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EXTENSIONAL WAVES IN A ROD 27 

many of the phenomena reported by Oliver. Consider, 
corresponding to experiments, a transient disturbance 
to the rod, initiated either by external excitation at 
the end under study or by incident waves from the 
other end of the rod. If this disturbance contains energy 
at frequency •iB an end-vibration will be induced. As the 
end mode is always coupled to the pure extensional 
mode, the energy that is temporarily trapped at the 
end of the rod will leak out along the rod as a pure 
extensional wave traveling with the group velocity 
corresponding to frequency fib of the extensional mode 
(q•). This group velocity (proportional to the slope of 
q• at fiB, in Fig. 1) is less than the group velocities of 
the lower frequency components of which the main 
pulse is mainly constituted. This explains why the 

"leakage wave" is gradually out-distanced by the main 
pulse in Oliver's experiments. 

Similar "edge-modes" in circular disks were discov- 
ered by E. A. G. Shaw 7 in which the motion was pre- 
dominantly at the circular boundary. These modes were 
later explained theoretically by Gazis and Mindlin. 8 
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The propagation of acoustic waves in a layered medium is 
considered for the case of an elastic plate submerged at a certain 
depth below the surface of a liquid-filled half-space. It is shown 
that there exist unattenuated modes for the plate-liquid layer 
system which have horizontal phase velocities greater than the 
sound velocity in the liquid. In spite of such greater phase veloc- 
ities, radiation into the liquid below does not take place because 
the lower surface of the plate exhibits no vertical motion. Thus, 
energy can be trapped in and above the plate by vibrations which 
leave the underlying liquid undisturbed. It is pointed out that 
radiation in the horizontal direction may also be very small when 
the above conditions of total reflection are approximately satisfied, 
as is indicated by the existence of low group velocities for the 
modes of a free plate. Attention is called to the three-dimensional 

nature of such trapping, vertically by an approximate condition 
of no transmission across the plate, and horizontally by the 
simultaneous vanishing of the group velocity at nonvanishing 
angles of incidence. The present modes are in contrast with the 
usual case of total reflection and "wave guide propagation" in 
layered elastic media, where the horizontal phase velocity is less 
than the sound velocity in the liquid (lower half-space), and the 
signal below the plate decays exponentially with distance from 
the interface. Conditions under which the present modes can 
arise have been found and evaluated numerically. Relations 
between phase velocity, wave number, and ratio of fluid layer to 
plate thickness are presented for a lucite plate in water. These 
have been compared with the results of much more elaborate 
calculations for the point source "singing" problem. 

INTRODUCTION 

E consider the case of an elastic plate of infinite 
extent immersed in a liquid half-space and 

oriented parallel to the free surface of the liquid. A 
point source of explosive sound is located in the liquid 
layer above the plate (see Fig. 1). This arrangement 
represents one of the simplest geometries for which 
sustained vibrations can be observed in the liquid layer. 
A simple and instructive explanation of these persistent 
oscillations can be given in terms of plane harmonic 
waves incident upon the plate from above, although a 
quantitative description of the phenomenon requires 
the solution of the complete point source problem. 

It is our purpose to bring out clearly the characteristic 
features of this phenomenon, which is essentially 
different from the type of total reflection and "wave 
guide propagation" in layered media, usually discussed 

* Consultant, Shell Development Company. 

in the literature. In the latter case, each mode propa- 
gates with a phase velocity lower than the body wave 
velocity in the underlying half-space, and the resulting 
total reflection occurs for angles of incidence greater 
than the critical. The amplitude in the lower half-space 
decays exponentially with distance from the interface. 

In the present case, the total reflection is of a different 
nature. We will show that unattenuated modes of 

vibration may propagate in the fluid-plate system with 
a phase velocity greater than the sound velocity in 
the underlying fluid, and the bottom side of the plate 

Fro. 1. The submerged 
plate problem. 
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28 M. A. BIOT AND J. H. ROSENBAUM 

may exhibit no vertical motion or stress. This particular 
feature cannot occur in a medium consisting entirely 
of fluid layers; it results solely from the fact that one 
of the layers is a solid in which two types of body 
waves can coexist. It is the interplay of these two types 
of waves which makes the phenomenon possible. 

We believe that an understanding of this compara- 
tively simple case of a plate immersed in a liquid half- 
space will be of help in the investigation of more compli- 
cated problems of direct practical interest. A case in 
point is the so-called "singing" phenomenon, • which 
has been observed in seismic work in several offshore 

areas. Records taken in such areas may show persistent, 
slowly decaying types of oscillation, which drown out 
all other signals. 

In order that sustained vibrations be observed in 

the liquid layer above the plate, it must be possible to 
trap energy in the layer in both vertical and horizontal 
directions. This can happen when (1) there is no net 
transmission through the plate (over one cycle) in the 
vertical direction; (2) the liquid layer is resonant to 
such totally reflected waves; (3) the transport of 
energy in the horizontal direction is small. These 
conditions, which apply to harmonic plane waves 
trapped in a large horizontal section of the liquid layer, 
are also applicable approximately to the transient point 
source problem, discussed elsewhere. 

Now the first two conditions are applicable to the 
usual tyi•e of modes, whose phase velocities are less 
than the sound velocity in the underlying liquid, as 
well as to the present case, where the phase velocity 
exceeds the sound velocity in the liquid. The third 
condition of small horizontal energy transport, however, 
appears as an important feature in the present case of 
total reflection. As an example, take a case in the 
region near normal incidence (small wave number in 
the horizontal direction). For physical reasons this 
should also be a region of small group velocity and, 
therefore, slow energy transport in the horizontal 
direction. 2 Indeed low, if not vanishing, group velocities 
in the region near normal incidence can be inferred from 
an inspection of the known dispersion curves for the 
free plate? There are also indications that low and 
vanishing group velocities may be observed for angles 
of incidence not near normal in a system consisting of 
a free plate with a liquid layer above it. Low horizontal 
energy transport may thus be expected in the case of 
the submerged plate when the present total reflection 
conditions are approximately satisfied. 4 

It should also be noted that for the lowest usual 

mode, which corresponds to a bending of the plate, the 
group velocity vanishes at infinite wavelength. How- 
ever, vibrations in this neighborhood would have a 
very low amplitude because they are not easily excited 
by a pressure source in the liquid layer, 5 and a large 
amount of energy would be required to move a great 
mass of liquid underneath the plate, where the wave 
motion decays exponentially with depth. In contrast, 
the present unattenuated modes do not excite the 
liquid below the plate. 

As was pointed out in the preceding, the type of 
unattenuated modes considered here results essentially 
from the fact that forced vibrations may be excited in 
a free plate by a pressure applied to the top face in 
such a manner that for certain frequencies there is no 
vertical motion of the bottom face. To be more specific, 
let us apply to the top surface of a plate a normal force 
which is harmonic in time and in space. Forced vibra- 
tions of the same frequency and the same wavelength 
along the plate will be excited. These vibrations can be 
considered as a superposition of the two types of 
characteristic plate modes' symmetric and antisym- 
metric with respect to the central plane of the plate. 
For the elastic plate, the resonance frequencies of 
these two sets of modes are spaced quite differently 
from those of a fluid slab, and it is possible to adjust 
their phase and amplitude in such a way that by 
superposition the resultant vertical motion at the 
bottom face of the plate vanishes. Furthermore, it is 
always possible to find a fluid layer of appropriate 
thickness, so that it is in resonance with the plate 
under the foregoing conditions. In the following sections 
we treat forced vibrations of the plate and the liquid 
layer in turn and obtain the free vibrations of the 
plate-liquid layer system by impedance matching. 

THE ELASTIC PLATE 

We consider the case of total reflection associated 
with the absence of stress and vertical motion at the 

lower plate-liquid interface. To derive this condition, 
we need consider only the plate by itself (see Fig. 2). 
As is usual for problems of this type, we define a scalar 
and a vector displacement potential such that the 
displacement vector • is given by 

•= -VM+VX N, (1) 

where V. N=0. On account of the symmetry of our 
two-dimensional problem, only the y component of N 

• K. E. Burg, M. Ewing, F. Press, and E. J. Stulken, Geo- 
physics 16, 594 (1951). 

•' General theorems on the equivalence of group velocity and 
energy transport in layered media have been established in M. A. 
Biot, Phys. Rev. 105, 1129 (1957). 

a R. D. Mindlin, "An introduction to the mathematical theory 
of vibrations of elastic plates," U.S. Army Signal Corps Engr. 
Lab., Fort Monmouth, New Jersey, (1955). 

4 This has actually been verified in a detailed analysis of the 
point source problem shown on Fig. 1. 

.... •••••••/• Fro. 2. The free elastic plate. 

• M. A. Biot, and I. Tolstoy, J. Acoust. Soc. Am. 29, 381 (1957). 
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ENERGY TRAPPING NEAR A PLATE 29 

exists (y is perpendicular to the plane of Fig. 2). We 
write this component of N as N. Then 

1 O2M 

V•'M -- =0, 
c22 OF 

1 02N 
V•N .... O, 

c222 OF 

(2) 

where c2 and c22 are the compressional and shear wave 
velocities, and t is the time. For plane harmonic waves 
traveling in the positive x direction, but in the positive 
and in the negative z directions, we write 

M= (A cosa2kz+ B sina2kz) exp[-i(cot-- kx)-], 

N= (C cosa2.•kz+D sina22kz) exp[i(cot--kx)•. (3) 

M corresponds to the compressional (P) waves N to 
the distortional (S) waves, co is the angular frequency, 
k the wave number in the x direction. 

7222 ]« •V 2-- 1 a22 = (V •-- 1)• (4) 
1722 ' 

where V=co/(c22k) is the phase velocity in the x 
direction, normalized with respect to the shear wave 
velocity. The normal stress Pzz and the shear stress 
Pzx are given by the formulas 

02 M 02N] P•= --P2(c22-- 2c222)V2M+2p2c22 • ---•z• +O-•xx], 

02 M 02N 02N] P=-' P•c• - 2OxOzq O-• Oz--• J ' 
(s) 

where p2 is the density of the plate. 
We designate boundary values at the lower and upper 

surface of the plate of thickness//by the subscripts 0 
and //. Set 0P, x=uP•=0Pz•=0. (Such boundary 
conditions are of course peculiar to our problem of the 
submerged plate, as was indicated earlier.) We define 
the transfer receptance Y(//,0)= o•,/uP• as the ratio 
of the normal displacement at the bottom of the plate 
to the applied normal stress at the top. ø From the 
foregoing equations and boundary conditions, we derive 

V•H 

Y(tt, O) = 2 [-4a•a22 sina2K+ (V 2-- 2) 2 sina2•K]/ 
p2C22 t• 

{[4a•a•.• sina•+ (V •- 2) 2 sina2•] 

X[-4a2a22 sina•,2gq- (V •- 2) 2 sina2K• 

(6) 
• The receptance, as defined here, corresponds to the more 

fa•Har ad•ttance, except that it descdbes the displacement- 
to-stress ratio instead of the usual particle velocity-to-stress ratio. 

g= k//is the wave number in the x direction, normalized 
with respect to the plate thickness. 

Evidently, there will be no transmission through the 
plate when Y(//,0)=0. This condition arises for 

4a2a22 sina2•+ (V 2-- 2) 2 sina22•= 0, (7) 
unless 

(8) 

that is, unless a22g--mr and a2K=l•r, where n--2, 3, 
4..., /-0, 1, 2, .--, and n-1 is even. For l>_l, this 
is a case of degeneracy where frequencies of the 
symmetric and antisymmetric modes of the free 
plate coincide. The vertical motion of the plate bottom 
obviously remains indeterminate. A similar explanation 
applies to the point V= 2(1-c222/c22) •, the longitudinal 
plate velocity, where both the frequency co and the 
wave number g vanish. Other exceptional points are 
the limits V=m (g=0, a22g=mr), where the plate 
vibrates in pure shear, and both surfaces move hori- 
zontally. Such motion cannot be excited by a normal 
force on the surface. Finally, the case V=V2 has a 
solution only if a2 vanishes at the same time. This 
means that the plate must have a vanishing Poisson's 
ratio. The symmetric mode associated with this case is 
a longitudinal vibration of the plate with no distortion 
of the faces. Again this cannot be excited by normal 
pressures. 

Equation (7) can be derived even more simply if we 
set 0Pz•= •P•= 0Pz• = 0• = 0, and look for nontrivial 
solutions of this system of equations. An expression 
which corresponds to Eq. (7) has been given by Levi 
and Nagendra Nath. 7 No such condition of vanishing 
transfer receptance is possible when the solid plate 
is replaced by a liquid layer. This follows from the 
fact that if pressure and normal displacement both 
vanish on one face of the liquid layer, they must 
vanish everywhere in the layer, and can readily be 
verified with the aid of expressions analogous to Eq. 
(12) and (11) of the next section. 

Equation (7) provides a relation between g and V 
(or K and co). Let us consider it as an equation for • and 
vary V. For V> c2/c22, a•. and a22 are real, and there is 
an infinite number of roots g. In the interval 

2 (1 - c•.22/c22) • < V < c2/c22, 

a22 is real and a2 pure imaginary, and there is a finite 
number of roots g. There are no real roots g for 

V < 2 (1 -- c•?/c•?) •. 

Thus solutions for real values of K and V exist only for 
phase velocities in the interval 2 (1- c222/c• 2) • < V < • . 
As mentioned previously, g vanishes at the lower limit 
of the interval, which is in fact the velocity of longi- 
tudinal plate waves of infinite wavelength. a Similarly, 

7 F. Levi, and N. S. Nagendra Nath, Helv. Phys. Acta 11, 408 
(1939), Eq. (39). 

8 This velocity is more commonly expressed as [E/p•.(1--v •)•, 
where E is Young's modulus and v is Poisson's ratio. 
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30 M. A. BIOT AND J. H. ROSENBAUM 

ßo 

.•1• ß I•ORMAL STRESS 

gL "'• ß •JORMA•. DISPLACEMENT 
Fro. 3. The liquid layer. 

K vanishes at the upper limit of V-• m, but in such a 
way that a22K--• n•r, (n= 1, 2, ...). n may be used to 
identify various plate "modes ;" each branch of solutions 
of Eq. (7) extends from infinite phase velocity to a 
phase velocity less than the compressional wave velocity 
of the plate c2. The curves for n= 2, 3; n= 4, 5; n= 6, 7; 
etc., which incidentally do not represent dispersion 
curves of the submerged plate problem, merge at their 
lowest velocity, and for that reason the distinction 
between an even and the next higher odd branch is 
somewhat arbitrary. For large n, this point of lowest 
phase velocity approaches the compressional wave 
velocity. 

For use in the next section, we define the receptance 
of the plate Y(H,H)=n•z/nPzz as the ratio of the 
displacement of the top surface of the plate to the 
normal stress applied there. For the case of vanishing 
transfer receptance, Y (H,0) - 0, we find that 

Y(H,H)= H .[ V__•sina____•._• 1. 
•c,.•xL 4• •.• ( cos• • - cos• •) J 

(9) 

THE LIQUID LAYER 

The pressure P in the liquid layer (see Fig. 3) is 
governed by the wave equation 

directions. 

P= (E cosa•kzq-F sina•kz) exp[i(•ot- 

fc•.•?' ]«. a•=[--V•-- 1 612 

(12) 

At the upper (free) boundary of the liquid layer of 
thickness h, the pressure 0P vanishes. Therefore E 
must also vanish. At the lower boundary, we define 
the receptance Y(-- h, -- h) = -- (-h•/-hP) =-h•/-•Pz•, 
where the normal stress P, is the negative of the fluid 
pressure. We find that 

Y(--h, -h)=• cot(a•kh). (13) 
p•co 2 

Since the liquid layer is to be resonant to waves 
which are totally reflected from the plate, we must 
match the receptance of the layer to that of the non- 
transmitting plate. By equating the right-hand sides 
of Eqs. (9) and (13), we obtain the resonance condition 
of the liquid layer 

[ag-•] 4a•a• (cosa•.•g- cosa2g) (14) tan • (pl//p•) V 4 sina22g 
which, along with Eq. (7), gives the water layer to 
plate thickness ratio as a function of K or V. 

A simple ray picture of the phenomenon in the liquid 
layer is readily obtained. The angle of incidence 0 of a 
ray on the plate is given by 

1 O2P 

.... o, 
c• • 

where c• is the sound velocity. The displacement • is 
related to the pressure by the expression 

a•-• 1 

Ot 2 p• 

where m is the density of the liquid. Again we consider 
plane harmonic waves traveling in the positive x 
direction, and in the positive and in the negative z 

TABLE I. Comparison of vertically trapped modes with more 
exact solutions to the singing problem. 

0= sin-•[c•/(c2• V)-I---- cot--lql ß (15) 

With the aid of Eq. (9), we can readily show that the 
reflection coefficient of a ray totally reflected from the 
liquid-plate interface must be exp(i2•), where 

r4•a,. (cosa•.•- cosa•) 1 
•=cot-•/ ..... /- 

L (Pl/P•.) V 4 sina• J 
(16) 

The angle 2• is to be interpreted as the phase shift 
suffered by the pressure wave on total reflection by 
the plate. At the free surface, the ray again suffers 
total reflection with a phase shift of angle --•r. It can 
be shown ø that constructive interference will occur in 

the liquid layer if 

Calculated for Calculated for 

long-time singing total reflection 
h/H n, m Re(&) U & U 

0.378 2 0 6.22 0 6.47 0.475 
0.567 ! 0 3.13 0 3.71 1.02 

2h--cosO+2•=(2m+l)n (n=0,1,2,...) (17) 
V 

0 W. M. Ewing, W. S. Jardetsky, and F. Press, Elastic Waves in 
Layered Media (McGraw-Hill Book Company, Inc., New York, 
1957), p. 140. 
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ENERGY TRAPPING NEAR A PLATE 31 

Fro. 4. Roots of Eq. (7) 
for total reflection from a 

submerged Lucite plate. 

n-I := n-3 n n•:l 
-- 34," 

v = Ca/C:,:, 
_ 

• 35ø 

1.8 

m 40 ß 

v- 
0 I •: ,• 4 5 6 ? 8 9 I0 II 

REDUCED WAVE NUMBER, •: 

Therefore, 

h 

= mr+ tan -1 , 
(pl/p•.) V 4 sina•.K 

(18) 

which agrees with Eq. (14). 
The ratio h/H is a multiple-valued function of g. 

The letter m is used to identify the various "modes" 
in the liquid layer. The higher modes have an increasing 
number of nodal planes in the layer. The values of h/t1 
for the various modes differ by a value m/X from the 
fundamental. From Eq. (18), we see that 

It is interesting to note the role of the medium in the 
lower half-space in the expressions which we have 
derived here. The lower medium enters into the deriva- 

tion of Eq. (7) only to the extent that it may support 
no shear stress at the boundary of the plate. Its other 
properties do not enter into the foregoing expressions, 
but will be of importance in the complete point source 
problem, shown in Fig. 1. 

NUMERICAL EXAMPLES 

Solutions to Eqs. (7), (14), and (19)have been 
obtained for a lucite plate in water and are presented 
here as an example. A comparison of the calculated 
parameters with more elaborate calculations (involving' 
complex dispersion relations) for the point source- 
submerged plate singing problem, as illustrated in 

Fig. 1, is presented in Table I. The nondimensional 
angular frequency is defined as •=•V=wH'/c•, and 
U is the horizontal group velocity normalized with 
respect to the shear wave velocity. Re designates the 
real part of a complex quantity. Although strong 
singing for the plate always appears to be associated 
with a mode of the type described here, the inverse is 
not necessarily true. For as we indicated earlier, the 
actual singing phenomenon requires low net trans- 
mission of energy vertically through the plate at 
vanishing horizontal group velocity. 

For the numerical results presented here, the follow- 
ing constants, are applicable' p•./01=l.15; 
= 2,650' 1,500' 1,305. The first six plate modes, n-1-6 
have been evaluated. The curves for h/tt apply to 
the lowest water mode; values for higher water modes 
can be obtained by the addition of integer multiples of 
the function /x, the supplemental thickness ratio. 
Numerical results are presented in Figs. 4-9. We wish 

io 

2 4 6 e to 12 14 16 18 20 22 
REDUCED ANGULAR FREQUENCY, • 

Fro. 5. Roots of Eq. (7) for total reflection from a 
submerged Lucite plate. 
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SUPPLEMENTAL THICKNESS RATIO! A 

? ',o ,o ? .? , ,•, . ,,, ,f, ,,o 
A-• 

_ .I,./'/'"'•- --'"'" ' 

o i.o .... 4o 

, 

g ,I.o 2'o ,'o o'., o'., o'., ø'.3 o •5 
WATER LAYER TO PLATE THICKNESS RATIO, h/H 

Fro. 6. 'Solutions of Eqs. (14) and (19) for the resonant water layer 
above a totally reflecting Lucite plate. First plate mode, n-1. 

Fro. 7. Solutions of Eqs. (14) and (19) for the resonant water 
layer above a totally reflecting Lucite plate. Second and third 
plate modes, n--2, 3. 

to emphasize again that Figs. 4 and 5 do not represent 
the usual dispersion curves of the submerged plate 
problem of Fig. 1, but rather the locus of points where 
dispersion curves of complex • versus real g (or complex 
• versus real •) touch the real • (or real •) axis as we 
vary h/H. m 

Total reflection at the plate and resonance of the 
water layer do not arise at points where Eq. (8) is 
applicable. For the cases a•=0, these points occur at 
the intersection of the even plate modes with the line 

•0 When the sound velocity in the liquid exceeds the longitudinal 
plate velocity, Eq. (7) has solutions which correspond to points 
on the "normal mode" dispersion curves of the submerged plate 
problem (real •3 versus real g). 

•o2 

•oo• 

o.o o 

------02 • 

_ 

Ioo 
REDUCED WAVE NUMBER, 

Fro. 8. Solutions of Eqs. (14) and (19) for the resonant water 
layer above a totally reflecting Lucite plate. Fourth and fifth 
plate modes, n--4, 5. 

Fro. 9. Solutions of Eqs. (14) and (19) for the resonant water layer 
above a totally reflecting Lucite plate. Sixth plate mode, n-6. 

V=c•/c• (see Fig. 4). For the cases a•0, they occur 
at the places where h/H--O, i.e., where we have 
indicated jumps in the h/tt curves of Figs. 7-9. 
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