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General Fluid-Displacement Equations for Acoustic-Gravity Waves

M. A. Brot

New York, New York
(Received 20 September 1962; revised manuscript received 14 January 1963)

General equations are derived for the dynamics of a fluid under initial stress in an arbitrary po-
tential field and perturbed from equilibrium. The motion is described in terms of the displacements of
the fluid particles from their equilibrium position. A class of equations is obtained which is applicable
to large displacements. Complete linearization leads to two types of equations. One type called ‘“un-
modified”’ corresponds to the viewpoint of the theory of elasticity. The “modified’”’ equations repre-
senting the other type are expressed in terms of buoyancy forces. The modified equations lead to a
conceptually useful analog model for internal gravity waves in a liquid. For a constant gravity field
the linear equations are also applicable to large displacements. Classical examples for a constant

gravity field are discussed as illustrations.

1. INTRODUCTION

HE theory of wave propagation in a fluid subject
to a gravity field has been the object of analytical
treatment by many authors in the classical literature.
One may distinguish acoustic-gravity waves rep-
resented by the propagation of large-scale disturb-
ances in the atmosphere. This represents the more
general case where the propagation is governed by
the combined effect of compressibility and gravity.
The particular case of an incompressible fluid
corresponds to pure gravity waves occurring in a
heavy liquid of nonuniform density. They may be
internal gravity waves if they occur in the body of
the fluid and are governed by the density gradient
or density discontinuity. They include surface waves
as a particular case of density discontinuity.

The propagation of gravity waves in heterogeneous
liquids has been treated by Love, Burnside, Rayleigh,
Lamb. (Classical references will be found in Lamb’s
treatise,’ p. 378.) These studies were initiated
already in the late nineteenth century.

General equations for small motion of a gas about
a state of equilibrium in any constant field of force
have been derived by Lamb (see Lamb’s treatise,'
p. 554). Many applications have been discussed by
Bjerknes® in the context of meteorology. In a recent
book Eckart® has treated extensively the problems
of hydrodynamics of the ocean and atmosphere. The
traditional procedure is founded on Euler’s equations
of fluid dynamices where the motion is desecribed by
a velocity field.

1 H, Lamb, Hydrodynamics (Cambridge University Press,
New York, 1932). [Reprinted by Dover Publications, New
York, 1945.]

2 V. Bjerknes et al., Phystkalische Hydrodynamik (Springer-
Verlag, Berlin, 1933).

3 C. Eckart, Hydrodynamics of Oceans and Atmospheres
(Pergamon Press, Inc., New York, 1960).

The present paper is concerned with a funda-
mental approach of a different nature. The theory is
developed from the standpoint of the fluid displace-
ment instead of the velocity field. In this formulation
the coordinates of a given fluid particle are con-
sidered as functions of the initial coordinates and
the time. The equations constitute a special case
of the theory of elasticity and elastic wave propaga-
tion under initial stress derived by the writer in
1940.* By inserting a zero value for the shear
modulus the equations reduce to that of a fluid
under initial stress. This reduction is trivial and
immediale.

While the results obtained from the viewpoint of
the elasticity theory are completely general there is
need for a more complete treatment and discussion
in the case of a fluid.

Our purpose here is to present such a treatment
in rigorous and systematic form for a fluid in a
nonuniform body force field.

General equations for the motion of a fluid
perturbed from equilibrium are derived in Sec. 2.
A class of equations is obtained which is applicable
for large displacements provided the displacement
gradients remain small.

By further linearization with respect to the
displacements it is possible to derive two essentially
different types of equations as shown in Sec. 3.
In what we have called the ‘“unmodified form’ the
equations embody the viewpoint of the theory of
elasticity. Mathematically equivalent ‘“modified
equations” can be derived which emphasize the
viewpoint of the mechanics of fluids by introducing
the buoyancy forces. The modified equations are
closely related to Euler’s equations.

4 M. A. Biot, J. Appl. Phys. 11, 522 (1940).
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The case of an incompressible fluid is treated in
Sec. 4. It includes internal gravity waves in a
nonhomogeneous liquid. A conceptually very useful
analog model is derived for this case. It is shown
that the motion is the same as in a fluid free of
gravity provided we add elastic forces, proportional
to the displacement, distributed inside the fluid and
at the free surface.

Particular forms of these equations for the case
of a constant gravity field are discussed in Sec. 5
leading to classical results.

Use of the displacement field equations instead of
the Eulerian description has many advantages. It
provides a elearer and more general physical deserip-
tion, and leads immediately to variational principles.
These principles will be derived in the next paper.®

The displacement-field equations also provide a
link with the theory of elasticity and a unified theory
applicable to both fluids and solids. This is partic-
ularly useful in the analysis of composite fluid-solid
media. The equations considered as a particular case
of the theory of elasticity will be derived in a
third paper.®

2. DYNAMICS OF A FLUID CONTINUUM UNDER

INITIAL STRESS

Consider a fluid in a state of equilibrium under
a body force field. This state of equilibrium will be
referred to as the “initial state.” The force field
acting on the fluid per unit mass is represented by
its components

X, = X.(x). 2.1)

They are functions of the coordinates z, y, 2z des-
ignated in abbreviated form as z. The initial stress
in the fluid is an isotropic stress field designated as

8 = S(x) 2.2
represented by the initial fluid pressure changed in

sign. The initial mass density of the fluid is a function
of the coordinates

p = p(z). 2.3
No relation is assumed a prior: between p and S with
the implication that the fluid may be heterogeneous.
The distribution of heterogeneity may be chosen
arbitrarily. The only requirement of this initial state
is that the fluid be in mechanical equilibrium, hence
that the following equation be satisfied:

38/dx; + p(x)X(x) = 0. (24)
This equilibrium condition implies a relation between
the body force field and the density. In vector

5 M. A. Biot, Phys. Fluids (to be published),
8 M. A. Biot, Phys. Fluids (to be published).
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notation this relation is written
curl (pX) = 0. 2.5

Let the fluid be disturbed from equilibrium by a
small perturbation. A mass particle originally at the
point z, y, z is displaced to a point of coordinates
& n, . We write

t=z+u, t=z+w. (2.6)

The components of the displacement vector of the
particle are u, v, w. We shall designate the co-
ordinates £, 9, ¢ by £; and the components u, v, w
by u;. Equations (2.6) then assume the abbreviated
form

17=y+1),

E=x; + u. 2.7

Consider now the dynamical equations for the
fluid in this perturbed condition. We shall assume
here that in this perturbed motion the fluid particle
behaves as a frictionless fluid. Hence the stress in
the perturbed fluid remains isotropic. A fluid particle
originally at point z; has moved ‘to -the point £,.
The isotropic stress on the displaced particle has
now become o, its density p’, and its acceleration is
a;. The dynamical equations for the motion of this
particle are

d0/0k + o' OX ) = p'(®as. (2.8)

These equations are expressed in terms of the coor-
dinates £; as independent variables. The problem is
to transform these equations so that the original
coordinates z; become the independent variables.
An equivalent form of Egs. (2.8) is

(90/02;)(0x,;/98:) + p'X; = pla.. (2.9
The usual summation rule is assumed in the notation.
The partial derivatives dx;/9%; are easily expressed

in terms of the inverse derivatives by the standard
procedure. We write the total differentials

dE,' = (af,/ax,) dx,- (2.10)
and solve this system for dz;,
de; = (1/J)M,; d;; (2.11)
hence
dz;/dg; = (1/J)M ;. (2.12)
The Jacobian of the transformation (2.10) is
9k ot of
dr Jdy o0z
— |97 97 9y
J = ox oy oz|" (2.13)
9 9t 9t
dr dy 9z
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The cofactors of this determinant are M ;;. They are
the partial Jacobians with suitable signs. They
contain terms which are linear and quadratic in the
displacement gradients du./dx;. In evaluating M ,;
we shall introduce the assumption that the displace-
ment gradients are small quantities such that their
squares and products may be neglected. This is
equivalent to the condition that the strain and
rotations are small. However, no such restriction is
imposed on the magnitude of the displacement wu,.
TUnder these conditions we may write

M, =1 4+ eé;; — du,;/ox;. (2.14)
In this expression e is the dilatation
ow ou;
+ -|— 3%z = oz, (2.15)
and §,; is the Kronecker symbol
by = {1 T (2.16)
0 7#j.

Substituting the partial derivatives (2.12) into Eqs.
(2.8) and taking into account the law of conservation
of mass

p = p'J, 2.17)
we derive
M;; 0c/0x; + p(x)Xi(¢) = p(x)a,. (2.18)
The stress o on the particle may be written
o= S8S++s, (2.19)

where —s is the pressure increment. If it depends
only on the dilatation we write

s = he (2.20)

with an ¢ncremental bulk modulus A. We may choose
it to be either the isothermal or adiabatic modulus.
Again by assuming the deformation and rotations
to be small we retain only the terms which are linear
in the displacements gradients. With this approxima-

tion we may write
98 S

]”” ax - 6—+ ax;

du; 98
ox; ax

(2.21)

When substituting this expression in Eqs. (2.18)
we take into account the equilibrium condition (2.4)
for the initial stress field and write
98/9z; + p(@)X:(®) = p(x)AX; (2.22)
with
AX, =X z(f)

— X.(x). (2.23)
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Equation (2.18) becomes
ds aS  ou; 48
ox; ¢ ox; Oz, Iz, 2.24)

The acceleration which appears on the right-hand
side is

= 9°u;/of. (2.25)
Hence the dynamical equations are
du; 98 u,
6x ox; ox, T pAX = pge (2.26)

With suitable initial and boundary conditions they
determine the displacement field u; as a function
of time. The initial mass density p(x) and the initial
stress S(z) are given functions of the initial coor-
dinates z..

Note that Eqs. (2.26) are not necessarily linear in

" the unknown displacements since AX; are explicit

functions of ;.

Coriolis acceleration. When the frame of reference
is rotating the acceleration a; must include a
Coriolis term. This is easily included in the above
equations by introducing the antisymmetric matrix

0 -9 Q,
[Q,»,-] = Qz 0
-, Q, 0

-o. |, @27

where ©,2,2, are the components of the angular
velocity of the frame of reference. In this case the
acceleration in Eq. (2.24) is replaced by

= 9%u;/dr + 2Q;; du;/at. (2.28)

3. MODIFIED AND UNMODIFIED EQUATIONS

The general equations (2.24) may be written in
a different form by introducing two assumptions.
We assume that the body force is derived from a
potential U, i.e.,

X,' = '—6U/ax,. (3.1)
In addition we shall linearize AX; by writing
80X, U
AX, = 6x_“ T o, ox, Uj. (3.2)

It is well known that the existence of a body force
potential implies that in the equilibrium state the
surfaces of constant density coincide with equi-
potential surfaces. This is readily established by
combining Eqs. (2.4) and (3.1). We find

9p 3U _
ox; dx;

dp 6U

ox; 8::: (3.3)
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This equation implies that the body force X; and
the density gradient dp/dxz; are parallel vectors.
Under these assumptions it is possible to derive
dynamical equation of two essentially different types
as will now be shown.

With the value (3.2) the dynamical equations
(2.24) are written

ds M

or, ' ®ox, oz, ox, P oz, ox, U

= pa;. (3.4)
We shall refer to them as the unmodified equations.
In this form the equations are the same as those
obtained direetly for the linearized equations of
elasticity for an initially stressed continuum®* as will
be shown in another paper.’

Another equivalent form of Egs. (3.4) is obtained
as follows. We put

s =8 + pu; 8U/dzx;. (3.5)

Substitution in Egs. (3.4) taking into account Eqgs.
(2.4) and (3.1) yields
as’

9T _ X, — uX; 22 =

™ e = e (3.6)

We shall refer to these equations as the modified
equations. By using Eq. (3.1) the variable & is also
written

s’ =s+ ou;X,. 3.7

The interest of the modified form lies in their
physical interpretation and intuitive value.

To show this we rewrite the value (3.7) of s’ by
taking into account the equilibrium condition (2.4)

(3.8

This expression shows that s is the increment of
stress at the fixed point x..

On the other hand, let us look at the terms
containing the body force in Eq. (3.6). Taking into
account relations (3.3) we write

s = s — u; 48/0zx;.

= Xogu). (39)
These terms represent the buoyancy force on the
fluid in a fixed volume of space. It is directed
normally to the equipotential surface. To the first
order this buoyancy force and the acceleration a;
may be considered as values at the fixed point z,.

With this interpretation Eq. (3.6) becomes
intuitively self-evident as expressing Newton’s law
for a fluid particle at the fixed point.

Attention is called to an important property for
the case of a constant gravity field. In this case

BIOT

AX; drops out and linearization is not required.
Hence for a constant gravity field the modified
equations (3.6) are equivalent to Eqgs. (2.24) and
are therefore applicable to large displacements.

Relation to Euler’s equations of fluid dynamics.
Using relation (3.9) the modified equations (3.6)
become

as’
ax;

(3.10)

This result is closely related to the equations derived
from fluid dynamics. Euler’s equations are
<6v a,

at T Vi oz,

) = ax + pX;, (3.11)
where »; and p denote the fluid velocity and pressure
at the fixed point z,. Taking the time derivative
of Eq. (3.11) neglecting higher order terms yields

S
PoE ~ ax’ Py, + X (3.12)

The equation of conservation of mass is
dp/dt + 8(pv;)/0x; = 0. (3.13)

Hence, eliminating dp/dt between the last two equa-
tions we obtain

o _ _ 9 <§2>

T at
This result is identical in form with Eq. (3.10).
The velocity »; replaces the displacement u; and
—dp/at replaces . Dividing Eq. (3.10) by an
infinitesimal time interval At yields Euler’s equations
(3.14) in the limit.

d
X G (). (3.19)

4, ANALOG MODEL FOR INTERNAL GRAVITY WAVES
IN A LIQUID

In an incompressible liquid we put

e=20 4.1)

in the modified equations (3.6). They are simplified to
as’ dp

axi qu]- ax{ = pa;. (4.2)

Equations (4.1) and (4.2) are four equations for s
and the three displacement components u,.

They are identical with the dynamical equations
for a liquid inetially stress free with distributed body
forces acting on the fluid particles proportionally to
their displacement from equilibrium.

This new physical system may be considered as an
analog model for the actual fluid under initial stress.

The stress in the model is §". It is different from



EQUATIONS FOR ACOUSTIC-GRAVITY

the stress in the actual fluid. The ineremental stress
s in the actual fluid is related to the model stress s’
by Eq. (3.7),

s =8 — pu; X,. (4.3)

This shows that a free surface in the actual fluid is
not a free surface in the model. By putting s = 0in
Eq. (4.3) the following boundary condition in the
model is obtained:

S’ = pu,-X,-. (4-4)
Since X, is normal to the free surface we may write
s = ou,X, (4.5)

where u, is the normal displacement and X the
normal component of the body force.

Hence at the surface of the model we must apply
a normal foree s’ per unit area, proportional to the
boundary normal displacement. If the body force is
directed inward at the surface this force acts in
opposition to the displacement as an elastic re-
storing force. In that case it is stabilizing. In the
opposite case it acts as a negative elastic force and
is destabilizing. This corresponds to the so-called
“Taylor instability.”

The body force of the model can similarly be
looked upon as a positive or negative elastic force
applied to the fluid particles per unit volume. We
may write

_uiX{ ap/axi = _(unX ap/an)ni; (46)

where 7, is the unit normal to the equipotential
surface with dp/dn equal to the normal derivative
of the density along the same direction. We see
that if X and dp/dn are of the same sign, expression
(4.6) represents an elastic restoring force. Hence it is
stabilizing. If X and dp/dn are of opposite sign the
force is destabilizing.

If there is a surface of discontinuity for the density
we may think of it as a thin layer through which the
value of the density varies rapidly from p, to p..
By integration across the thickness expression (4.6)
becomes a force per unit area —u,X(p. — pi)n;
applied to the surface of discontinuity. This includes
the boundary surface which may be considered as
a density discontinuity by putting p; = 0.

Hence if the liquid is composed of layers each of
which is of constant density, the analog model is
obtained by applying forces to the discontinuity
surfaces including the free surface.

5. CONSTANT GRAVITY FIELD

With a vertical z axis positive upward a constant
gravity field of acceleration g is represented by the

625
components
X.=(0,0, —g). (5.1)
The unmodified equations (3.4) become
o _ dw _ du
ar P T Por
as w N
ay " Py T P (5.2)
LT | i)
9z Py Py 9z p EY:

Equations of this type were also proposed earlier by
the writer.* To these we must add Eq. (2.20) for s.
By the change of variable

(5.3)

taking into account that p is a function of z only
equations (5.2) become

s’ =8 — pgw

2

o’ _ du

or  Par

ds’ %

= PR (5.4)
a5 do _ 5w
0z T pge + wy de Pof

They correspond to the modified form (3.6) of the
general case. As already pointed out, Egs. (5.2)
and (5.4) are equivalent for the case of a constant
gravity field and both applicable to large displace-
ments. Equations equivalent to Eqgs. (5.4) but
slightly different in form were also proposed by
Eliassen and Kleinschmidt’ using the same displace-
ment field.
For a liquid we put e = 0. Hence

o’ _ du

ar Poare

as’ v

6—_1/ =p &5 ] (5'5)
as’ dp _ 6_22
e TV T P op

These equations represent the analog model. If
dp/dz is negative the body force in the model is a
restoring elastic force wg(dp/dz) proportional to the
vertical displacement. At the surface of the model
a restoring force is also applied. Its value per unit
area is

s = —pgw. (5.6)

7 A. Eliassen and E. Kleinschmitt, in Handbuch der Physik,

edited by 8. Fligge (Springer-Verlag, Berlin, 1957), Vol. 48,
p. 52.



626 M. A.

As an illustration we apply Eqs. (5.5) to the classical
case of two dimensional motion in an ocean of con-
stant depth . We put

u=%—f, v =0, w=—%, 5.7
and
¥ = exp (thr — wd)f(z).
This solution satisfies the condition ¢ = 0 of

incompressibility. Substitution of the values (5.7)
into Eqgs. (5.5) yields two equations for s’ and f.
By elimination of s’ we are left with a Sturm-Lion-
ville equation for f.

d(g

dz pdz) +tial=d)f=0. (58

BIOT

We have put

ldp @
Y% d’ &
The parameter V is the phase velocity along .

The boundary condition at the surface is derived
from equations (5.5) and (5.6) and is written

. ar.
V? dz

(5.9

2
w, = —

(5.10)
The other boundary condition at the rigid bottom
isf=0.
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The steady flow of a certain non-Newtonian fluid in an annulus between two coaxial cylinders
rotating with uniform angular velocities about the common axis is studied when there is suction
at one wall and injection at the other. The stress matrix T for the non-Newtonian fluid is given by
T = —pl + @141 + a24,, where p is the pressure, I is the unit matrix, a1, o2 are constants and 4,
A3 are kinematic matrices. It is found that in the case of no suction and injection, the velocity field
is not affected by the presence of the non-Newtonian term a24:, though the pressure field is affected.
On the other hand, if there is suction and injection, however small, the non-Newtonian term affects
the velocity field and the nature of this effects is investigated for sufficiently small suction and

injection velocities.

I. INTRODUCTION

HE steady flow of a Newtonian fluid in the
annulus between two coaxial eylinders rotating
with uniform angular velocities about the common
axis when there is suction at one wall and injection
at the other has been studied by Kapur and Mallick.
In the present paper we study the same problem
for a non-Newtonian fluid whose constitutive equa-
tion is
T = —pl + A, 4+ axA,, @
1 J. N. Kapur and 8. C. Mallick, Proceedings of the Sizth

Congress of Theoretical and Applied Mechanics, India, (1960),
Vol. 6, p. 125.

where 7' is the stress matrix ||¢;,]|, I is the unit
matrix ||8,,]|, A, 4, are kinematie matrices defined
by®

4, = H(V.-,J + VJ.i)H = HANH = HZdNH; 2
(i)
Az = H& AiJ + VlAiJ.l
i
+ AV + ALV ©)

p is a scalar which we identify with pressure and
a;, a, are constants. Here 4., is the Kronecker set,

2 J. L. Erickson and Rivlin, J. Ratl. Mech. Anal. 4, 323
(1955).



