w/•)•-]. 

The approximate operator (3.17) may also be 
derived by expanding the exact expression (3.14) in 
powers of z 2 and limiting this expansion to the first 
term is z 2. 

The same calculation has been repeated for the 
three-dimensional flow in a tube of circular cross 

section using the solution derived in the earlier paper. • 
Again we are led to the same conclusion that the 
viscodynamic operator derived by the Lagrangian 
method and a Poiseuille microvelocity configuration 
is valid up to frequencies where inertia and viscous 
forces are of the same order. This frequency corresponds 
to a value I zl •x/J and may be used to define a transition 
frequency separating a "low"- and "high"-frequency 
range. With a pore size 2a= 10 -2 cm and water at 15øC 
(•=0.013 cm2/sec), the transition frequency is of the 
order of 300 cps. 

IV. VISCODYNAMIC OPERATOR IN THE HIGHER 

FREQUENCY RANGE 

A. Viscosity Correction Factor 

An approximate evaluation of the viscodynamic 
operator in the high-frequency range was made • by the 
use of a complex correction factor. This amounts to 
replacing the viscosity r• by a corrected complex 
viscosity 

• = n? (•o/•o•), (4.•) 

where •o• is a characteristic frequency which may be 
put equal to 

co•= rl/kpf= •,/k, (4.2) 

and/• is a coefficient which depends on the geometry 
of the pores. The correction factor F(l%o/w•) is a 
complex function of the frequency, which is plotted in 
Fig. 4 of a previous paper • as a function of •= (•0/•0•)«. 
We have shown that a change in the cross section of 
the pores may be taken into account by changing the 
frequency scale in the function F, i.e., by varying the 
coefficient •. It was found that for a capillary channel 
of cross sections resembling a narrow slit we must put 
•= 8, while for a tube of circular cross section •= 16/3. 
It can be seen that the dependence on the geometry in 
this case is not very sensitive. It may be assumed that 
in many applications other types of geometries may 
be incorporated approximately in the factor •. 

With this correction factor the viscodynamic operator 
is 

Y (p) = r•/kq-mp. (4.3) 

The inertia parameter m may be evaluated from the 
kinetic energy. A suitable microvelocity field must be 
chosen. At low frequency, accurate results are obtained 
by using the Poiseuille flow field. As the frequency 
increases the microvelocity field changes gradually to 
a potential flow where the effect of the viscosity is 
confined to a thin boundary layer in the vicinity of the 
solid. A refined value of m is obtained by taking into 
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account this gradual change in the evaluation of the 
kinetic energy. In the case of the exact operator (3.14) 
it can be seen that the value of m over the whole 

frequency range varies from (6/5)ps to ps. 
The correction factor F is unity at zero frequency. 

As the frequency increases it becomes asymptotic to a 
complex value with a magnitude proportional to (co)• 
and a phase angle of 45 deg. This behavior is due to 
the fact that beyond the transition frequency the fluid 
friction tends to be concentrated near the solid in a 

boundary layer whose thickness decreases like co-•. 
As a consequence the magnitude of the friction is 
higher than that which would occur if the microvelocity 
field retained its Poiseuille flow configuration, and is 
represented by an effective viscosity which instead of 
being constant is proportional to (co)•. 

B. Scaled-Model Test 

Another possibility is to use model tests. From the 
similarity law of unsteady small motion of a viscous 
incompressible fluid, it can be seen that a general form 
of the viscodynamic operator is 

? (•)= p•o,•(Wo, 3. (4.4) 

We may choose the characteristic frequency coc to be 
the same as defined above by Eq. (4.2). In that case 
•= 1 at zero frequency. The function ](p/coo) depends 
only on the geometry of the pores. We note that k is 
proportional to the square of the dimensions. Hence 
co c, which determines the frequency scale, is directly 
proportional to the fluid viscosity and inversely pro- 
portional to the square of the dimension. 

In the particular case of plane flow between parallel 
boundaries the viscodynamic operator in the low- 
frequency range was found to be expressed by Eq. 
(3.16). It may be written in the form 

(6p) (4.5) 
with a characteristic frequency 

coc= 3rl/pza2= 3•,/a 2. (4.6) 

The operator (4.5) is a particular case of the general 
expression (4.4). Since p= iw, it shows that inertia and 
viscous forces are of the same order when oo'•'--oo•. 

As an example of scaling, consider a porous medium 
constituted by a stacking of spheres of diameter equal 

Fro. 2. Schematic scaled model for empirical evaluation 
of the viscodynamic operator. 

to 1 cm, surrounded by oil 100 times more viscous than 
water. By means of a piston arrangement or some 
suitable driving device illustrated schematically in 
Fig. 2, let us apply an alternating motion to the fluid 
at a frequency 3 cps. This corresponds to a frequency 
of 300 cps for spheres whose dimension is reduced to 
1/10 mm and surrounded by water. Measurement of 
the amplitude and phase of the pressure in the model 
at various frequencies yields the function •. 

Such model tests may of course be used to determine 
the viscodynamic operator in both low- and high- 
frequency ranges. However, the frequency chosen for 
the model should be low enough so that the solid plays 
the role or a rigid body while the fluid may be considered 
as incompressible. 

In applying the similarity law we should keep in 
mind that expression (4.4) is valid only for small 
amplitudes of the particle velocities. As the amplitude 
increases, nonlinear effects may enter into play which 
modify the configuration of the velocity field. Such an 
amplitude dependence is determined by the Reynolds 
number expressed in terms of the particle velocity. In 
the acoustic propagation theory it is generally assumed 
that amplitudes are small enough so that the influence 
of the Reynolds number is negligible. 

The model test described above provides a method 
to determine the velocity amplitudes at which the 
linearity breaks down. It should be noted that for a 
given energy density of the acoustic wave, the fluid 
velocity, and therefore the Reynolds number, does not 
vary appreciably with frequency. 

C. Lagrangian Method 

The use of Lagrangian equations is not restricted to 
the low-frequency range. However, at increasing fre- 
quencies the microvelocity field is not a fixed configur- 
ation proportional to the volume flow. 

Consider, for instance, a vector w of magnitude wx 
oriented in the x direction. The Cartesian components 
v• of the microvelocity field may be written 

v•=o,•q•, (4.7) 

where qz are any numbers of generalized coordinates, 
each of which is associated with a fixed microvelocity 
configuration ai•. The volume displacement per unit 
area is obtained by integration and is written 

wx=•q•. (4.8) 

The dissipation function and kinetic energy are the 
quadratic forms 

= •T•q•q•, D «Dz•z•, 5 r=• ' ' (4.9) 

and the Lagrangian equations in the relative motions 
are written 

(4.10) 
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Solving these equations operationally we write 

•k = (--Op//Ox--p/i&)l•kg•. (4.11) 
Substitution of these solutions in Eq. (4.8) yields the 
following relation for the viscodynamics operator' 

1/?= •k•t,•t. (4.12) 
This method is very flexible and reflects the power of 
the variational procedure. For example, normal co- 
ordinates may be chosen to represent the microvelocity 
field. In this case the matrices of D and T are diagonal- 
ized. and Eq. (4.10) may be solved immediately. This 
yields the value of 1/• directly as an expansion in 
partial fractions. The use of normal coordinates in the 
case of plane flow illustrated in Fig. 1 is equivalent to 
an expansion of the velocity profile in a Fourier series. 
The expression for /•{•u•t is diagonalized and turns 
out to be the partial fraction expansion of the cor- 
responding transcendental function 1/? where ? is 
given by Eq. (3.14). This may be verified as follows' 

We write Eq. (3.14) in the form, 

1 a2z•( 1 ) -: = 1 - - tanhz . (4.13) 
Y 3, z 

Using Laurent series expansions we derive the identities 

1 •o 1 

- tanhz= 2 Y', 
z 

1 

1=2 Y'. 
•0 (2k+ 1) • l•r •' 

(4.14) 

Hence 

1 a224 oo 1 

_ =---- Y'. . (4.15) 
Y 3, r •- ,=0 (2k+ 1)•Ez•+ (2k+ 1) •- -}r :-] 

This corresponds to the general form (4.12) of the 
viscodynamic operator where normal coordinates are 
used. For values of z that are not too large, the series 
is rapidly convergent. If we limit ourselves to the first 
term (k=0) we find 

Y= (3,/a•')(1.Ol+O.412z*), (4.16) 

a value very close to the one derived above (3.17). 
This example justifies the conclusion that the use of 
normal viscodynamic coordinates will, in general, lead to 
rapidly convergent series for frequencies up to two or 
three times the transition range. The physical reason 
for this resides in the property that at a given frequency 
predominant excitation occurs only for the visco- 
dynamic modes whose characteristic relaxation times 
are larger than the period of the oscillation. 

V. ANISOTROPIC MEDIA 

Propagation equations for anisotropic media are 
immediately derived by direct application of the 
foregoing methods. 

The stress-strain relations for an elastic porous 
matrix in the most general case of anisotropy are 
written 

rq= A o•e•+ M•', (5.1) 
p/=Mqeq+M•'. 

They contain 28 elastic coefficients. Such equations 
were derived and discussed in previous work. 1ø.1' 

The dynamical equation (2.2) remains the same and 
Eq. (2.3) is replaced by 

-op//ox- o/a= (5.2) 

The viscod•amic operator Yo is now a symmetric 
tensor of the second rank. Its components are complex 
quantities, functions of the frequency. Evaluation of 
this operator follows the same procedure as outlined in 
Secs. III and IV. Formulation of the problem by the 
Lagrangian equations in paragraph (c) of Sec. IV leads 
to the conclusion that the viscodynamic tensor is 
symmetric. 

In the low-frequency range we may use the micro- 
velocity field given by the Poiseuille flow. The dis- 
sipation function and kinetic energy then take the form 

= •r,•, (5.3) 
•m o• ,•i • 

and the viscodynamic operator is written 

Y•i(p) = nr•i+m •ip. (5.4) 

In the case where the fluid dissipation is not deter- 
mined entirely by the viscosity but depends on more 
complex interfacial phenomena, a more general co- 
efficient Ro must be written instead of •rii. 

In the case of orthotropic symmetry we choose the 
coordinate axes to lie in the planes of symmetry. They 
coincide with the principal directions of the visco- 
dynamic tensor. We may write 

0 ] 
The diagonal components are of the form 

t,,= (s.6) 

This introduces three characteristic frequencies w•, wu, 
w, corresponding to the principal directions. They are 
defined by expressions of the type (4.2) in terms of 
three principal permeability coefficients. When using 
the function F of Eq. (4.1), an approximation is 
derived by using the same function with a different 
frequency scale in each principal direction. These fre- 
quency scales are determined by three values of w, 
and fi attached to each principal direction. 

We note that for cubic symmetry the tensor Yii is 
isotropic. 

1• M. A. Blot, "Theory of Elasticity and Consolidation for a 
Porous Anisotropic Solid," J. Appl. Phys. 26, 182-185 (1955). 
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¾I. VISCOELASTICITY AND SOLID DISSIPATION 

When dealing with actual materials, the model of a 
purely elastic matrix saturated with a viscous fluid will 
only be applicable in exceptional cases. The range of 
relaxation phenomena associated with dissipative pro- 
perties in porous solids extends to the whole field of 
physics and chemistry. The porous structure introduces 
a large area of contact of fluid and solid and in many 
cases interfacial surface phenomena will play a domin- 
ant role. Therefore, it is not sufficient to take into 
account the separate physical properties of fluid and 
solid, but the porous medium must be considered as 
a whole. For example, consider the case where the 
fluid is an electrolyte in which the components of the 
solid matrix may enter into solution. When the system 
is at rest its state of equilibrium is the result of very 
complex interactions which involve chemical affinity, 
electrical potentials, Van der Waals forces, etc. When 
this equilibrium is disturbed, the system tends to a new 
state. However, the change is not instantaneous and 
time lags appear which reflect the existence of a 
relaxation spectrum. 

Obviously also the state properties of the system will 
depend on the fluid in the pores. Because of the large 
areas involved, interfacial energies will contribute 
substantially to the over-all elastic rigidity. This may 
be expressed in another way by saying that in this 
connection the surface tension will play a significant 
role as already pointed out by this writer many years 
ago. ? If the pore fluid is removed by evaporation, not 
only will the surface phenomena be drastically affected 
but the components in the solution will precipitate, 
thereby modifying the gap size in the areas of minute 
cracks and intergranular regions. In addition, the 
surface tension effects will be associated with their 
own relaxation times. 

These microscopic gaps must be distinguished from 
the pores proper which are of much larger size and 
where the main fluid motion occurs. More generally, 
the physical chemistry of microscopic domains of fluid 
in cracks and intergranular gaps should be an im- 
portant factor in determining the over-all rigidity and 
dissipation in the viscoelastic porous matrix. Fluids 
under these conditions and especially at the higher 
frequencies will exhibit rigidity and relaxation effects 
due to complex surface and intermolecular forces 
which are quite different from classical Newtonian 
viscosity. 

Under these conditions large variations in applied 
effective pressure which affects the size of the gaps 
should induce appreciable changes in the acoustic 
properties. Moreover, the parameters which govern 
this dependence will involve the physical chemistry of 
the multiphase system. 

Regions of intergranular contact also contribute to 
the rigidity and dissipation. Such regions exhibit all 
the gradations between an amorphous and crystalline 

structure with a complex array of dislocations. At 
small acoustic amplitudes relaxation phenonena in 
these regions should predominate and the assumption 
of linearity will be justified. 

Thermoelastic dissipation is another example of 
interactions between fluid and solid phases. Stress 
waves set up temperature differences in the fluid and 
the solid, and this initiates interfacial heat flow associ- 
ated with a relaxation time spectrum. 

In addition to these fluid-solid interactions, the solid 
and the fluid themselves exhibit relaxation properties. 
For the solid this is the result of what is usually referred 
to as solid dissipation. 

The fluid itself may cause dissipation because of 
bulk relaxation, the appearance of a time lag between 
the changes of pressure and volume. This is observed 
in water at certain frequencies when specific salts are 
in solution. 

In spite of the enormous diversity of all these 
phenomena it is possible to formulate a general theory 
which take these effects into account. Such a phenom- 
enological approach was developed by the writer 
based on an extension of the principle of nonequilibrium 
thermodynamics. It is in such broader context that 
we have used the term viscoelasticity. 

In this context the porous medium is considered to 
be defined by a certain number of thermodynamic 
variables which include the "observed" mechanical 
coordinates and the "hidden" coordinates. Here an 

example of hidden coordinates would be the physical- 
chemical parameters defining the thermodynamic state 
of microscopic domains including large surface effects. 

Knowledge of the generalized free energy of this 
system in terms of all these variables yields the elastic 
coefficients. If in addition the dissipation function can 
be determined in terms of the time derivatives of these 

variables, the time history and relaxation effects may 
be evaluated. 

Elimination of the hidden coordinates from the 

equations provides operational relations between the 
observed strain and stress components. Apparent 
frequency-dependent rigidity coefficients will appear 
as a result of the progressive "freezing" of the hidden 
degrees of freedom with increasing frequency. 

The thermodynamic relaxation theory and its 
extension to porous media were developed in two 
papers. 1•',13 This work brings forth a general correspond- 
ence principle by which known results for elastic media 
may be immediately extended to the case of visco- 
elasticity by substituting operators for the elastic co- 
efficients. It is applicable to porous and nonporous 
media, anisotropy, dynamics, and variational methods. 

By this correspondence principle the stress-strain 
relations for a porous medium with relaxation and 
viscoelastic properties are formally identical. In the 

la M. A. Biot, "Theory of Stress-Strain Relations in Anisotropic 
Viscoelasticity and Relaxation Phenomena," J. Appl, Phys. 25, 
1385-139! (1954). 
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case of isotropy substituting operators for the elastic 
coefficients in Eq. (2.1), we write 

r•= 2•ei•+l•j(•e-- O•') , 
(6.1) 

p•= -Ce+M•'. 

The coefficient aM has been replaced by the operator 
C. The thermodynamic theory leads to a general 
expression for these operators. For example, the shear 
operator # may be written 

•=foøøp-•rr•(r)dr+•+•'p. (6.2) 
The symbol p denotes the time derivative (2.4) or 

io• (2.5). The propagation equations (2.6)for a uniform 
isotropic medium become 

# V•u + grad[ (# + •, c) e-- ff•'-] = -- (ou + o•w), 
Ot •. 

0 •' Ow 

grad(0e--]•') =--(o•") +g ß 
OF' Ot 

(6.3) 

Similarly, equations for the propagation in anisotropic 
media are immediately derived by substituting opera- 
tors in Eq. (5.1). 

Attention is called to the possibility of including 
nonlinear dissipation effects of intergranular contact 
areas at the higher amplitudes by introducing empiri- 
cally a gradual amplitude dependence of the modulus 
and phase of the operators with increasing amplitudes. 

VII. ILLUSTRATIVE VISCOELASTIC MODELS 

As an illustration we shall briefly discuss some 
examples of such operators. The e/ramples are presented 
in the context of mechanics. However, they may be 
considered as analogue models for some of the more 
complex physical-chemical phenomena discussed in 
the preceding section. 

Solid dissipations in shear may be represented by 
putting 

#=aps+•. (7.1) 

Physically this operator represents two elements in 
parallel. One is purely elastic of modulus u. The other 
represents creep of such a nature that the deformation 
under constant stress is proportional to t 8 (t=time). 
When 0<s<l we recognize a type of creep frequently 
observed in solids, and similar to one derived from 
dislocation theory. 

Let us assume s to be small and consider the case of 

acoustic propagation at angular frequency w. We 
write approximately 

•= aws ( l +«irs)+ •. (7.2) 

The imaginary part varies slowly with frequency. 
Since it is proportional to the logarithmic decrement 
of the material, we see that the operator (7.2) may 

approximate a type of solid dissipation frequently 
observed. TM For acoustic propagation a constant decre- 
ment yields an absorption coefficient proportional to 
the frequency. 

As shown elsewhere ø the operator (7.1) may be 
written in the general form (6.2) by introducing a 
relaxation spectrum 

• (r) = a (sins•r/•r)rS-L (7.3) 

Another operator of similar property proposed 
earlier by this writer ø is obtained by putting 

u(r)= (7.4) 
r<•. 

With u'=0 and p=iw, Eq. (6.2) yields 

log{ 
For a value of • suitably small the imaginary term 
is approximately independent of the frequency. 

Interfacial dissipation may be illustrated by some 
simple examples. As already pointed out, physical 
chemistry will generally have to be brought into the 
picture. Purely mechanical effects come readily to our 
attention if we consider the areas of contact between 

grains. Such regions are usually of disordered molecular 
structure thereby acquiring properties analogous to a 
fluid of high viscosity. Such properties are represented 
by operators with viscous elements. 

Other intergranular effects bring into play the 
viscosity of the fluid in the pores. A model for such a 
mechanism is illustrated in Fig. 3(a) which represents 
two elastic grains in contact in the presence of a fluid. 
If an oscillating stress is applied normally to the area 
of contact, the fluid will be squeezed in and out of the 
narrow regions A and B. Because of the fluid viscosity 
this produces a dissipation. A spring-dashpot model 
corresponding to this mechanism is shown in Fig. 3 (b). 
The operator representing this model is given by 
Eq. (7.17). A similar dissipation mechanism occurs 

Fro. 3. Schematic representation of the region of contact between 
grains and the corresponding spring-dashpot model. 

•4 L. Peselnick and W. F. Outerbridge, "Internal Friction in 
Shear and Shear Modulus of Solenhofen Limestone over a Fre- 
quency Range of 10 * Cycles per Second," J. Geophys. Research 
66, 581-588 (1961 ). 
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FIo. 4. Illustration of actual grain and fluid-gap configurations. 

when the pores include narrow intergranular gaps or 
wall cracks of a type illustrated in Fig. 4. 

It is of interest to evaluate the type of operators 
associated with such a mechanism when the fluid 

compressibility is taken into account. This can be 
done by considering a simplified model represented by 
a small gap of fluid between two rigid blocs as shown 
in Fig. 5. The model is two-dimensional. The x co- 
ordinate is oriented along the length of the gap. The 
width of the gap is h. The relation between the fluid 
pressure and the average displacement w of the fluid 
over the width of the gap is obtained from the visco- 
dynamic operator (3.16) after putting p=0. We derive, 

Opy 12n Ow 

Ox h 2 0t 
(7.6) 

where v denotes the fluid viscosityß On the other hand, 
the fluid elasticity yields the equation 

--cp•=Ow/Ox, (7.7) 

where c is the fluid compressibility. Combining the 
two equations (7.6) and (7.7) yields 

o•p• 12nc op• 
.... . (7.8) 
Ox • h •Ot 

An initial pressure distributed as a half sine wave over 
the length D of the gap will decay exponentially with 
time. This is represented by the following solution of 
Eq. (7.8): 

p•= p• sin (•rx/D)e -•t, (7.9) 
with a relaxation time 

I/r= 12ncD•/•h •. (7.10) 

For a gap of dimensions 

D= 10-1 cm= 1 mm, (7.11) 
h= 10 -4 cm = 1 

7///////////////A 
I,,, D 

Fro. 5. Simplified model for a compressible fluid gap 
between solid boundaries. 

filled with water at 20øC, the relaxation time is 

I/r= 5.7X 10 -7 sec. (7.12) 

This corresponds to a frequency of about 2 Mc. At this 
frequency non-Newtonian viscoelastic behavior of the 
fluid must be considered. In addition the wavelength 
begins to approach the pore size and wave scatter 
must be taken into account. Dissipation due to scatter 
is not within the scope of the present theory. For a 
gap h= 10 -5 cm the relaxation frequency is brought 
down to the 20 kc range. However, as already pointed 
out, we must bear in mind that the behavior of water 
in gaps of this size or smaller may depart from that of 
a Newtonian fluid, due to strong surface effects. 

Actually, of course, there is a spectral distribution 
of such relaxation times corresponding to all the 
possible sine wave distributions of pressure across the 
gap. The relaxation times of these spectral components 
are proportional to 1, 1/9, 1/25, etc. The gap is there- 
fore equivalent to a number of Maxwell elements in 
parallel as shown in Fig. 6. The force P acting normally 

Fro. 6. Maxwell elements 

in parallel equivalent to the 
fluid gap of Fig. 5. 

to the gap and the change of width of/Xh are related 
operationally by an expression of the type 

with 
P=2/Xh, (7.13) 

aip a•p 
2=' + +.-.. (7.14) 

pq-r• pq-r• 

As an example let us show how such an element can 
be introduced into the evaluation of the operators of 
the general equations (6.1). A solid elastic column 
with a fluid-saturated crack may be represented 
schematically by a block diagram of elastic and visco- 
elastic elements as shown in Fig. 7. The jacketed 
compressibility operator corresponding to this model is 

1 

•= •0-4-• (7.15) ß 

1/•+2 

At a frequency low enough with respect to r• the 
expression for Z may be reduced to the approximation 

2= (a•/r•)p, (7.16) 

which represents a purely viscous element. The com- 
pressibility operator then becomes 

•= Koq-K•p/ (r•q-a•K•p). (7.17) 

This corresponds to the spring-dashpot model of Fig. 
3(b). 
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Fro. 7. Fluid-saturated crack AB in a solid, and its 
equivalent block diagram. 

Using a correspondence principle we have shown 9 
how the operators of the stress-strain relation (6.1) 
could be evaluated. For example, the operators C and 
M are 

C= 

•+•-•/•' 
(7.18) 

1 
M= ß 

,+•-•2/• 

The unjacketed compressibility i5 and the coefficient of 
fluid content q, were introduced and discussed earlier. 15 
They are defined by considering a unit volume of bulk 
material in an unjacketed test. A unit increase of fluid 
pressure i5 represents the change of volume of the bulk 
solid while q, is the volume of fluid entering the solid 
through the pores. 

Operators of the type (7.18), corresponding to a 
model of fluid-saturated cracks or integranular gaps, 
were also discussed in a previous paper 1ø in the more 
general context of the thermodynamics of irreversible 
processes and as a particular example of the more 
general theory. 

Attention has also been called 9.15 to the possibility of 
expressing q, in terms of the porosity f under certain 
assumptions regarding the structure of the porous 
solid. This expression is 

•=J(c--•), (7.19) 

where c is the fluid compressibility. 
The assumption that q, and i5 are real quantities is, 

of course, not necessary. Bulk relaxation can be 
introduced if we replace q, and i5 by the corresponding 
operators. This may be illustrated by the case where 
bulk viscosity or relaxation of the fluid is taken into 
account. Various relaxation processes have been 
suggested. In one of the models discussed by Hirai and 
Eyring 1ø the bulk viscosity in water results from a 
shifting equilibrium between the number of holes and 
the number of phonons associated with the liquid 
lattice. This leads to a relaxation time in the pressure- 
volume relationship and corresponds to the mechanical 
model of Fig. 7 where •½ is a viscous element. The 

•5 M. A. Biot and D. G. Willis, "The Elastic Coefficients of the 
Theory of Consolidation," J. Appl. Mech. 24, 594-601 (1957). 

16 N. Hirai and H. Eyring, "Bulk Viscosity of Liquids," J. Appl. 
Phys. 29, 810 (1958). 

fluid compressibility is then represented by an operator 
of the type (7.17), i.e., 

0.= Co+c•r/ (r-k-p). (7.20) 

In such a fluid there will be a transition range where 
the acoustic velocity changes while the dissipation 
goes through a peak. The same phenomenon will also 
occur for certain salt solutions in water. In this case 
the shifting equilibrium corresponds to molecular 
changes in the solution. Again this will be represented 
by a compressibility operator of the type (7.20). 
Introduction of a compressibility operator • for the 
fluid replaces q, by an operator • in the previous 
formulas. 

We have also discussed • a type of dissipation due to 
air bubbles. This however may involve resonance 
effects since the air in the bubble and the apparent 
mass of the surrounding liquid combine to form an 
oscillator. The fluid is then represented by the mechani- 
cal system of Fig. 8. It differs from those considered 
above by the addition of a mass element m. The 
compressibility operator by the fluid in this case 
becomes 

•= c2+ 1/(mp2+tSp+k). (7.21) 

This operator does not belong to the general type 
(6.2) considered previously because it takes into 
account an inertia effect in the hidden coordinates. 

This appears in the term mp •. The damping term •p 
corresponds to the viscous dissipation arising from the 
concentrated radial velocity of the fluid in the vicinity 
of the bubble. A thermoelastic dissipation is also 
associated with the presence of gas bubbles. It may be 
introduced in the present formulation by the substitu- 
tion of an appropriate operator • in the place of the 
elastic coefficient k. 

Another viscoelastic model is illustrated by the 
mechanical properties associated with the physical and 
chemical equilibria at the boundary between the solid 
and the fluid in the pores. Because of the large area of 
the fluid-solid interface, such effects usually play a 
significant part in determining the over-all properties 
of the bulk material. The so-called surface tension 

effects belong to this class of phenomena. The shift in 
physical and chemical equilibria at the interface will 
generally involve relaxation times which may be 
evaluated by the method of statistical mechanics. The 
operators representing such effects will be of the same 
general type as those already considered. For example, 

Fro. 8. Spring, mass, and dash- 
pot model representing a fluid 
containing bubbles. 
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the shear operator • in such a case will be given by 

(7.22) 

Such an operator exhibits the characteristic features of 
a transition frequency with a dissipation peak. The 
presence of a spectrum of relaxation effects may be 
taken into account by adding a number of terms of 
the same type in Eq. (7.22). 

VIII. THERMOELASTIC AND ELECTROKINETIC 
DISSIPATION 

When considering thermoelastic relaxations in heter- 
ogeneous media, two types of phenomena must be 
distinguished. One type of thermoelastic dissipation is 
due to the heterogeneities. In a porous medium this is 
represented by the microscopic heat flow taking place 
between small domains of thermoelastic temperature 
differences within the solid matrix and between the 

pore-fluid and the solid. Attention is called to the 
analogous case of nonuniform porosity, where unequal 
fluid pressures are generated and play the same role 
as unequal temperatures in thermoelasticity. Such 
effects are included in the general type of operational 
expressions such as (6.2). The particular operators for 
a specific geometry may be derived by using the 
general thermodynamic theory? The other type of 
thermoelastic effect is due to the over-all temperature 
gradients generated by the acoustic wave and will 
generate a thermoelastic dissipation analogous to the 
case of a continuum. 

A word should also be said about electrokinetic 

effects. The relative motion of the fluid in the pores 
generates an electric field and electric currents. These 
currents contribute to the acoustic dissipation. The 
electrokinetics of porous membranes is well known to 
physical chemists. In the light of the present theory it 
is possible to distinguish two types of electrokinetic 

effects which resemble the distinction between the two 

types of thermoelastic dissipation mentioned above. 
In one case the relative motion of the fluid is purely 
local and is due to the squeezing of the fluid in and 
out of cracks and narrow gaps as in the various ex- 
amples which we have discussed. This generates local 
dipoles. For isotropic porosity these dipoles and the 
local currents which they generate will exhibit a certain 
degree of randomness. In such a case the present 
theory is applicable by considering these local dipoles 
to represent "hidden" degrees of freedom. This type 
of electrokinetic effect is included in the present 
thermodynamic treatment and may be incorporated in 
the viscoelastic operators. The other and more im- 
portant case considers the electric potential associated 
with the over-all relative fluid velocity. It is possible 
to calculate this effect by evaluating the relative fluid 
velocity from the present theory. The corresponding 
electric potentials and currents may then be derived. 
In this case the currents are not random but they are 
distributed sinusoidally with the same wavelength as 
the acoustic wave. A discussion of the electrokinetic 

effect in the context of acoustic propagation was 
already given by FrenkeP for the low-frequency range. 
Actually there is a coupling between the electric field 
and the pressure gradient. A more rigorous treatment 
including such coupling involves the Onsager relations 
and the same thermodynamic principles which have 
been discussed above in the context of viscoelasticity. 
Application of the thermodynamic theory to this case 
will result in equations for the coupled fields of electrical 
and mechanical variables. An interesting aspect of 
this phenomenon is the relative importance assumed 
by the wave of the second kind as compared to the 
wave of the first kind. We have shown that the wave 

of the second kind is associated with a larger relative 
velocity of the fluid in the pores. ø This should have 
an important bearing on the electrokinetic effect. 
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