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Formulation of Wave Propagation in Infinite Media by Normal Coordinates 
with an Application to Diffraction* 

M. A. B•oT,• Shell Development Company, New York, New York 

AND 

I. Tox. sTo•r, Columbia University, Hudson Laboratories, Dobbs Ferry, New York 
(Received August 31, 1956) 

In the theories of acoustical and electromagnetic vibrations 
of enclosures, as well as in field theory and electrodynamics, one 
quite commonly uses normal modes as generalized coordinates in 
Hilbert space. Here the method is extended to unlimited or 
partially limited mechanical media, essentially by first solving the 
problem for an enclosure and going to a limit while expanding 
all or some of the boundaries to infinity. This leads to a very 
useful technique, of somewhat more generality than analogous 
procedures used in field theory. Thus it is applicable to all non- 
dissipative mechanical continua, for any boundary conditions, 
irrespective of the order or number of differential operators de- 
scribing the continua and regardless of whether the coordinate 
systems are separable or not. 

A general orthonormality condition valid in all such cases 
together with the necessary rules for dealing with divergent 

normalizing coefficients are easily obtained by limiting procedures. 
An equally general formulation for arbitrary sources is obtained 
from the principle of virtual work. The method is illustrated by 
simple examples, for the case of a point source representing 
the instantaneous injection of a unit volume, i.e., an idealized, 
infinitely rapid, explosion. It is shown that in the problem of 
diffraction by a rigid wedge or corner one is led very quickly 
to an explicit solution in closed form, involving elementary func- 
tions only. Some physical implications of this solution are men- 
'tioned briefly. The advantages of the normal coordinates method 
are discussed when thus used in propagation or diffraction 
problems in unlimited or partially limited mechanical continua. 
Obvious advantages are its generality, its flexibility in dealing 
with arbitrary sources, and the fact that it leads directly to the 
progressive transient solution. 

1. INTRODUCTION 

HE use of normal modes as generalized coordinates is a well-established practice in mathematical 
physics and applied mathematics. Elementary applica- 
tions deal with discrete systems of masses and springs, 
molecules and electric circuits, and with the electro- 
magnetic or acoustical vibrations of enclosures. It is 
also used in field theory, in the context of infinite 
spaces2 .• The range of problems to which it may be 
applied is very great since it can be adapted to all 
physical systems that are uniquely defined by two 
positive definite quadratic forms. 

In this paper we extend the technique to the case of 
unlimited or partially limited mechanical media. In so 
doing we have of course at our disposal a wealth of 
known results which only require some generalization 
and refinement to be applicable to all problems in 
nondissipative acoustics, elasticity and complex coupled 
wave problems. The procedure followed is, in principle, 
to solve first the problem for a finite system and then 
go to a limit while expanding all or some of the bound- 
aries to infinity. This technique is reminiscent of field 
theoretical methods, but is more general. It can be 
applied to a broad class of problems characterized by 
difficulties of a type not encountered in field theory, 
such as cases requiring the use of higher order operators 
and nonstandard boundary conditions (e.g., prestressed, 
inhomogeneous, anisotropic elastic solids). For most 

* The present work was carried out under the sponsorship of 
the Shell Development Company for the Exploration and Produc- 
tion Research Division. 

$ Consultant. 
x W. Heitler, The Quantum Theory of Radiation (Clarendon 

Press, Oxford, England, 1954). 
•' Morse and Feshbach, Methods of Theoretical Physics (McGraw- 

Hill Book Company, Inc., New York, 1953). 

such problems orthogonality and completeness theorems 
have not been established and therefore rigorous ex- 
pansion methods do not exist. We will show that if the 
normal mode concept .is retraced from its origins it is 
possible to establish a completely general ortho- 
normality condition [Eq. (2.13)• valid for all continua 
without dissipation, irrespective of the order of the 
operators and the nature of the boundary conditions 
involved, as long as these are subject to the laws of 
mechanics. 

In addition, the principle of virtual work always 
provides a means of decomposing any kind of dis- 
turbance into a spectrum of generalized forces. This 
Lagrangian approach provides a flexible formulation 
of the arbitrary source problem which is again valid 
in all cases. Clearly, mixed problems involving several 
types of degrees of freedom such as may occur in 
electroacoustics would be most simply treated by this 
method. 

In principle the usefulness of the normal mode 
method is generally recognized, since, as already 
pointed out, it is a standard tool in field theory. But in 
fact it has never been extended to cover the theory of 
mechanical waves in unlimited or partially limited 
media. In part this is probably because one has not 
appreciated the real power of the method which is due 
to the combined generality of the orthonormality 
condition (2.13) and the flexibility of the Lagrangian 
method of formulating arbitrary sources. But in part 
this must also be ascribed to the role played by linear 
operator and function-space theory in the formal de- 
velopment of quantum mechanics, which for many 
years had unavoidably dominated the scene in mathe- 
matical physics. 
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382 M. A. BIOT AND I. TOLSTOY 

At this point one may remark that the use of normal 
modes as generalized coordinates is essentially a Hilbert 
space formulation, and he might well inquire how this 
technique is related to standard Hilbert space methods, 
such as those used by Marcuvitz 3 in his work on 
diffraction and discussed in various textbooks (Fried- 
man, 4 Riesz and NagyS). 

The answer to this is of course that the space of 
normal coordinates is related to other Hilbert spaces 
by a linear transformation. This is their formal con- 
nection. Physically, the essential difference between 
them can be explained as follows. 

In the normal coordinate space the representation is 
physical rather than formal, since it utilizes only the 
actual modes of vibration of a system; i.e., free modes 
that can always be observed and realized as standing 
waves. The progressive waves are then obtained by a 
summation of all transient modes excited by the source. 
The amplitude of each mode is calculated directly from 
the corresponding generalized force component due to 
the source and applied to this mode. The Sommerfeld 
radiation condition is satisfied automatically and does 
not appear in the formulation. In contradistinction to 
this, other ttilbert space representations utilize ortho- 
normal systems which are formal and which often do 
not have a direct correspondence to the actual modes of 
vibration. Take for instance the well-known Sommerfeld 

integral representation of a simple harmonic point 
source in an infinite homogeneous space. It is essentially 
a Fourier-Bessel expansion of the source into an ortho- 
normal family of functions representing radiation into 
a half-space. The modes associated with this representa- 
tion are not physical modes of vibration. Thus they 
include exponential modes which are obviously not 
free modes, but require an excitation. They correspond 
to what Sommerfeld 6 has called, in a different context, 
"singular eigenfunctions." The formal nature of these 
modes is also illustrated by their well-known but very 
odd correspondence to complex angles of incidence, 
which from the physicist's standpoint are, of course, a 
pure formalism devoid of meaning. In general this 
standard formalism is equivalent to the expansion of 
the source into an orthonormal distribution along a 
coordinate surface leading to a representation of the 
Green's function for a harmonic point source which is 
generally different on each side of the coordinate 
surface. Such a method obviously depends on the 
separation of coordinates and the formal spectral 
properties of the associated differential operators. The 
Green's function is also required to satisfy the Sommer- 
feld radiation condition. The transient is then obtained 

by a method of Laplace or Fourier transforms, i.e., by 

a N. Marcuvitz, Commun. Pure Appl. Math. 4, 263 (1951). 
4 B. Friedman, Principles and Techniques of Applied Mathe- 

matics (John Wiley and Sons, Inc., New York, 1956). 
5 F. Riesz and B. S. Nagy, Leqons d'Analyse Fonctionelle 

(Gauthiers-Villars, Paris, 1955). 
6A. Sommerfeld, Partial Differential ,Equations in Physics 

(Academic Press, Inc., New York, 1949). 

an integration over all frequency components of the 
source. Thus, although the method of normal coordi- 
nates is intimately related to the standard Hilbert space 
methods, it is not the same. The fact that the normal 
coordinates correspond to physical modes of vibration 
has the advantageous consequence that one may use 
the Lagrangian or variational technique of formulating 
the source by the principle of virtual work. 

It might be well to point out another essential 
difference between the Green's function method and the 

present normal coordinates approach, which becomes 
apparent if the source is a force applied to the boundary. 
In the Green's function method all components of the 
solution satisfy the boundary conditions that the 
stresses have the required value corresponding to the 
exciting forces. This is not the case in the normal 
coordinates method if the exciting force is applied to a 
free boundary since all components of the solution are 
free modes with vanishing forces at that boundary. 
This is an important distinction from the formal mathe- 
matical viewpoint as well as the practical one. 

It must be emphasized that this is essentially an 
elementary technique. Its development can proceed 
solely from the simple laws of mechanics, without any 
reference to the somewhat formidable mathematical 

apparatus of function spaces. Such a development is, 
within the confines of mechanics, entirely rigorous and 
above reproach. This technique is quite analogous to 
the Hamiltonian methods of classical and quantum 
field theory as presented for example by Heitler • in his 
book The Quantum Theory of ,Radiation. It is significant 
that in this book, the author entirely avoids mentioning 
Hilbert spaces. 

Insofar as simple harmonic source problems in 
separable coordinate systems are concerned, the 
method of normal coordinates claims no particular 
advantages over the linear operator and so-called /•- 
function technique used by Marcuvitz and others. 
However, it will be noted in Sec. 2 that it leads in a 
natural and straightforward fashion to a formalism 
which in principle includes nonseparable systems, 
although no actual examples of such problems will be 
discussed in the present paper. In the usual separable 
coordinate systems it is most useful in the case of 
transient excitation, although here again in simple 
problems the Laplace-transform method is just as good. 
The simplicity and conciseness of the method of 
normal coordinates begins to bear fruit in the diffraction 
problem of Sec. 5, where we feel that the treatment 
compares advantageously with Garnir's 7 longer and 
more complicated derivation by the Laplace transform 
method. This paper is intended only as an introduction 
to a method, which will be more fully illustrated in 
subsequent publications. As such, it only provides 
a glimpse of the method's versatility and general 
usefulness. 

7 H. G. Garnir, Bull. soc. roy. sci. Liege 3, 119 (1952); 3, 207 
(1952); 8, 328 (1952). 
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The first few sections are introductory in nature. 
They provide the foundation upon which future 
examples of the method will be built. Since the method 
is essentially a new one in the context of infinite 
mechanical media, and since the mathematical tech- 
niques, although simple, may in some respects be 
unfamiliar to the reader, it was deemed advisable to 
dwell at some length upon the basic features of the 
method before proceeding to the solution of an actual 
problem. In Sec. 2 we will give a brief summary of the 
principles of the method, and an orthonormality 
(diagonalization) condition valid in all cases will be 
deduced. In Sec. 3 we shall show how the principle of 
virtual work is used for formulating arbitrary sources, 
with special reference to the point source in acoustics 
and elasticity. In particular we will obtain the general 
formulation for an idealized explosive source, corre- 
sponding to the instantaneous injection of a unit 
volume at a point. In Sec. 4 we will discuss briefly this 
source in an infinite homogeneous medium, show the 
type of pressure wave associated with it and derive 
several alternate representations thereof. In Sec. 5 we 
will solve the problem of an explosive point source of 
this type in a fluid wedge or corner with rigid bound- 
aries, and show that this method leads to an explicit 
closed formula in terms of elementary functions. The 
simplicity of this problem, when formulated by the 
normal coordinates method, gives a clear picture of the 
technique and of some of its advantages. Other applica- 
tions have been discussed elsewhere. a 

2. SUMMARY AND FOUNDATIONS OF THE METHOD 

In the theory of small, undamped, oscillations of 
holonomic systems of particles with n degrees of free- 
dom, the potential and kinetic energies V, T are positive 
definite quadratic forms of the particle coordinates 
and velocities •i in configuration space. In other words 
if V and T are represented by symmetric matrices 
¾, T and the state of the system by the position and 
velocity vectors % 'i' one has 

v= «.r'V.r 
1 o! T= •- T•-, (2.2) 

where y' is the transpose of y. Direct application of 
Lagrange's equations in this configuration space yields a 
system of n-coupled equations of motion for the free 
oscillations 

T•+Vy=0. (2.3) 

One may assume that, except for an arbitrary multi- 
plying constant, the solutions are of the type, 

•'= qa, (2.4) 

where q is a function of t only and a a fixed vector. The 
assumption of simple harmonic motion leads to an 

8 M. A. Biot and I. Tolstoy, Shell Development Company, EPR 
Report, "The Hilbert space method in wave propagation and 
diffraction for arbitrary sources" (October, 1955). 

eigenvalue problem and the determination of eigen- 
frequencies wk and eigenvectors ak. The method of 
normal modes consists of taking the qk as the new 
coordinates. This is done by means of the linear 
transformation, 

•.=Aq, (2.5) 

A being the square matrix composed of eigenvector 
columns ak and q the column matrix of the q•. This is 
a principal axis transformation which simultaneously 
diagonalizes the two quadratic forms V,T 

A'VA=•,t• (2.6) 

A'TA=• (2.7) 

•, tt being diagonal matrices of elements 

X•=•0• • (2.8) 

Y] Tija•a•=•l•=•l•. (2.9) 

Equation (2.9) expresses in a space of metric tensor 
Tii the fact that the eigenvectors are orthogonal. If 
the eigenvectors a• in Eq. (2.4) are multiplied by tzk-I 
(normalization), (2.5) transforms T into the unit 
matrix. However, we prefer to leave the eigenvectors 
unnormalized. It is then seen that the equations of 
forced motion are 

•+ook•q• = p•tz •-x, (2.1 O) 

where the Q• represent generalized forces obtained 
from the unnormalized set of eigenvectors by the 
principle of virtual work. 

These well-known results are readily transposed to 
the case of continuous systems. The energies (2.1) and 
(2.2) are replaced by energy densities, defining a 
Lagrangian density. Substituting this into Lagrange's 
equations for continuous media one obtains the equa- 
tions of motion in partial differential form. In hydro- 
dynamics and elasticity the assumption of small motion 
leads to various forms of the wave equation or generali- 
zations thereof. For example we may consider the 
general equations for wave propagation in a fluid 
which is not homogeneous and which is initially at 
rest and in equilibrium under the action of a body force. 
This is a particular case of the general theory of wave 
propagation in a prestressed medium which was de- 
veloped by Biot. ø The initial stress distribution in the 
present case reduces to a hydrostatic pressure P. If •' is 
the particle displacement, X (x,y,z) the bulk modulus and 
p(x,y,z) the density of the fluid, the general equations 
become 

0 • 03'• OP OP 
pq,---(Xv. •-)+• (v.•-) =0, (2.11) 

Ox• Ox• Ox i Ox• 

which is an analog of Eq. (2.3). Simple harmonic 
solutions satisfying the boundary conditions define 

9 M. A. Biot, J. Appl. Phys. 11, 522-530 (1940). 
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an infinite spectrum of eigenfrequencies •o• and eigen- 
vectors a•. In the case of an enclosure this spectrum 
is in general infinite and discrete, and the linear 
transformation 

¾= 5-. q•a• (2.12) 

now defines a rotation in Hilbert space. In the general 
case of a three-dimensional enclosure this will be a 

multiple series over several indices. 
The orthonormality condition (2.9) rewritten for the 

continuum is 

(2.13) 
where integration extends over the whole medium. 
This condition is completely general and is valid regard- 
less of whether the problem can be described by familiar 
types of operator such as (2.11) or not. In writing it, 
the only assumption made is the rather trivial one 
claiming that it is always possible to transfer the 
equations of discrete systems to bounded enclosures. 
It is not even required that the problem be separable. 
In other words Eq. (2.13) is the general orthonormality 
condition for all conservative mechanical systems, and for 
any boundary conditions providing these too are con- 
servative. It is seen from the preceeding that it owes 
its nature to the principles of mechanics which provide 
sufficient justification for its use in all cases. 

In the special case of Eq. (2.11), under simple 
harmonic conditions and in separable coordinate 
systems, this equation separates into Sturm-Liouville 
operators. Equation (2.13) also separates into several 
equations, one of which is then the standard form of the 
orthonormality condition in view of the weighting 
factor of the first term in Eq. (2.11). The necessity of a 
weighting factor in the orthonormality integral for 
certain Sturm-Liouville problems may thus be viewed 
as a consequence of the non-Cartesian nature of the 
configuration metric. Equation (2.13) can be said to 
describe the diagonalization of an infinite kinetic energy 
matrix. 

The equations of motion for the q• still have the 
form (2.10). 

As evidenced by our continued use of subscripts, we 
have assumed so far that the spectrum is discrete, i.e., 
that we have been dealing with enclosures. Actually 
this need not be so, and we may drop all subscripts and 
replace the summation of Eq. (2.12) by an integral, 
which in the case of several dimensions may be double 
or triple depending upon the coordinate system. This 
process is beset with one rather minor difficulty with 
which we shall now concern ourselves. When the medium 

is unbounded and the spectrum is continuous, the 
integral in Eq. (2.13), which we may for the time being 
assume to be simple rather than multiple, will usually 
diverge. This feature may be handled in several ways. 

One can introduce the concept of mode density, i.e., 
of the number of oscillators in a band •o, •oq-&o. Or 
one may appeal to a modified form of the orthonormality 
conditions introduced by Weyl 6 and commonly used in 
quantum theory. We have decided to use a less rigorous 
but more compact and fundamentally equivalent 
symbolism encountered sometimes in the formulation 
of Green's functions in infinite domains, 6 or in passing 
from orthogonal series expansions to the corresponding 
integral representations. It consists of writing symbolic 
equations of the following type' 

cos"•zdz= sin"/•zdz =-- (2.14) 

Jo•(•r)rdr= J•"(•r)rdr=-- (2.15) 
KdK' 

J•"(Kr)rdr=•. (2.16) 

, 

Relations of this kind may always be found and justified 
in particular cases by examining the asymptotic 
behavior of the eigenvalues of an enclosure which is 
being expanded. For example, if one were to consider 
a string fixed at both ends, of length 2l, extending from 
z=--l to z= q-l, the eigenfunctions are of the form 
sin•nz,/•n= nr/l, and 

+z 

f_ cos"•,•zdz= l. (2.17) 
The difference between neighboring eigenvalues is 

(2.18) 

At the limit l-->m, we write l=r//x• and Eq. (2.14) 
follows. On the other hand, Eqs. (2.15) can be deduced 
by considering a circular membrane and passing to the 
limit of infinite radius, and in exactly similar fashion 
we may start with a membrane occupying a circular 
sector and obtain Eq. (2.16) for wedge-shaped spaces. 

The formalism for passing to unbounded spaces is 
now clear. The normalization factor u• is defined by 
Eqs. (2.13) and (2.14) or Eqs. (2.15) and (2.16), and 
the q• in Eq. (2.10) are now differentials of the first or 
higher orders. 'Equation (2.12) then gives the solution 
in the form of a simple or multiple integral. This 
procedure is clearly equivalent to obtaining first the 
solution for a suitable enclosure, and then expanding 
it in one or more directions by means of symbolic 
equations of the type (2.14), (2.15), and (2.16). 

Except for the formulation of Q•, we are now in 
possession of all the results that we shall need. The 
Q• depend upon the type of problem and the sources 
that one assumes. In the next section we have formu- 

lated Q• with special attention to the point source 
problem in acoustics and elasticity. 
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3. THE GENERALIZED FORCE REPRESENTATION 
OF ARBITRARY SOURCES 

Let ¾ represent the particle displacement in a fluid 
or elastic medium, F being an applied force per unit 
volume. The component of ¾ corresponding to the kth 
mode according to Eq. (2.12) 

'rk= qkak. (3.1) 

The principle of virtual work enables one to decompose 
F into its Hilbert space components Q• from the 
knowledge of its scalar product with one eigenvector 
instead of going through the complete transformation 
(2.12). A variation •qk is associated with a virtual 
displacement 

/•T• = ad•q• (3.2) 

of the medium. The virtual work is represented by 
the following scalar 

Q•Sqk= f• F.•5¾kdr, (3.3) 
where the integration extends over the whole volume 
in which F is effective. We have therefore 

Q•= • F. a•dr. (3.4) 
This is the most general form of Q• in which F is an 
arbitrary function of x, y, z, t, e.g., a moving distributed 
transient. In the case of applied stresses [ per unit 
surface, 

Q•= f• {.a•ds. (3.5) 
Such would be the representation for a plane of shear 
in an elastic solid or of forces distributed along a 
boundary of the medium. 
• Of particular interest for many propagation and 
diffraction problems in acoustics and elasticity are 
concentrated sources, e.g., point sources. As an example 
we now derive Q• in its general form for the compres- 
sional point source. 

Consider a spherical portion of the medium, of 
volume V centered at r-0 (Fig. 1), which has been 
kept in a state of constant compression from time 
t=--oo to t=0. At t-0 the constraining forces are 
removed. This assumes on the surface of the sphere a 
stress 

f= -- •l (- t), (3.6) 
where 

t<0 
=0, t>o. 

Equation (3.5) gives the integral over the surface s 

Q• = - 1 (-- t) f• aa•-ds (3.7) 

= -- 1 (--t)afv V.akdV. (3.8) 

FIG. 1. Compressed sphere subject to surface stress v. As r-•0 
and the volume V-•0 this becomes a point source. 

For small V 

p•= -- 1 (-- t)aV(V. a•) r_-0. (3.9) 

a V is thus a measure of the intensity of the source, 
while (V.a•)r:0 is a measure of its influence on each 
mode. If • is the volume change per unit volume we have 

X•=a, (3.10) 

where X is the bulk modulus. Hence 

X•V=aV. (3.11) 

Now •V represents the total incremental change in 
volume. Therefore this type of source corresponds to an 
injection of volume •V; i.e., it simulates an instan- 
taneous explosion. For a unit volume injection, •V-1, 
we have 

Q•= - 1 (-t)X (v. ak)•-0. (3.12) 

We note for future reference that if we write in this case 

Ck= -t•-xX (V. a•) •=0. (3.13) 

We may write the solutions of Eqs. (2.10) for t> 0 as 

cosw•t 
q•=C•' . (3.14) 

Finally it is clear that for arbitrary time dependence 
•k(t) of the compressional point source 

Q•= --•b (t)X (V- ak)•0. (3.15) 

It should be noted that the generalized form for other 
types of sources are just as easy to obtain. For instance 
an instantaneous torque concentrated in the vicinity 
of a point in a solid would lead to generalized forces 
proportional to VX a• at this point. 
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4. THE INSTANTANEOUS EXPLOSION IN 
VARIOUS COORDINATE SYSTEMS 

We will now derive a few integral representations 
for the waves due to the instantaneous unit volume 

injection point source in an infinite homogeneous fluid. 
In so doing we will be able to verify that this type of 
source leads to a spherically propagating pressure 
doublet (i.e., an infinite compression followed in- 
stantaneously by an infinite rarefaction) and to illustrate 
the basic methematical manipulations in their simplest 
form. 

We begin with a cylindrical coordinate system r, z, 0 
in an infinite homogeneous fluid of sound velocity a, 
density p. We assume a source of the aforementioned 
type located at the origin. The excited modes will be 
symmetrical with respect to the polar axis and the 
plane z--0. The spectrum is continuous in r, z and each 
mode will correspond to a second order differential as 
explained in Sec. 2. In the present case we are dealing 
with irrotational motion (p is constant) and it is con- 
venient to introduce hydrodynamic potentials. We 
therefore write, dropping subscripts 

d 2 •,= d•'q cosfizJo (Kr) =d, d2q, (4.1) 

co= a(fi2-+- K•) • , (4.2) 

where v2, ½ may be taken as displacement potentials 
obeying the equation 

V•q-co•/a•= 0 (4.3) 

and are related to the acoustical pressure p and dis- 
placements ¾, a as follows 

p= --p• (4.4) 
Ot 2 

¾=V• (4.5) 

a=V½. (4.6) 

Since d=q will be given by Eq. (3.14) (with no subscripts), 
the complete solution will have the forms 

or 

Explicitly, Eq. (2.13) defines t• as 

=2rpf dZ fo •82 sin2fiZJo2(t•r) 
n t- tl • cos•fiZJl•(tir) •rdr. 

(4.9) 

(4.10) 

Using Eqs. (2.14), (2.15), and (4.2) 

co s 2• a 
(4.11) 

Since X=•a •, Eqs. (3.13) and (3.14) give 

1 ot 4 

d•q - (V' a)r_-,=0 

and noting that 
V. a= V¾= - •¾/o• 

we have, by Eq. (4.1), 
a 2 coscot 

d•q -- •t•dt•dfi. 
2• o• • 

coscot 

- gdgd•, (4.12) 

(4.13) 

(4.14) 

Substituting into Eqs. (4.1) and (4.8) the spherical 
wave diverging from the source is represented by the 
displacement potential 

a• f0•ø _f© cosco/ -- cosfizdfi Jo(•r)-- •d•. (4.15) •'= 2•d -- o co• 
This may be integrated with the help of familiar trans- 
forms, •ø with the result 

ß -1 t- , t>o 
4r R 

R= (r•q-z•)L (4.16) 

The pressure wave has therefore the form 

--.--/•' t--- , t>0. (4.17) P=4r R a 
Where/•' is the "derivative" of the Dirac delta function 

d 

dx i• 
p has thus the character of an instantaneous doublet: 
it starts with an infinite compression, followed instantly 
by an infinite rarefaction. 

Other representations of the spherical transient (4.16) 
may be obtained by going to other coordinate systems. 
For example, in a Cartesian system x, y, z we would have 

• .... 1 t-- 
4r R 

0f0/0 © cos, =-- cosfiz cos3'y cos•x .. dfid'¾dK (4.18) 
71-3 o) 2 

•øThe Bateman project staff, A. Erdelyi, editor, Tables of 
Integral Transforms (McGraw-Hill Book Company, Inc., New 
York, 1954), Vols. I and II. See also reference 1. 
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An equivalent form, similar to some results we will 
obtain in sec. 5, may be arrived at by considering a 
cylindrical system r, z, 0, with the source situated off 
the axis at z=0, 0-0, r--ro (Fig. 2). The excited modes 
are 

d 2•v,•= d•'q,• cosnOJ,• (t•r) cos/•z= d•q• 
w=a(•+•)•. (4.19) 

Here n is an integer' the 0 spectrum is discrete in con- 
tradistinction to the continuous r, z spectrum and will 
be associated with a summation. 

Equations (2.13), (2.14), and (2.16) give the norma- 
lizing coefficient 

2• +• • 

•=•• dOf dz• (V•)•rdr (4.20) 
w2 •2 

••.• (4.21) 
• •d•d• 

We may substitute in Eqs. (3.13) and (3.14) and use 
Eqs. (4.13) and (4.8) with the result 

( 4•r R =•,--0 

•0 øøf0 © COScot X J,,(t•r)J,,(t•ro) cos/•z .. t•dt•dig. 
(.0 2 

(4.22) 

The identity of the two sides in Eq. (4.22) clearly 
follows from the fact that we are merely expressing 
the transient (4.16) in a different coordinate system. 
Actually this result may be verified directly by evalu- 
ating the double integral with the help of known trans- 
forms such as Macdonald's integral (see Sec. 5). 

At this point several remarks must be made. First, 
it is clear that we have obtained directly the progressive 
transient wave, without requiring intermediate simple 
harmonic solutions' this is a general and characteristic 
feature of this method. Secondly, the solution for any 
other time dependence of the source can be obtained 
by applying Duhamel's theorem to the solution for the 
instantaneous explosion. This would be the proper and 
logical procedure for securing the progressive solution 
for a point source of time dependence d •0t. In the simple 
case under discussion this would lead, for O,•/Ot, to the 
somewhat trivial equation 

Ot l f_te•'øø'•[-(t--r)--(R/a)-ldr 4a' oo R 

1 1 

..... e i•0t'-(R•)•. (4.23) 
4arR 

But if one were to write f(t)=e i•0* in Eq. (3.15), one 
would obtain an altogether different result. Indeed this 
result would not represent a progressive wave, but 

FIO. 2. Cylindrical coordinate system with source 
S off axis at z=0, 0=0, r=ro. 

could be forced to do so by a change in contour. It would 
then be equivalent to Sommerfeld's famous integral. 
Lack of space forbids us to discuss this rather subtle 
point more thoroughly, but we may note this much in 
passing: by substituting •(t)=d •o• in Eq. (3.15) one 
cannot really expect to obtain directly a progressive 
solution, for this type of time dependence implies a 
source that has been acting for all time, and the solution 
should include reflections from the enclosure walls, even 
after these have been removed to infinity. The procedure 
typified by Eq. (4.23) on the other hand, will yield a 
progressive wave because it corresponds to putting 
an e •0' source starting at t=to into an infinite space, 
and gradually removing to to --m. A more complete 
discussion of these features will be found in reference 3. 

5. THE INSTANTANEOUS EXPLOSION: DIFFRACTION 
BY A WEDGE OR CORNER 

We will now solve the problem of the diffraction of a 
spherical pulse by an infinite plane wedge or corner. 
The diffraction by wedges has been the subject of a 
great many theoretical investigations. Sommerfeld n 
solved the acoustical problem for plane transients, and 
Friedlander •2 worked out in detail this case for certain 

specific pulse shapes. Pauli •3 and others extended results 
of this type to electromagnetic waves and conducting 
wedges. The simple harmonic point source in a wedge 
was worked out by Oberhettinger24 Asymptotic solu- 
tions have been examined by Keller, Lewis, and 
Seckler. •5 Keller and Blank •ø have also given a solution 
of the plane transient case, using Busemann's method 
of conical flow. An exhaustive bibliography will be 
found in a review article by Bouwkamp? Until recently 
no solution of the transient point source problem had 
been published. We will show that the Hilbert space 
method leads easily to an explicit solution in closed 
form, involving only elementary functions. A solution 

n A. Sommerfeld, Math. Ann. 45, 263 (1894); 45, 317 (1896). 
• F. G. Friedlander, Proc. Roy. Soc. (London) A186, 322, 352 

(1946). 
•a W. Pauli, Phys. Rev. 54, 924 (1938). 
•4 F. Oberhettinger, Commun. Pure Appl. Math. 7, 551 (1954). 
• Keller, Lewis, and Seckler, Commun. Pure Appl. Math. 9, 

207 (1956). 
•0 j. B. Keller and A. Blank, Commun. Pure Appl. Math. 4, 

75 (1951). 
•? C. J. Bouwkamp, Repts. Progr. in Phys. 17, 35 (1954). 
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equivalent to ours has been published in a series of 
little known articles by Garnir. 7 His method is radically 
different, since he uses Heaviside's operational approach, 
as adapted to wave theory by Cagniard •a and Pekeris? 
A comparison of his lengthy derivation with ours 
illustrates the relative directness and simplicity of the 
normal coordinate approach. It is not only simpler and 
elegant, but also much more flexible. It leads naturally 
to new forms of the solution (e.g., a useful convergent 
series). In addition, we have reached some interesting 
physical conclusions so that this choice of an example 
not only provides a simple illustration of some ad- 
vantages of the present approach, but also represents 
a contribution to diffraction theory per se. 

Consider an infinite wedge or corner bounded by 
rigid planes 0=0, 0=•' intersecting along the z axis 
(apex). We assume the region 0<0<•' to be filled with 
homogeneous fluid (Fig. 3). We may call this a wedge if 
•'>•r, a corner if •'<•r. For a source located at r=ro, 
0=00, z= 0 the excited modes are 

d •'•,•= d•'q,• cos---OJ,,•/r(Kr) cosfiz= d2q,•p,• 

Equation (2.13) gives 

ta,•=pfo dOf dz I (v•p,O•rdr (s.2) 

and by virtue of Eqs. (2.16) and (2.14) 

609' 7I' 
ß (5.3) 

Substituting in Eqs. (3.13), (3.14), and (5.1) 

•o=• • cos--0 cos--00 

fo • •o © COScol X J,,•lr(•r)J,,•lr(•ro) cos/Sz -- •dKdlg. (5.4) 
602 

If •'=•r/m, m being an integer, it is easily shown that 
this result can be represented by a sum of forms such 
as Eq. (4.22), and that the solution is then equivalent 
to the original source plus 2m-1 mirror images dis- 
tributed on a circle of radius r0. But this is a somewhat 
trivial case, for it is well known that under these 
circumstances the complete solution is given by such a 
distribution of sources--there are no diffracted terms. 6,2ø 

We assume therefore •'= •r/v, v not an integer. 

xs L. Cagniard, Reflexion et refraction des ondes seismiques pro- 
gressives (Gauthiers-Villars, Paris, 1939). 

x9 C. L. Pekeris, Proc. Natl. Acad. Sci. 41, 469, 629 (1955). 
•o j. B. Keller, Commun. Pure Appl. Math. 6, 505 (1953). 

Note that we may expect the solution to consist of 
two types of terms: the images on one hand, and a 
diffracted wave on the other. On simple geometrical 
grounds (Fig. 4) it is seen that the diffracted wave 
will always arrive at a later time than the latest image 
contribution. If we call to the time of the first (direct) 
signal and r0 the time of arrival of the leading edge 
of the diffracted wave (corresponding to the minimal 
source to apex to receiver path), we have 

1 

to=-((r-ro)•'q-z• •, (5.5) 

1 

r0=-((rq-ro)•-z• •. (5.6) 

To evaluate the integral in Eq. (5.4) we first differentiate 
with respect to t and use the result •ø 

f0 © sinat (tS•'q- g" • cosz. , 

2 
at> z 

This gives 

=0, at (s.7) 

=-- • cos--00 cos--0 
at •- ,:0 •- 

.t>z (5.8) 

=0, at <z, 

where 

(5.9) 

This integral may be evaluated explicitly. It is a 
particular case of MacDonald's integral which will be 

%ø% 

7 

Fro. 3. Source S at r--ro, 0--00, 
in a fluid filled corner of angle •'. 
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FIG. 4. Distribution of images for a corner of angle •' slightly 
less than ,r/2 and a source S at r=ro. The heavy black points are 
observable mirror images, whereas the white points are con- 
structed as images but are not observable as such. When •'--•r/2 
images 2 and 4 coalesce, and the non-observable images coincide 
with the observable ones. With a receiver R as shown (r=r0), it 
is clear that the path SOR--2r0 is larger than the distance of R 
to any of the images. This is true no matter what the position 
of R, except if it is on the apex. 

found discussed by Watson? • The result is 

t <to, I•=0 (5.10) 

to < t < ro, 
1 n•r 

cosm• (5.11) 
rrro sin• •' 

r•. q_ro•. q_z •. _ a•.F. 
Arc cos , 

2rro 

0•<•<r (5.12) 

to<t, In= -- 
1 n•r 

sin--re -n•n/r (5.13) 
•rrro sinhr• •' 

a•.F- (r2q-ro•q-z •.) 
n = Arg cosh. , 

2rro 

O<xv<xm, (5.14) 

where to, r0 have been defined as in Eqs. (5.5) and (5.6). 
Clearly the form (5.11) corresponds to the image 
contributions' 

Each term of this series may be written as the sum of 

•'XG. N. Watson, Th,ory of Bessel Functions (Cambridge 
University Press, New York, 1922). 

four cosine terms, and one will recognize the result to be 

O• O• oo 
•= Y'. •(•=FO=FOo--2m•'), (5.16) 
Ot 4,a'rro sin• ,• 

where the ,4- signs are used to show that for each value 
of m we have a sum of four terms corresponding to all 
possible combinations of these signs. There is a finite 
number of permissible values of m determined by the 
condition •_<,r [-Eq. (5.12)• and corresponding to the 
feature that the number of observable images is always 
finite (Fig. 4). The distance between image and 
receiver is 

R=[r"q-ro"q-z"-2rro cos(2m•4-0-4-0o- •)•=at (5.17) 

where t is the corresponding arrival time. The Dirac 
delta function has the property 

8 ( •q=Oq=Oo-- 2m•')d •= • ( t--?)dt 
and Eq. (5.12) shows that 

rro sin •d • = a•'tdt. 
Therefore 

(5.19) 

•./• (• q=0 q=00- 2mD 
fro sin• 

: at a R,• 

and 

(5.20) 

•- E t- , (5.21) 
Ot 4r ,• R,• \ 

where there will be in general four terms for each value 
of m, corresponding to all realizable sign combinations 
in Eq. (5.17). The acoustical pressure solution, obtained 
by applying the operator - pO/Ot to Eq. (5.21 ) is therefore 
equivalent to a number of pressure doublets [-Eq. (4.17)• 
corresponding to all possible mirror images. 

Of greater interest is the diffracted solution given by 
Eqs. (5.13) and (5.14) for t> r0 

0•v ct 1 • 

Ot r•' rro sinhn ,--0 

where 

Xcos--00 cos--O sin--re -•/r• 1 t- 

=$1 t- , (5.22a) 

R = [ (r + r0)"+ z"qL (5.22 b) 

We see that this solution disappears for •'=r/m, m an 
integer, in accord with our previous statements. This 
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series may be summed. Writing 

n,r n,r n•r 1 
cos---00 cos---0 sin--'•-=--(e•('"" /r)øoJr-e -i('"" /r)øo) 

1' 1' 1' 8• 

X (e•(n•/•)ø-ke-i(n•/•)ø) (e•(n•/r)•e -•(•/•)•) (5.23) 

Eq. (5.22) becomes a sum of eight infinite geometric 
series, each of which can be summed. Collecting 
conjugate terms in pairs, one has the final result 

O• a 1 

at 4• rro sinh• 

1 t- 

X i-2e-'"/r cos(r/D (r•0•00)+c •'"/r ' 
(s.24) 

where the • signs are again used for conciseness, to 
show that the form in brackets is actually a sum of four 
terms corresponding to all possible combinations of 
these signs. Apply•g the operation --pO/Ot we obtain 
the diffracted pressure wave 

•a t 

4r• r2r02 sinh2• 

(m0m00) X cotanh'l_2./r cos(r/r)(rm0m00)+c 

r [1- 2e -•"/r cos(r/D 

(/__;). 
Note that this solution is explicit, closed and involves 
elementary functions only. The second term has only 
been included for completeness. Usually it will play no 
role, since for other transients the source function will 
in general be specified in terms of pressure versus time, 
and one will apply Duhamel's theorem directly to Eqs. 
(5.22) or (5.24) to obtain the pressure wave. 

By virtue of Eqs. (5.14) and (5.6), we see that for 
t=ro, r/=0. Therefore the diffracted pressure front 
arrives with infinite amplitude at time t= r0. Its sign 
depends upon the particular choice of 0, 00, • as may 
be seen by examining the behavior of the trigonometric 
terms in the brackets for t= r0. In other words the 
diffracted wave may start either as a compression or as 
a rarefaction, depending upon the particular geometry 
considered. This is illustrated by the numerical results 
of Fig. 5 showing the form of the diffracted pressure 
wave for various wedges and corners for source and 
receiver situated at r= r0 and on the same or opposite 
walls: the wave diffracted backwards towards the 

source may be either compressional or rarefactional 

and is of opposite phase to the wave diffracted along 
the other wall. In all cases the pressure amplitude is 
doubly infinite at t= r0, after which it decreases expo- 
nentially. This exponential tail is due in part to the fact 
that the diffracted arrival is radiated by a line source 
(the wedge apex) and thus exhibits this typical feature 
of two-dimensional wave propagation, and in part 
to the time differences between the contributions of 

different points of this line. After the direct pressure 
wave has arrived at the point of the apex r=0, z=0 
closest to source, we may visualize the process of 
diffraction as due to the radiation by a disturbance 

0=[ • __._._.. {; SOURCE AND 
"'• -'"'x RECE,VER ' \ X• souRcE 

, 

PO =t; 

47/' 

•=2w L 

2'SEC ,o dl 
TIME FROM 'r o 

o:a o'., sec. 

Fro. 5. Comparison of the diffracted wave due to an instan- 
taneous explosive source at r-ro, for various values of the corner 
or wedge angle •'. On the left side we have shown the shape of the 
wave when the source and receiver positions coincide. On the 
right we have shown it for receiver and source on opposite walls, 
at the same distance r=ro from the apex. r0=0 is the instant of 
arrival of the diffracted wave front. Compression is plotted down- 
wards, dilation is upwards. The delta function term of Eq. (5.25) 
cannot be plotted--it contributes an infinite pressure at t= r0, of 
opposite sign to that marking the beginning of the exponential 
tail shown here. 
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traveling with supersonic velocity along the summit line 
of the wedge. 

Equations (5.25) and (5.24) exhibit the interesting 
feature that for certain values of 0, 00, and •' no diffracted 
solution exists even when •' is not an integral submultiple 
of r, e.g., if •'= 2r/(2•-]- 1), 00 =,r/(2•-]- 1). In this case 
the source is in the bisecting plane, and each half of the 
wedge or corner is an integral submultiple of ,r: the 
solution is obtained by juxtaposing two wedges of 
angle •'= ,r/(2g-q- 1) with the source on the common wall. 

These considerations, combined with the results of 
Fig. 5 show that a more thorough numerical study of 
this problem is desirable, although it would be out of 
place here. 

Note that the series in Eq. (5.22) converges rapidly 
for t>>r0 and may often be easier to use for numerical 
purposes than the closed forms (5.24) and (5.25). 

The formulas for a wedge with free surfaces, or one 
free and one rigid surface are equally easy to obtain 
by replacing the cosine in Eq. (5.1) by a sine or a 
suitable combination of sines and cosines. Finally, it is 
clear that this approach should lead directly to new 
solutions of the diffraction problem for transient point 
sources in all separable coordinate systems; e.g., 
diffraction by spheres, cylinders, circular apertures, etc. 

6. CONCLUSIONS 

We have endeavored to establish and to some extent 

illustrate the Lagrangian technique of using normal 
coordinates in the context of infinite spaces subject 
to the laws of mechanics. This method, in Hamiltonian 
form, is also used in the classical and quantum theories 
of electrodynamics. To our knowledge, it has never 
been applied to problems of acoustic and elastic wave 
propagation. As noted in Sec. 1, this is probably 
due in part to the great impetus given to the linear 
operator approach by the advent of quantum mechanics 
early in this century. It has been our purpose to re- 
establish the normal coordinate point of view in 
propagation problems, the development of which since 
Rayleigh's time had stopped with the theory of en- 
closures, i.e., vibrations. As we have seen there are no 
essential difficulties in extending it to infinite media. 
Indeed, this had already been done in field theory, 
both in vacuum electrodynamics • and in problems in- 
volving •erenkov radiation?' 

We have followed a straightforward path, staying 
at all times within the realm of mechanics. Within this 

framework our derivations have been rigorous, with 
the possible exception of Eqs. (2.14), (2.15), and 
(2.16). However we stressed the fact that these are 
purely a shorthand for the standard procedure of 
counting modes which is the accepted procedure in 

• J. G. Linhart, J. Appl. Phys. 26, 527 (1955). 

field theory, leading to identical results. This latter 
technique is perhaps also not above reproach from the 
mathematical standpoint, but no physicist would 
question its validity. 

One should note that, from the formal standpoint, 
the method of normal coordinates as developed here is 
somewhat more general than is implied by its applica- 
tions to field theory. For instance, mechanical continua 
are often described by higher order operators and 
complex boundary conditions of a type not encountered 
in field theory. 

The generality of this method is also apparent in the 
key equations (2.13) (diagonalization or orthonormality 
condition) and (3.4) or (3.5) (generalized force for 
arbitrary sources), which are valid even in nonseparable 
coordinate systems, as is clear from their three-dimen- 
sional vector form. In this lies a clear potential ad- 
vantage of this approach, which has, however, not been 
exploited in this paper. 

For the solution of simple harmonic problems in 
separable systems this method has nothing to especially 
recommend it over the usual methods of Green's 

function and linear operators. 
For the solution of transient problems in simple 

cases, it does not have obvious advantages over the 
Laplace transform method. But in complicated cases, 
it is simpler and more direct. That this' is so, begins to 
be apparent in the diffraction problem of Sec. 5. In 
complex problems of heterogeneous systems of fluid 
or solid elastic layers it has in principle the advantage 
of discriminating between various types of modes. 
For example, in a simple homogeneous elastic half-space 
one has, roughly speaking, a family of exponential 
modes corresponding to Rayleigh waves, and two 
families of sinusoidal modes corresponding to body 
waves. It is clear, from the general formulas of Secs. 2 
and 3 that in this method the effect of a given source 
upon each family of modes is perforce obtained sepa- 
rately. These effects are then summed to obtain the 
total result. But, in the Laplace transform method 
this is not possiblesthe solutions contain all effects 
together, and they are not separated from the start. 

Finally, somewhat along the same lines it may be 
worthwhile noting that it is sometimes possible to 
isolate certain predominant modes which may be 
intuitively predicted or apparent from test data. Such 
phenomena exhibit hybrid features of vibration and 
propagation. The present method furnishes an ideal 
tool for their treatment. 

Most of these points must, of course, await future 
elaboration by means of specific examples. The object 
of this paper was chiefly expository and eclectic. We 
thought it inadvisable to go beyond the relatively simple 
example of Sec. 5. 
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