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Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. 
II. Higher Frequency Range 

M. A. BIOT* 

Shell Development Company, RCA Building, New York, New York 
(Received September 1, 1955) 

The theory of propagation of stress waves in a porous elastic solid developed in Part I for the low-frequency 
range is extended to higher frequencies. The breakdown of Poiseuille flow beyond the critical frequency 
is discussed for pores of flat and circular shapes. As in Part I the emphasis of the treatment is on cases where 
fluid and solids are of comparable densities. Dispersion curves for phase and group velocities along with 
attenuation factors are plotted versus frequency for the rotational and the two dilational waves and for six 
numerical combinations of the characteristic parameters of the porous systems. Asymptotic behavior at 
high frequency is also discussed. 

1. INTRODUCTION 

A PREVIOUS paper • dealing with the subject of propagation of elastic waves in a fluid saturated 
porous solid was restricted to the low-frequency range. 
By this it was meant a frequency range between zero 
and a certain value beyond which the assumption of 
Poiseuille flow broke down. The purpose of this paper 
is to extend the theory to the full frequency range 
without the limitation of the foregoing assumption. 
There remains however an upper bound for the fre- 
quency, namely, that at which the wavelength becomes 
of the order of the pore size. Such a case must, of 
course, be treated by a different method. 

A theoretical study of the breakdown of Poiseuille 
flow is presented in Secs. 2 and 3, by considering the 
flow of a viscous fluid under an oscillatory pressure 
gradient either between parallel walls or in a circular 
tube. The case of the circular tube was originally treated 
by Kirkhoff. This study yields a complex viscosity 
correction factor function of the frequency through 
the dimensionless ratio f/fc where fc is a characteristic 
frequency of the material. The case of flow between 
parallel walls and that of the circular tube indicate that 
the effect of pore cross-sectional shape is well repre- 
sented by taking the same function of the frequency for 
the viscosity correction and simply changing the fre- 
quency scale. As in Part I we are primarily concerned 
with applications to liquids and we have neglected the 
thermoelastic effects. 

Application of these results to fluid friction in a 
porous material is discussed in Sec. 4 and a "structural 
factor" is introduced which represents the effect of 
sinuosity and shape of the pores. 

The propagation of rotational waves is discussed in 
Sec. 5. Four numerical combinations of parameters are 
considered. Group velocity, phase velocity, and attenua- 
tion are plotted for these four cases as a function of the 
frequency ratio f/f,. There is only one type of rotational 
wave. The influence of the structural factor is also 

* Consultant. 
• M. A. Biot, J. Acoust. Soc. Am. 28, 168 (1956), preceding 

paper. 

evaluated by calculating phase velocity and attenua- 
tion for a typical case. 

The propagation of dilatational waves is discussed in 
Sec. 6. Group velocity, phase velocity, and attenuation 
curves are plotted for six numerical combinations of the 
parameters. There are two types of such waves, desig- 
nated as waves of the first and second kind. The latter are 

characterized by high attenuation. An interesting plot 
is that of the attenuation per cycle. Both the rotational 
waves and the waves of the first kind exhibit a maxi- 

mum value of this attenuation in a range of f/f• near 
unity. In this range the inertia and viscous forces are of 
the same order. 

As discussed in Part I when the dynamic compati- 
bility condition is satisfied or nearly satisfied (Zl•___•l) 
the wave of the first kind has a very small attenuation. 
This is shown by cases 2 and 5. The other two waves, 
however, retain much higher attenuation. In such a case 
only one type of wave may be observed unless special 
attention is given to the others. Another aspect of this 
phenomenon will be exhibited when a dilatational wave 
is reflected at a surface of discontinuity. The reflected 
energy is split up into three types of waves, two of which 
may be unobserved because of their high attenuation. 
The phenomenon then appears as the propagation of a 
single-type body wave with small attenuation in the 
body and a high absorption at the reflection surface. 

Certain assumptions upon which the present theory is 
based, such as perfect elasticity of the solid, limitations 
on the nonuniformity of pore size, and the neglection of 
thermal effects will determine the categories of materials 
and frequency ranges for which it is applicable. It 
should, however, be of value beyond its strict applica- 
bility by indicating orders of magnitudes or qualitative 
trends. 

In applications to wave propagation in such ma- 
terials as clay, silts, or muds, one should note that the 
rotational wave is determined entirely by the shearing 
rigidity of the solid. Since the latter may be small, the 
rotational waves may, in this case, propagate with a 
velocity which is considerably lower than that of the 
dilatational waves of first and second kind. 
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180 M.A. BIOT 

2. OSCILLATORY FRICTION FORCE IN A 
TWO-DIMENSIONAL DUCT 

We are interested in the motion of a fluid in a two- 

dimensional duct, i.e., a space limited by two parallel- 
plane boundaries when these boundaries are subject 
to an oscillatory motion and when an oscillatory pres- 
sure gradient acts at the same time on the fluid. 

We consider only the two-dimensional motion and 
neglect all pressure gradients and velocity components 
normal to the boundaries. The x-direction is parallel to 
the boundaries and the y-axis is normal to it with the 
boundaries represented by y= 4-a. The x-component 
of the velocity of the boundary is/• and that of the fluid 
• (Fig. 1). The latter component has a distribution 
along y which is to be determined. 

The equation of motion of the fluid in the x-direction 
is 

op 
oi•) .... {-•' , (2.1) 

Ox Oy 2 

where u is the ,Ascosity, os the mass density of the fluid, 
and p the pressure. Introducing the relative velocity 
of the fluid, 

we write, 

PrO1 -- 

We may consider 

Xps- 

(2.2) 

Op 02U1 
.... os//+u ß (2.3) 

Ox Oy 2 

op 
.... pt// (2.4) 

Ox 

to be equivalent to an external volume force and Eq. 
(2.3) becomes 

02U1 

Of (2.5) 

•' = t•/ps. 

Assuming that all quantities are sinusoidal functions 
of time with a factor e •t, and rewriting Eq. (2.5) with- 
out this factor we have 

d•U1 
•----/a UI= --X. (2.6) 

df 

The general solution to this equation is 

UI=--+C cosh (2.7) 

y 

y--o 

O-fi = U• 
Fro. 1. Two-di- 

mensional flow be- 
tween parallel walls. 

with the condition that the function be symmetric in y. 
The constant C is determined by the condition 
at the wall, i.e., for y= 4-a• 

X 1 

/a cosh[(•) «alJ 
The velocity distribution is 

(2.8) 

X 
__ 

cosh[(ia/r)«y3 

coshi (/a/v) lal] 
(2.9) 

For use in the general theory, we shall need both the 
average velocity of the fluid through the cross section 
and the friction force at the wall. The average velocity 
U1 (A,) is given by 

coshi (/a/•)«y] } 2alUl(•,)=----•X f •i I 1-cosh[•(ia/r),a13 dy. (2.10) 
Hence, 

X{ 1(•)« [(•)« ]} UI(A,)=• 1---- tanh a• . (2.11) a• • 

The friction stress at the wall (y-- a0 is 

T /'[L-•-y jy=_al •--• (:) (2.12) 

In applying these results we need the expression for 
the total friction force 2r excited by the fluid on the 
wall, per unit average velocity of the fluid relative to 
the wall, i.e., we must calculate the ratio 

] 2r 2t• al -• tanh al 
UI(A,) al 1 • • ia « . (2.13) 

1--•11(•) tanh[(-•)a, 1] 
In this expression we have a nondimensional variable. 

and we write 

(2.14) 

2r 2t• i«K1 tanh(ilK1) 
__ 

UI(Av) a;1 1 
1--- tanh (i«gl) 

(2.15) 

Let us examine the limiting case when the frequency 
tends to zero, i.e., for gl--*0. We have 

2r/Ul(a,) = 6t•/a1. (2.16) 
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This corresponds to Poiseuille flow. In this case the 
velocity profile for U• if parabolic. If we put 

1 i•Kx tanh(i•K•) 
F•(g)=- (2.17) 

3 1 

1--• tanh (i•gx) 

we have F•(0) = 1, and we write 

2r 6• 
•=--FI(K1), (2.18) 
UI(Av) al 

where F•(K•) is a complex quantity which is equal to 
unity for g•=0 and represents the deviation from 
Poiseuille friction as the frequency increases. There is a 
difference of phase between the velocity and the friction 
force. For large values of the frequency, i.e., 

Fro. 2. Frequency 
correction functions 
for the viscosity 
in two-dimensional 
flow. 

we have 

2.0 

1.5 

1.0 

0 2 4 6 8 I0 

F•(g0 =--/ =-- 3 3 \-•- / ' (2.19) 

therefore, the friction force at large frequencies and for 
constant velocity increases like the square root of the 
frequency and is 45 degrees out of phase with the ve- 
locity. Everything happens as if the static viscosity 
coefficient u were replaced by a dynamic value. 

uF•(g•). (2.20) 

We separate the real and imaginary part of F•(gx) 
as follows' 

Fx(K•)=Frx(•x)+Fix(•x). (2.21) 

The values of Frx(gx) and Fix(g•) are plotted in Fig. 2. 
It is seen that in accordance with Eq. (2.19) these curves 
become asymptotically parallel to straight lines of 
slope K•/3V2=0.234 gx for large values of •. 

3. OSCILLATORY FRICTION FORCE IN A 
THREE-DIMENSIoNAL DUCT 

We shall now solve the same problem as in Sec. 2 
except that instead of a two-dimensional motion be- 

r=a =Ui ' 

r ,////////////////////////" 
Fro. 3. Three-dimensional flow in a circular duct. 

tween two plane boundaries we now consider a straight 
duct of circular cross section, (Fig. 3) of radius a. 
As in the foregoing, we consider the components of the 
motion and the pressure gradient along the direction x 
of the axis. In this case Eq. (2.1) is replaced by 

op 
p• .... FtzV2g r, (3.1) 

Ox 

where V 2 is the Laplacian operator. We assume that 
• is independent of x, and that the flow is axially 
symmetric so that the operator is 

02 1 0 

V 2= ! (3.2) 
Or 2 r Or' 

Putting 
op 

----p•=Xo• (3.3) 
Ox 

as before, and introducing the relative velocity Ux 
= U--• of the fluid with respect to the wall, we may 
write for Eq. (3.1) 

v(O•U•+l OUI• OU1 ...... X. (3.4) 
\ Or • r • ! O t 

All quantities being sinusoidal functions of time contain 
a factor e •t. By rewriting Eq. (3.4) without this factor, 
we find 

dU• 1 dU• ia X 
[ U•= ---- (3.5) 

dr • r dr v v 

This is a Bessel's differential equation for U•. The 
general solution of this equation, which is finite at 
r=0, is 

[ ] U•=---FCJo i r , (3.6) 
ia 

where C is a constant and 

Jo(iV'iz) = berz+i beiz (3.7) 

with Kelvin functions of the first kind and zero order. 

Introducing the boundary condition Ux=0 for r-a 

i12/U1 

x 

,01i( '--•• )«a] 
(3.8) 
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Again, here we need the average velocity for the cross 
section. The average velocity Ui(A,) is given by 

or 

with 

iaUl(Av) 

x 

U•(^v) = U•rdr (3.9) 

2 •ok •= 1--• Jo(i•)•d• (3.10) 
k2Jo(ilk) 

g=a . (3.11) 

The value of the integral in expression (3.10) is known. 
We have 2 

k 

fo Jo(i•)•d•=tc(bei'K-iber'K). (3.12) 
Hence, 

/a U•(^v) 2 ber'tcq-ibei'tc 
--=1- . (3.13) 

X iK ber•+ibei• 

In these expressions 
d 

ber'z=--berz 
dz 

d 
bei'z =--beiz. 

dz 

We also evaluate the friction between the fluid and the 
wall. The stress r at the wall is 

[ dr a•o ia x,v)' (3.14) 

The total friction force is 2•rar, and the ratio of this 
force to the average velocity is 

with 

2•rar 2•r•tcT (tc) 

Ux(^v) 2 

! ! 
ber tc+iber • 

(3.15) 

T(tc) = . (3.16) 
bertc q-ibeitc 

This formula is anologous to Eq. (2.15) where T(K) 
plays the role of v'i tanh (x/'itc•). We now consider the 
limiting value of expression (3.13) for g--•0, i.e., for 
very low frequency. We have 

berg+ibeitc= Jo(iV'ig) = 1 q---- 

itc K 3 
ber' tc q-ibei' tc ..... 

2 16 

itc 2 1 
--K4-]L ß . . 

2 2 2e4 e 

(3.17) 

• N. W. McLachlan, Bessel functions for Engineers (Clarendon 
Press, Oxford, England, 1934), p. 125. 

Hence, in the limiting case 

and 

2 itc • 
1----T(tc) -) , 

itc 8 

2;rat 

UI(Av) 

This expression checks with that obtained from 
Poiseuille flow. Again here we introduce a function 

1 
F(tc) =- (3.19) 

4 2 

1--T½) 
itc 

such that F (0)= 1, and write 

2•rar 

•= 8riff (tc). (3.20) 

The function F(tc) measures the deviation from Poiseuille 
flow friction as a function of the frequency parameter 
tc. For large values of tc, i.e., at high frequency the asym- 
ptotic values are 

1 exp[tc(lq-i' • bertc + ibeitc--)•- -- 

(3.21) 

1 /1-Fi\ [K(1-+-i) ifil ber'tc+ibei%->•[--! exp -.. 
(2•g) • \ • ] 

Hence, 
1+i 

T(g) > , (3.22) 

and 

4\•-/' (3.23) 
As in the two-dimensional case it is found that the 

friction at high frequency and for constant velocity 
is proportional to the square root of the frequency and 
is 45 degrees out of phase with the velocity. Every- 
thing happens as if the static viscosity coefficient tz 
were replaced by a dynamic complex value. 

We put 
(3.24) 

F (tc) = Fr (tc) +iFi (tc). (3.25) 

The real and imaginary parts of this function are 
plotted in Fig. 4. For large value of g the curve becomes 
parallel to the straight lines. tc/4V2=0.177g. 

4. CALCULATION OF THE OSCILLATORY FRICTION 
FORCE IN A POROUS MATERIAL 

In applying the results of the previous section to a 
porous material, we introduce the assumption that the 
variation of friction with frequency follows the same 
laws as found in the foregoing for the tube of uniform 
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ELASTIC WAVES IN POROUS SOLIDS. II 183 

cross section. It is also assumed that the pore size is 
fairly uniform. More will be said on this assumption 
later. We have considered two extreme cases, that of a 
duct limited by two planes and that of a circular duct. 
These cases correspond to extreme shapes in the cross 
section of the pores, i.e., whether they are close to very 
flat ellipses or to circles. In order to discuss this shape 
factor, let us consider the expression for the friction 
force as introduced in the previous paper. The friction 
force per unit volume of bulk material in the x-direction 
was expressed as 

0 

b--(Ux--ux). (4.1) 
Ot 

This is the force exerted by the fluid on the solid in the 
direction of motion. The x-component of the average 
fluid velocity being O Ux/Ot and the velocity of the solid 
0%/Ot. The quantity O/Ot(U•--u•) plays the same role 
as the relative average velocity Ux<^v) considered in the 
two previous sections. The coefficient b is, therefore, 
the ratio of the total friction force to the average fluid 
velocity and may be expected to be multiplied by a 
frequency correction factor as in similar expressions 
(2.18) and (3.20) previously calculated. Hence, we 
write for the friction force 

or 

0 

bFx(Kx)--(U•--ux) (4.2) 
at 

0 

bF(K)--(U•-%), (4.3) 
Ot 

where b is the coefficient for Poiseuille flow. Expression 
(4.2) corresponds to the case where the pore cross 
sections are more like narrow slits while Eq. (4.3) 
corresponds to the case where they are circular. 

We shall now proceed to compare the two expressions 
(4.2) and (4.3) thereby evaluating the effect of pore 
shape on the frequency dependence of the friction. If 
we look at the plots of the functions Fx (•x) and F(g) we 
notice that their shapes are very similar. A further 
check reveals that if we simply take •x and g to be 
proportional, and if we take the scale such that the 
asymptotic directions become identical, i.e., by putting 

K1 K 

= (4.4) 
3V2 4V2 

the pair of curves Frx(gx). Fix(•x) become practically 
indistinguishable from Fr(g), Fi(K) when the latter are 
plotted as function of gx. We may write with a good 
approximation 

Frx (•x)•---Fr• (4/3) •x• 
(4.5) 

Fix (gx)---•Fi[ (4/3) Kx•. 

This means that when the pores have the shape of 
ha. trow slits its frequency dependence function may be 

Fro. 4. Frequency 
correction functions 

for the viscosity 
in three-dimensional 
flow. 

2.0 

1.5 

1.0 

0 • 4 6 8 IO 
K 

taken the same as for circular pores with a radius 
a=4/3ax. 

This is also equivalent to saying that in the extreme 
case of slits and circular pores the effect of the frequency 
on the function is the same except for a change in scale 
of the frequency parameter. It is natural to assume that 
if this is true for the extreme case it is also true for 

intermediate shapes. A universal complex function F(K) 
may, therefore, be adopted to represent this frequency 
effect with a nondimensional parameter, 

•=a , (4.6) 

and where a is a length which is characteristic of both 
the size of the pores and their geometry. In the case of 
circular pores a is equal to the radius while in the case 
of slits of opening 2ax, the characteristic size is as we 
have seen, 

a-- (4/3)ax. (4.7) 

In the present treatment we shall assume that all 
pores have the same characteristic size a or equivalently 
that the frequency correction is practically the same for 
all pores. This would naturally not be true in a material 
where pore size is distributed over a very wide range. A 
redistribution of friction would then occur between 

pores as the frequency varies with a corresponding re- 
distribution in the velocity pattern. However, the as- 
sumption of a single characteristic pore size should be 
applicable to a wide variety of actual materials. The 
case of widely different pore sizes will have to be con- 
sidered in a more general theory. 

As regards the question of the choice of the size 
parameter a, the best way of course is to choose it in 
such a way that the dispersion and attentuation curves 
fit the experimental data. 

In reference 1 the frequency f appeared through a 
nondimensional parameter f/ft. This introduces a 
characteristic frequency. 

b 

fc=--. (4.8) 
2•rp• 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  195.221.196.65 On: Wed, 21 Sep 2016

10:19:37



184 M.A. BIOT 

It now remains to relate the present parameter K with 
the nondimensional variable f/ft. We notice first that 
K•' may be put in the same form, 

f 
t•=-- (4.9) 

! ' 

with a characteristic frequency 

f,'=--. (4.10) 
2•ra 2 

The problem is, therefore, to compare fd with f,. Now 
fc is determined by the low-frequency or steady-state 
friction which is characterized by the parameter b. It 
will, therefore, depend not only on the pore characteris- 
tic "radius" a but also on the sinuosity and shape of the 
pores. In order to evaluate f, we must, therefore, intro- 
duce some assumption regarding these geometric factors. 

We first consider the case where the pores are parallel 
tubes of radius a in the direction of flow. To evaluate b 
we remember that it is the total friction force between 

the fluid and the solid per unit volume of bulk material 
and per unit average relative velocity in the steady- 
state flow, i.e., at zero frequency. From Eq. (3.18) the 
total friction at g=0 per tube and per unit length is 

2•rar = 8,rt• Ux. (4.11) 

In order to obtain the value per unit cross section of the 
tube we divide this expression by ,ra •' 

2r 8t• 
--=--Ul(^v). (4.12) 

Since the fluid cross section occupies a fraction fi 
(porosity) of the cross section of the bulk material the 
friction per unit bulk volume is 

On the other hand, 

2• 8u• 
=•Ul(^v). (4.13) 

t•pj'= p2, (4.14) 

(the fluid mass density=pz). Hence, 

4 P 

fc- . (4.15) 
w •2 

Comparing with Eq. (4.10), we derive the relation 
between f, and f,' 

f,=8fd, (4.16) 

and with fc instead of f,' the expression for g2 is 

(4.17) 

and the frequency correction function may be written 

F(K)=F . (4.18) 

If, instead of assuming the pores to be made out of 
parallel tubes of diameter a, we take into account their 
sinuosity, we must multiply the expression for b by a 
factor • which is greater than unity and takes this effect 
into account. Then, we write 

b=•. (4.19) 

The characteristic frequency is then 

in which case 

fc= , (4.20) 
,/ra ,2 

f•=8•f/ 

f (4.21) 
•=8•--. 

The frequency correction function is 

\ .f•! 
(4.22) 

If we consider slit-like pores instead of circular pores 
we go back to relation (2.16) which gives the total 
friction between the fluid and the solid at zero fre- 

quency. We derive the friction per unit area of the fluid 
by dividing Eq. (2.16) by 2a•, and we find 

r 3u 
--=--UI(^•). (4.23) 
•1 •12 

By an argument similar to the case of the circular tube, 
the value of b is found to be 

3ufi 
b- . (4.24) 

If the pores are not parallel but sinuous, we must 
multiply the expression by a factor • and write 

3ufi• 
b=--. (4.25) 

Now, it was derived by Eq. (4.7), that the value of a 
to be introduced in g was a=4/3a•, hence, for this case 

8 • 
f,- . (4.26) 

3r a • 
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Hence, 

The value of K •' is 

16 

f c=--•f c'. (4.27) 
3 

16 f 
K•----•-. (4.28) 

3 f• 

The frequency correction function is then 

F (g) = F[(}•••) «]. (4.29) 
We see, therefore, that various geometric factors such 
as sinuosity and cross-section shape enter into the func- 
tion F by a factor multiplying f/f,. In general, we may 
write 

F(g) = F[/5(f•)«], (4.30) 
where/5 is a factor dependent on the geometry of the 
pores. With a sinuosity factor •(•> 1), the expression 
for/5 varies from 

/•= (8•) •, (4.31) 
for circular pores, to 

/•= • (4.32) 

for slit-like pores. This factor/5 is referred to hereafter 
as the "structural factor." 

The best value of/5 should be determined, of course, 
by the experimental data itself, i.e., it should furnish 
the best fit for dispersion and attenuation data. 

In the following numerical work we shall, however, 
choose arbitrarily a value which is taken to represent an 
average. We put 

/i=x/'8. (4.33) 

For a value of the sinuosity factor satisfying the 
inequality 

1 < • < •, (4.34) 

the value/i=x/'8 is between the value (4.31) and (4.32) 
for the circular and slit-like pores. 

5. PROPAGATION OF ROTATIONAL WAVES 

The rotational waves are governed by the same equa-- 
tions as in the low-frequency range provided the viscos- 
ity is replaced by its effective value function of the fre- 
quency. This amounts to replacing the resistance 
coefficient b by bF(•). With this substitution, Eq. (7.2) 
of reference 1 for the rotational waves become 

where 0n0•20•.•. are mass density parameters for the solid 
the fluid and their inertia coupling, and to and •2 repre- 
sent the rotations of solid and fluid. The rigidity of the 
solid is represented by the modulus N. 

We consider a plane rotational wave 

w=C• exp•i(lx-f-at)• 

9=C•. exp•i (lx-f-at) •. 
(5.2) 

Substitution of these expressions into Eq. (5.1) leads to 
a characteristic equation 

NF 

pa 2 
--=E,--iEi. (5.3) 

We have introduced the mass density of the bulk 
material as, 

p; pnd- 2m,.d-p,.,.. (5.4) 
We put 

,Oll 

"V 11 ---- -- 

p 

1012 

-- 

p 

(s.s) 

P22 

"Y22: --, 
p 

and hence, we have 

7•q- 27nq-w.•.= 1. (5.6) 

The characteristic frequency is 

Also, 

l b 

f, ..... (5.7) 
2rp•. 

½.8) 
f 

f½ 
e•.= (71•.q-720--F,. (5.9) 

f 

Then the real and imaginary parts in expression (5.3) 
may be written 

(v.v •.•-, •d •' (v •.•+ •0 +, • •. ½.o + ,•+ d- 
•= (s.10) 

0 •- 0 
--(onto+ o•,.gl) q- bF (•)--(to-- gl) = 
OF at 

o •. o 
--(o,,o+ o•.•.a) - w ½)-(,o- a) = o, 
OF Ot 

(s.•) 

•,= (s.•) ß 

In deriving these values use was made of the identity 
(5.6). The case of ?oiseuille flow friction law considered 
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Fro. 5. Phase ve- 
locity vr of rota- 
tional waves. 

in reference 1 is found by putting 

'•= (xn+x2•) f* (5.12) 
f 

•2 =0. (5.13) 

In order to derive the phase velocity and attenuation 
we proceed as before. We put 

l=lr+ili. (5.14) 

The phase velocity is then 

v•=--. (S.lS) 

We introduce the reference velocity 

Vr= . (5.16) 

This is the velocity of rotational waves when the fluid 
and the solids are displaced together with no relative 
velocity. By using expression (5.3) we find 

v, [(s7+s,a)%sd 

The behavior of the function for small value of the 
frequency was discussed in reference 1. The limiting 
value of v,./V,. for f--K) is unity. At high frequency 
(f/fc--->o•). The limiting values are 

Fr: Fi=•= (5 18) 
492 ' 

(5.19) 

(5.20) 

(5.21) 

Hence, the limiting value of v•/V at high frequency is 

-•r --- "Y 11"y 22 -- "y 122 ' (5.22) 
This may also be written 

,011( 
N ]•. (5.23) 
•O122 t i PllP22 

A value which coincides with Eq. (5.2) of reference 1 
for the velocity in a porous medium containing a fluid 
with no viscosity. At large frequency we may neglect 
the influence of the viscosity on the velocity. All velocity 
dispersion curves for v•/Vr start at value unity for f=0 
and tend toward the asymptotic value Eq. (5.22,) for 
large frequencies. 

In order to evaluate the attenuation of these waves, 
we introduce the length 

1 

xa- . (5.24) 

This length represents the distance through which the 
wave amplitude is attenuated by a factor 1/e. We also 
introduce a reference length 

VT 

Z_,r 2•-fc (5.25) 
This is a function of fife with the parameters •'i, and 

b. We have plotted these phase velocity dispersion 
curves using an average value b=X/'8 for the structural 
factor. Four cases have been considered for the dynamic 
parameter •,i• corresponding to cases marked one to four 
in Table I. 

The curves for vdV•. have been plotted in Fig. 5 for 
these four cases as functions of f/ft. 

TABLE I. 

Case 0,11 0-22 0-12 "yll "y22 "y12 gl •2 

1 0.610 0.305 0.043 0.500 0.500 0 0.812 1.674 
2 0.610 0.305 0.043 0.666 0.333 0 0.984 1.203 
3 0.610 0.305 0.043 0.800 0.200 0 0.650 1.339 
4 0.610 0.305 0.043 0.650 0.650 --0.150 0.909 2.399 
5 0.500 0.500 0 0.500 0.500 0 1.000 1.000 
6 0.740 0.185 0.037 0.500 0.500 0 0.672 2.736 
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We may then write 

L• f E• 
.... (E•+x/E•+E•). (5.26) 
x• f•q2 

This expression L•/xa is a nondimensional representa- 
tion of the attenuation factor l l, l' such that the wave 
amplitude as a function of the distance x is proportional 
to exp[-IX, Ix_-]. It is plotted as a function of f/f, in 
Fig. 6 for cases 1 to 4 of Table I. According to expression 
(7.17) in reference 1 the attenuation coefficient Lr/xa 
tends to zero like (fife) 2. For large values of the 
frequency, using the asymptotic value Eqs. (5.20), 
(5.21) we find 

--= . (5.27) 
Xa •222 •'11•22• •122 

The attenuation coefficient is proportional to ¾/f. It 
will be noted that the increase of the attenuation factor 

with frequency is due to the increase of the apparent 
viscosity with frequency, i.e., the fact that F(K) is not 
constant but becomes proportional to K. If we had 
assumed the Poiseuille law to be valid at very high 
frequency, we would have found that the attentuation 
factors tend toward a constant value instead of in- 

creasing. 
We shall also consider another quite significant 

quantity, namely, the attenuation coefficient per cycle 
instead of per unit distance. This quantity is 2•r[ lil/ 
I/r[. Per cycle, the wave amplitudes is multiplied by 

e -2'•1•'1/1•1 . (5.28) 

2•r = (5.29) o 

[•1 E,+ (E/+E?)• 

We find 

This quantity is plotted in Fig. 7 for cases 1 to 4 of 
Table I. It is seen that the attenuation per cycle is zero 
at zero frequency, goes through a maximum, and tends 
to zero again at high frequency. The value near f=0 is 

(5.30) 

Fro. 6. Attenua- 
tion coefficient of 
rotational waves. 

Lr 
Xa 

.4 

o 2 4 6 8 I0 
f/fc 

Fic. 7. Attenua- 

tion per cycle of 
rotational waves. 

2TT(li/Ir) 

2 4 6 8 io 
f/fc 

while for large f it becomes 

27r - 2 •22(•n•2-•2 •) . (5.31) 
It vanishes like 1/x/f. Finally, it remains to investigate 
the group velocity of the rotational waves. This group 
velocity is given by 

da 

vg•=--. (5.32) 
dlll 

Now, 

Hence, 

--= I I•l. (5.33) 

d[l, d(•) (5.34) da da 

Introducing the reference velocity V,., this may be 
written 

(}) ß d 

The nondimensional group velocity variable vg,/V, may 
be calculated from the foregoing dispersion curve v,./V, 
by taking derivatives with respect to f/fc. This was 
done analytically by using the formulas derived above 
for v,/V,. In so doing, it is noted that the derivative of 
T(g) Esee Eq. (3.16)-] which appears in these expressions 
may be written as follows if we take into account the 
properties of the Bessel functions. 

With Jo=Jo(ilg), we write 

1 dJo 
T(k) =-- •. (5.36) 

J0 d• 
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1.30 

!.20 

i.!0 

!.00 
0 2 4 6 8 I0 

f/fc 

6. PROPAGATION OF DILATATIONAL WAVES 

Since we have the identity 

we derive 

d2Jo 1 df o 

Propagation of dilatational waves in the low-fre- 
quency range are governed by Eqs. (7.1) of reference 1. 
To extend them to the full-frequency range we proceed 
as for rotational waves by multiplying the resistance 
coefficient by the frequency correction factor F(K). 
These equations become 

02 0 

FIO. 8. Group ve- w(Pe+pQ ]ocity vgr of rota- -- 
tional waves. 

•-• .... if0=0, (5.37) 

dT 1 
--- -- T2---T-3-i. (5.38) 

The group velocity curves in the nondimensional 
form vgr/V• have been plotted in Fig. 8 for cases 1 to 4 
of Table I. 

All foregoing cases have been computed for a value of 
the structural factor/5= X/8 considered to be an average 
value. In an extreme case of slit-like pores and a sinuos- 
ity factor •=1, we would have /5= (16/3)• [see Eq. 
(4.32)•. In order to investigate the effect of the struc- 
tural factor on the dispersion and attenuation of rota- 
tional waves, cases 1 to 4 of Table I were computed 
with the value /5=(16/3)-I and compared with the 
curves for/5=x/8. Velocity curves vr/V• and attenua- 
tion curves L•/xa are plotted in Figs. 9 and 10 for 
both values of/5. Comparison of the curves shows that 
the structural factor/5 is not a very significant param- 
eter. 

V•r 

i.20 

i.15 

I.!0 

2 4 6 8 I0 
f/fc 

Fro. 9. Phase ve- 
locity vr of rota- 
tional waves for two 
values of the struc- 
tural factor & 

1.05 

1.00 
0 

02 0 

W(Qe + R,) = •t • (p 12e + p22,) - bF (•)--(e-- e). Ot 

(6.1) 

In these equations PQR represent elastic coefficients e 
and e are the divergence of the solid and fluid displace- 
ments. A solution of the type 

e=C1 exp•i(lx+at)'] 
(6.2) 

,-- C2 exp•i (lx+at)'] 

Lr 

.2O 

.10 

0 2 4 6 8 i0 
f/fc 

Fro. 10. Attenua- 
tion coefficient of 
rotational waves for 
two values of the 
structural factor & 

leads to a characteristic equation for F/a 2 which may 
be written 

where 

ib 

+ (TnT•.•.--T12)2+--F(,)(z-- 1) =0, (6.3) 
ap 

P R Q 
0'11--- • (Y22--- • (Y12--- • 

H=P+R+2Q 

l 2 
g.----Ve 2 

// 
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The velocity Vc already introduced in reference 1 
represents the velocity of a dilatational wave when the 
relative motion between fluid and solid is prevented. If 
we put b=0, i.e., in the absence of friction, Eq. (6.3) 
has two positive roots 

z•= V,•/V• • z•.= VdV•. •, (6.4) 

where V• and V•. are the velocities of the purely elastic 
waves. Equation (6.3) may also be written 

with 
(z--zO (z-z•)+iM(z-- 1)=0, (6.5) 

M- (6.6) ß 

fillfie2-- 0'12 2 

The quantities • and •. are functions of the frequency 
ratio f/fc and (•.+722) as defined by Eqs. (5.8) 
and (5.9). 

In the numerical discussion which follows curves have 

been plotted as function of f/f, for values of v•j and 
•o given in Table I, and for a value /5=x/8 of the 
structural parameter. 

We now compute the complex g-roots of Eq. (6.5) 
and denote the roots by zr and zrz. We then evaluate 

(6.7) 
v/m= 6l•+ •rni. 

One of the roots tends to unity for M= m, the other 
tends to infinity. We denote by z• the root which tends 
to unity. The phase velocities are given by 

•)I 

vrr 1 
ß 

(6.8) 

These quantities may be plotted as function of f/f,. 
The velocity v• tends to V, for zero frequency and corre- 
sponds to a wave of the first kind. The velocity v•r goes 
to zero as x/'f and corresponds to a wave of the second 
kind. The behavior of the waves in the vicinity of zero 
frequency was discussed in detail in reference 1. The 
wave of the first kind is one in which the fluid and the 

solid tend to move in phase. The dispersion of these 
waves in the vicinity of zero frequency is small. The 
wave of the second kind is one for which the solid and 

the fluid tend to move in opposite phase. In the vicinity 
of zero frequency it behaves like a diffusion process. 

If we consider now the case of large frequency the 
roots •z and •t tend towards 

gI•' gl 

(6.9) 

Hence, the phase velocities vz and v•z tend toward the 
velocities found in case the fluid has no viscosity, 

Fio. 11. Phase ve- 

locity vt of dila- 
tational waves of 
the first kind. 

v! 

1.16 

1.12 

1.08 

1.04 

1.00 
0 2 • 6 8 I0 

f/fc 

namely, 
•I= V1 

(6.10) 
•)II = g 2. 

The nondimensional phase velocities v•/V, and 
for the waves of the first and second kind are plotted in 
Figs. 11 and 12, for the six cases of Table I. 

We now call our attention to the attenuation of these 

waves. Again we introduce distances x• and x• for which 
the wave amplitude is multiplied by 1/e. With a char- 
acteristic distance defined as, 

V½ 

L• 2•rf• (6.11) 
the attenuation of each wave is given by 

/,, f 

L, f 
--= I 
ß II f½ 

(6.12) 

These expressions are plotted in Figs. 13 and 14 as 
function of f/f, for the six cases of Table I. We have 
already investigated the behavior of these curves at 
small frequencies in the previous paper. It was found 
that for the waves of the first kind the attenuation 

factor varies like f2 while for the waves of the second 
kind it varies like x/f. 

FIG. 12. Phase ve- 

locity vtt of dilata- 
tional waves of the 
second kind. 

0 2 4 6 8 I0 
f/fc 
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Fro. 13. Attenua- 
tion coefficient of 
dilatational waves of 
the first kind. 
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Fro. 15. Attenua- 

tion per cycle of 
dilatational waves of 
the first kind. 

Let us now investigate the asymptotic value of the 
attenuation for large f. This amounts to calculating the 
roots of Eq. (6.5) for small values of M. We find 

iM z•-- 1 

2(zO•z•-z•. 

iM z•,-- 1 
(zO . 

2 (z•,)• z•-z• 

(6.13) 

We derive the expression for 61z and 61z• with the 
asymptotic approximations 

(6.14) 
We find the attenuations for large f, 

Lc (71•.+7•,•,) (1- Zl) XI 4 (0'110'22-- 0'122) (Z1) « (Z2-- Z1) 

-- o 

(6.15) 

.B 

.3 

0 2 4 6 8 I0 
f/fc 

Fto. 14. Attenua- 
tion coefficient of 
dilatational waves of 
the second kind. 

We see that the attenuations increase like V'f at large 
frequency. 

As in the case of the rotational waves we also evaluate 

the attenuation per cycle. We have 

V½ 
(zz) l=--(la--F liz) = 61z--F 

V½ 
(/az+/az) = 61.zz+ T•zi. 

(6.16) 

The attenuation per cycle for each wave is 

I/at[ 
2•, 

(6.17) 

for the waves of the first and second kind, respectively. 
These values are plotted as functions of f/fc (with 
/•--x/'8) for the six cases of Table I in Figs. 15 and 16. 

In the vicinity of f=0, putting 

li= 
Ir E 

5 

0 2 4 6 8 I0 
f/fc 

Fro. 16. Attenua- 

tion per cycle of 
dilatational waves of 
the second kind. 
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FIG. 17. Group ve- 
locity vo• of dilata- 
tional waves of the 
first kind. 

Vgz 
Vc 
1.16 

1.12 

1.08 

1.04 

1.00 
0 2 4 f/fc 6 8 I0 

we have for the wave of the first kind' 

with 

i 
(z•)• %+%i 1+• = = •'ffz (6.18) 

M 

(6.19) 
and for the wave of the second kind' 

(zrr) l= 6try-+- •F•i= (--i)l( 'y•2+'y22 f___)l. (6.20) 

The attenuation per cycle near f-0 is for the waves of 
the first and second kind, respectively. 

2•r =2r. 

llm[ 

(6.21) 

The first one vanishes as f near f=0 and the second 
goes to a constant 2•r. The latter case as we have seen 
corresponds to diffusion waves. Asymptotic values of 
the attenuation per cycle at large frequencies are de- 
rived from the asymptotic expressions (6.13). For 

Fro. 18. Group ve- 
locity vo• of dilata- 
tional waves of the 
second kind. 
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(zr) • and (z•) •, we find 

27r 

(6.22) 

We conclude that for waves of both kinds the attenua- 

tion per cycle vanishes as 1/x/f. The attenuation per 
cycle for the waves of the first kind, therefore, goes 
through a maximum as seen also from Fig. 15. 

It remains to evaluate the group velocity of the two 
dilatational waves. Proceeding as for the rotational 
waves in the previous section, we write for the group 
velocity rot and vorr of the waves of first and second kind 

Vc d 

Vc d 

•)olI 

(6.23) 

The nondimensional group velocity variables v•/Vc and 
v•r•/Vc are plotted in Figs. 17 and 18 for the six cases of 
Table I. 
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