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The variational principle (6.2) yields directly the
differential equations (5.2) of reference 1 for the
case of a constant gravity.

In particular consider a liquid of constant depth h.
Putting ¢ = 0 the value of W, becomes

d
w, = —%gffj;d—:wzd‘r.

Consider a wave sinusoidal along 2 with plane
motion in the zy plane. The displacements are ex-
pressed as

6.4)

_ 4
= cos kx,

w = kfsin kz,

v=0.

(6.5)

The time factor exp ({wt) is omitted and we put
p = iw. These displacements satisfy the constraint
of incompressibility with an arbitrary function f(z).

BIOT

The variational principle (6.2) becomes

5[ [ L — D de / ' p(%) dz]
- 6<g—§£—2)"h =90 (6.6)

with

2 _ _L1dp = <.
w, = —¢ o dz V = A (6.7)
The variational prineiple (6.6) yields for the un-
known f the Sturm-Liouville equation and the
boundary condition already derived for this prob-
lem as shown by Eqgs. (5.8) and (5.10) of reference 1.
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General equations for acoustic-gravity waves in a fluid are derived as a particular case of the theory
of elasticity of initially stressed continua. The differential equations for the fluid dynamics and the
corresponding variational principles are obtained from the more general results for the elastic solid
established earlier by the writer. The transition from solid to fluid is illustrated for the special case
of a constant gravity field. The dynamics of a fluid under initial stress is thus brought within the
scope of the theory of elasticity providing a unified treatment of wave propagation in composite

fluid-solid systems.

I. INTRODUCTION

YNAMICAL equations and corresponding vari-
ational principles for acoustic-gravity waves
have been derived and discussed in two preceding
papers'® in terms of the fluid displacement field.
It is now shown that these results constitute a par-
ticular case of the theory of elasticity of an initially
stressed continuum.?'*
There are many advantages in considering the

1 M. A. Biot, Phys. Fluids 6, 621 (1963).

2 M. A. Biot, Phys. Fluids 6, 772 (1963).

3 M. A. Biot, J. Appl. Phys. 11, 522 (1940).
+ M. A. Biot, Phil. Mag. 27, 468 (1939),

problem of acoustic gravity waves in a fluid from
this viewpoint. As we have seen, use of the dis-
placement field leads directly to the expression of
the potential energy and to the corresponding vari-
ational principles. In addition, a unified theory
renders possible the treatment of propagation in
coupled fluids and solids as a single system.

In Sec. IT the general equations for the dynamics
of an elastic solid under initial stress are briefly
recalled.’ By inserting isotropic components of stress
in these equations we obtain the unmodified equa-~
tions for acoustic-gravity waves which were pre-
viously derived.’
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The variational principle for an elastic solid under
initial stress was derived by the writer in 1939.*
In Seec. III it is applied to the case of a fluid by in-
serting isotropic components for the stress. This
yields the unmodified variational principle for
acoustic-gravity waves which was derived by a
direct method in the previous paper.” The modified
principle also follows as a rigorous consequence since
it was shown in reference 2 that the two principles
are mathematically equivalent.

In Sec. IV equations are written for elastic waves
in an isotropic solid in a constant gravity field with
initial hydrostatic stress. With zero value of the
shear modulus these equations become those of
acoustic-gravity waves in a fluid.

II. DYNAMICAL EQUATIONS

In a paper’ dealing with the propagation of elastic
waves in a solid under initial stress the following
results were derived. Initially the solid is in equi-
librium in a state of initial stress S;;. The external
forces acting on the medium are the body force field
X, and certain boundary forces f,. The coordinates
are z;. In a small perturbation of this state the
particle coordinates become

£ =z + u 21

and u, represents the displacement field. The strain is

e,‘]' = %(au,/ax, + au,»/axi). (2.2)
The local rotation of the medium is
w;; = 3(0u;/dz; — Ou;/dx.). 2.3)

The incremental stresses due to the perturbation are
denoted by s;; and are referred to axes which have
been subject to a solid rotation w,;. They are linearly
related to the strain components ¢;; through suitable
elastic coefficients. The dynamical equations for this
medium as derived by the writer® are

as;;
6'_‘ + p AX; — pwi X — peX;
X

e 8k
Ox * 9z,

awur o’u;

Y

+ S;'k + Szlc (2'4)

The initial dens1ty distribution is denoted by p and
AX; = X0 — Xz(x) 2.5)

represents the increment of body force on a particle
due to its displacement. The volume dilatation is

(2.6)

For a fluid the stresses are isotropic. We write

= au;/ax,-.
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8 = 86,5, S;; = S8, 2.7
where
8 = {0 @ =7, (2.8)
1 (i =13.
By inserting these values into Eqgs. (2.4) we derive
0s
oz, — peX: — pwi; X;
a8 u;
25 ax,- + pAX: =P atZ ° (2'9)

The condition of initial equilibrium of the fluid is

98/9zx; + pX; = 0. (2.10)
By taking this relation into account, Eq. (2.9)
becomes
ds aS _ 9u; 88 u;
ox, T %oz, ~ ox, oz, todXs = o (21D

Introducing a body force derived from a potential
U and linearizing AX; we write

X,‘ = —aU/a.’L',
_ FU ) (2.12)
AX: = (ax,. az,/ "
With this value of AX;, Eqgs. (2.11) become
as OS ou; a8
ax; ax ox; 0x;
FU 3%,
Pz T P @13

Equations (2.11) and (2.13) are identical with Egs.
(2.24) and (3.4) derived in a previous paper' by a
more direct method for the dynamics of a fluid
under initial stress.

III. VARIATIONAL PRINCIPLE

In the theory of elasticity under initial stress
developed by the writer,’ the following variational
principle was established for the static case.

Bff'/; AV dr = ffr AX pbu,dr

+ ff Af su dA,  (3.0)
A
where A is the boundary of the volume r and
AV = % 11 + Sn(ezkwlw + e;kwka + w1kw1k>} (32)
tii = Sii + S,-,«e - f(Sike,'k + S,'ke,'k).
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The incremental boundary force is

Af,- = (.S‘i,- + Sk,‘wik + Siie - S;kefk)n,», (33)

where 7; is the unit outward normal to the boundary.

Validity of the principle (3.1) for dynamics is
implicit from d’Alemberts principle by including the
inertia force into the body force. This is obtained
by replacing AX,; by AX; — a,, where a; is the
particle acceleration. The variational principle (3.1)
becomes

afff AV dr = fff (AX; — a)p du, dr

+ffA Af, bu; dA.

Assuming a body forece potential U according to
Eq. (2.12) we may write

(3.9)

AX,' 6u,’ = _6AU, (3-5)
with

_1(gu)
AU = 2 <axi dx; itk

Hence Eq. (3.4) takes the form
o [[[ @v+pavyar+ [[[ pac suidr
= ffA Af. du; dA.

Let us now introduce the isotropic fluid stresses
(2.7) into the values of AV and Af;. We find

(3.6)

AV = 3se + @®,
= 1g(.2 — ai%)
& 2‘S( dx; 0x./ ’ (3.7)

u;
Af, = (s + Seyn, — ng—l n;.

The variational principle (3.6) becomes

BIOT

Bffﬁ(%se—l-(ﬁ-l-pAU)dT-l-‘/:[ffpa,- ou, dr

= ffA [(s + Seyn; + Sg:’

This result is identical with the unmodified vari-
ational principle expressed by Eq. (3.4) of the
previous paper.’

n,-:l du; dA.

IV. CONSTANT GRAVITY FIELD

Consider an elastic solid initially in equilibrium
in a constant gravity field

Xi = (Oy Oy —'g)

The z axis is directed vertically upward.
Let us assume that the state of initial stress is
hydrostatic. Hence

d8/0x = 48/dy = 0,

4.1)

38/0z = pg. (4.2)

The density p is a function of z.
We also assume isotropic stress-strain relations
for the incremental stresses

Si; = 2ue;; + 6;)e. (4.3)
The dynamical equations (2.4) become
Q§§+a_§;+%§_ pg%;‘v= p%%,
giﬁ+g_‘;/?.%+%3§§_pg:?w=p;—22, (4.4)

(displacements are u, v, w). These equations were
derived by the writer in 1940.° By putting the
rigidity equal to zero (u = 0) we obtain the dynam-
ical equations for a fluid. They coincide with Egs.
(5.2) discussed in a previous paper.’
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