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Theory of Viscous Buckling of Multilayered Fluids Undergoing Finite Strain
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The equations of fluid mechanics are applied to the problem of small perturbations upon a finite
initial strain-rate of a viscous fluid. The magnitude of the viscosity is such that inertia forces are
negligible. General solutions are developed for the time history of buckling of a fluid with an arbi-
trary number of layers of different viscosities under finite compressive deformation. The effect of
gravity is taken into account. Numerical solutions are derived for the single layer. Results are com-
pared with values obtained from the theory of elasticity and viscoelasticity. The interest of the
theory lies in its application to problems of folding of geological structures.

1. INTRODUCTION

HE theory of stability of multilayered continua

has been developed by the writer in several
papers. In particular, for an incompressible medium
the problem was treated extensively for the em-
bedded layer'” and for the system with an arbitrary
number of layers.’"* Slow motion is assumed so that
inertia, forces may be excluded. The theory is
rigorously applicable to elastic and viscoelastic
media initially at rest. Its application to a viscous
fluid which is initially in a state of flow involves
an approximation which is valid provided the total
deformation remains small.

The purpose of the present paper is to develop
a theory of stability for incompressible viscous fluids
which is rigorously valid for a large compressive
deformation. We assume, therefore, that a small
perturbation is superposed upon an initial state of
flow with arbitrary finite strain.

Sections 2 and 3 derive the time-dependent finite
strain in a viscous fluid under uniform constant
stress, and bring out the existence of an apparent
instability of purely kinematic origin. In Secs. 4 and
5 it is shown how a perturbation field of a fluid plate
initially in a state of flow may be evaluated by
introducing fictitious tangential stresses at the
boundary. The viscous buckling of an isolated plate
as a function of time is evaluated numerically.
In Sec. 6 these results are applied to formulate the
general differential equations for the time history
of buckling of a multilayered visecous fluid. The
effect of gravity is included. The equations are
applied to the case of a single layer embedded in
an infinite medium. It is also pointed out that the
equations are applicable in the general case where

! M. A. Biot, Quart. J. Appl. Math, 27, 185 (1959).
(19:3%\/)[. A. Biot and H. Ode, Quart. J. Appl. Math, 19, 351

s M. A. Biot, J. Franklin Inst. 276, 128 (1963).

¢+ M. A. Biot, J. Franklin Inst. 276, 231 (1963).

the initial strain-rate is three-dimensional and time-
dependent.

While the mathematical form of the equations is
fundamentally different from those derived for the
corresponding theories of elasticity and visco-
elasticity it is found that the numerical solutions
become the same as those for the viscous fluid
when the instability is of significant magnitude.

The interest of the present theory resides in its
application to a large class of problems of tectonie
folding of stratified geological structures.

2. CONSTANT STRAIN-RATE IN A
VISCOUS FLUID

Consider the plane motion of an incompressible
fluid of high viscosity . We assume the motion
to be slow so that the inertia forces are negligible.

The velocity components v, and v, in the (z, )
plane satisfy the Navier—Stokes equations.

9V, + 36/ = 0, V7%, + d¢/dy = 0, (2.1
where ¢ is the negative pressure. Incompressibility
is expressed by the equation ‘

dv,/ox + dv,/oy = 0. (2.2)

Assuming Newtonian viscosity the stress components
O.zy Oyy, and o, are related to the velocity gradients
by the equations

0, — 0 = 29 d,/0x, ¢, — o = 29 &,/9y,

a-zy = n(avy/ax + avz/ay)

A state of uniform constant stress, o,. = Sy,
Oy = Sas, 0., = 0, produces constant strain-rates.
Combining Eqgs. (2.2) and (2.3) these strain-rates
are found to be

—dv,/dxr = 0v,/0y = P

2.3)

24
with
Po = P/4n, (2.5)

Consider z and y to be the coordinates of a fluid

P = Szz - Sn-

855
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(b)

Fie. 1. Kinematic instability due to a uniform
strain-rate.

particle and z, ¥ their time derivatives. Equations
(2.4) may be written

—&/z = §/y = po. (2.6)

Hence by integration

Dot

z = xee ™", y =y, (2.7

with z,, y, representing the particle coordinate at
t = 0. Considering this flow from the viewpoint
of finite strain we may define two extension ratios,

2.8

—~Pol

A o= 2/t = e 7, e = y/yo = €.

The value P of the stress is the “effective’” compres-
sion, Without loss of generality we may put 8., = 0.
This is a consequence of the fact that we may always
cancel S;, by adding or subtracting an over-all
hydrostatic pressure without altering the mechanics
of the deformation.

3. KINEMATIC INSTABILITY

An interesting consequence of the foregoing result
is an apparent instability which is of purely kine-
matic origin. Consider the case of a fluid undergoing
a plane-strain deformation under a uniform compres-
sion P = —§8,,. A rectangular region of this fluid
at t=0is shown in Fig. 1(a). We imagine a sinusoidal
line to be drawn in the fluid along the direction
of P. After a time ¢ the fluid has been squeezed in
this direction and the corresponding compressive
strain is measured by the extension ratio A, =
exp (—pot). In the direction normal to the com-
pression the expansion measured by the extension
ratio A; = exp (p.). The sinusoidal line has followed
the motion of the fluid particles and is now com-
pressed accordionwise in the direction of the com-
pression and has been stretched in the normal
direction as shown in Fig. i(b). The stretching is
proportional to the increasing exponential function
of time A, = exp (pot) and exhibits the mathematical
features of an instability.
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Such instability is of eourse spurious and of purely
kinematic nature. It requires a considerable amount
of compressive strain before it becomes significant.

4, BOUNDARY CONDITION

Consider again a plane strain deformation under
the constant compression P. Let us consider the
wavy line in Fig. 1 as a boundary where the fluid
medium lies in the region below this line. In order
to maintain an undisturbed steady flow we must
apply tangential and normal stresses at the boundary
as shown in Fig. 2. The z axis is oriented in the
same direction at the compression P. The ordinate
of the boundary is denoted by wu, and its slope
a = du,/dx is assumed to be small. Hence the
boundary stresses are

012 = P du,/dzx, (4.1)

Oas = 0.

Let us superimpose an instantaneous velocity field,
of components v, and v, at the boundary. This
produces additional boundary stresses &,» and ...
The total stresses are

4.2)

The important point about these additional stresses
is that they are determined entirely by substituting
the additional velocity field into the Navier-Stokes
equations (2.1)-(2.3). This is a consequence of the
fact that these equations are linear and therefore
the stresses &, and &, may be evaluated as if the
fluid were tnittally at rest and unstressed.

Consider the z axis to represent a plane of fluid
particles in the undisturbed steady state. We assume
the disturbance to be sinusoidally distributed along
z. The shape of the deformed boundary is

O12 = G1g T Pauy/a.'b, Osp = 3.

u, = V cos lzx (4.3)
and the boundary stresses are written
o, = 78In Iz, G2 = Tsin lz, (4.4)
022 = q cos lz, Goz = G cos lx.
Equations (4.2) become
T =7%-—PlV, qg=d. (4.5)
F16. 2, Normal and
tangential stresses at I SR

the boundary.
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The velocity disturbances at the boundary are also
distributed sinusoidally and written

4.6)

We now use an important kinematic relation for
the time derivative %, of w,. The quantity %, rep-
resents the velocity of the fluid particle at the
boundary measured relatively to the moving z axis.
This velocity is equal to

v, = U’'sin Iz v, = V’ cos lz.
1 ¥

4.7

The term pqu, represents the additional velocity
due to the initial strain rate (2.6). By substituting
into Eq. (4.7) the sinusoidal distributions (4.3) and
(4.6), we obtain

V=V — V.
5. VISCOUS BUCKLING OF A FLUID PLATE

Uy, = Uy + Dolly.

4.8)

We now apply the foregoing results to a viscous
fluid plate undergoing a plane-strain deformation
under a compressive stress P acting along the axis
of the plate. The initial thickness of the plate at
the time ¢t = 0 is h,. (Fig. 3). At the time ¢ the
thickness has become

ho= he™t. (5.1

Consider the plate to have a slight initial waviness
which is the same on top and bottom and is sinusoi-
dally distributed along z. This corresponds to a
plate deformation of the flexural type, hence anti-
symmetric with respect to its axis. The initial
wavelength of this deformation is L,. At time ¢
the wavelength has become

l; = lzoe—po‘- (5'23

The deformation of the upper surface of the plate
is represented by the sinusoidal distribution (4.3)
of the ordinate w, of the surface with

! = 2/L. (5.3)

Both V and ! are functions of time. The z axis
is chosen to coincide with the moving but un-
deformed plane boundary of the plate in the initial
state of steady flow.

The surface in this case is assumed to be free.
Hence the boundary condition is + = ¢ = 0. With
these values Egs. (4.5) become

7 = PIV, 5.4

The stresses 7 and § are the stresses due to the
perturbation velocities at the top boundary. These
velocities are sinusoidally distributed and expressed
by Egs. (4.6). The values of U’ and V' are completely

g =0.
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L/2

Fie. 3. Buckling of a viscous fluid plate.

determined by the surface stresses 7+ and §. They
are obtained by solving the Navier-Stokes equations
(2.1) for a fluid plate of thickness h initially at
rest and with the boundary stresses given by (5.4).

This problem is the same as for an elastic plate
of incompressible isotropic material free of initial
stress. The displacements are replaced by the
velocities and the elastic modulus by the viscosity
coefficient. The problem was solved in an earlier
paper.’ For antisymmetric deformation the solution
is written

'7'/"7l = auU/ + a12V/, Q/"ll = auU’ + a V. (55)

The coefficients are

o = 4 cosh® v 0. = 4y
11 = ’ 12 = T o L 0.0
sinh 2y + 2y sinh 2y + 2y (5.6)
0 = 4 sinh® y
2" sinh 2y + 2y’
with a nondimensional wavelength parameter
v = %lh = 7h/L. 5.7

According to Egs. (5.2) and (5.3) it is a function
of time. We write

2pot

¥ =", k = whg/ L. (5.8)

By introducing the values (5.4) and substituting
P/n = 4p,, Eqgs. (5.5) become

an U + a, V' = 4p.V, a, U + a2V = 0. (5.9)

We eliminate U’ from these two equations and
substitute the value (4.8) for V’. This yields the
ordinary differential equation

V/V = 4yp,/(sinh 2y — 2y) + po.  (5.10)

Since v is a function of time, the integral is obtained
by quadrature. We write

V/V, = A(p)e™' (5.11)
with
_ [ 4wy
logd = [ oot a (512)
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Fre. 4. Stability parameter for a plate derived from
(1) viscous fluid theory, (2) thin elastic plate theory, and
(3) the theory of elasticity.

The initial value of V at ¢ = 0 is denoted by V,
[see Fig. 3].

The amplification factor A(f) represents an
intrinsic tnstability. 1t is superposed on the kinematic
instability represented by the factor exp (p.t). For
the purpose of comparison with other theories it is
useful to put

A = exp <f P dt). (5.13)
0
We may then write
2 _ P _ 1 . -
¢ = p o= 2 (sinh 2y — 2y). (5.14)

The quantity p represents an instantaneous rate
of amplification of the plate deflection.

For wavelengths which are sufficiently large in
comparison with the thickness the value of v is
small and we may write approximately

&= (5.15)
This value is the same as obtained from the Euler
theory of buckling of a thin elastic plate by re-
placing the elastic modulus by the corresponding
operator np.'"*

The exact value (5.14) of { is plotted as curve 1
in Fig. 4. The approximate value (5.15) is plotted
as curve 2. We have also plotted the value of ¢
derived in an earlier paper* from the exact theory
of stability of an elastic continuum under initial
stress and applying the principle of viscoelastic
correspondence (curve 3).

It is seen that all three values are practically
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identical for v < 0.3 hence for wavelengths larger
than about ten times the thickness.

The intrinsic amplification A (f) may be obtained
by evaluating the integral (5.12). Since dy = 2pyy dt
we may use v as variable of integration. We derive

log A = 4-3; F(2) — 1—5 Fy  (5.16)
with
Foy =4t [ =% G
. sinh§ — ¢
= who/Ls . (5.18)

The parameter « is the initial value of y. Numerical
values of the function F(x) are given in Table I.

TasrE 1. Values of F(z) from Eq. (5.17).

z F(z) T F(z)
0.10 0.9960 1.0 0.8297
0.2 0.9868 1.2 0.7802
0.3 0.9739 1.4 0.7297
0.4 0.9582 1.6 0.6793
0.5 0.9403 1.8 0.6295
0.6 0.9206 2.0 0.5810
0.7 0.8994 3.0 0.3694
0.8 0.8770 4.0 0.2200
0.9 0.8537 8.0 0.0410

Intrinsic Surface Stability of a Viscous Fluid

The foregoing results may be applied to a viseous
plate of infinite thickness. In this limiting case the
problem becomes one of surface stability of a viscous
half-space. This case is obtained by putting vy = o
in Eq. (5.12). We derive

log 4 = 0. (5.19)

Hence when inertia and body forces are neglected
there is no intrinsic first order instability of the
surface of a viscous fluid. The amplification in this
case is reduced to the factor exp (pot), which rep-
resents a purely kinematic effect.

This is in contrast with the case of an elastic
medium or a medium approximately at rest initially
and purely viscous for incremental deformations.
In the latter case, which resembles plastic behavior,
it was shown by the writer that surface instability
is present' and will cause surface wrinkling.

6. VISCOUS BUCKLING OF A MULTILAYERED
FLUID

We first consider an isolated layer of thickness h.
We again assume a deformation sinusoidally dis-



VISCOUS BUCKLING OF

tributed along the axis but this time it is not re-
stricted to the case where it is antisymmetric across
the thickness. Hence both flexure and variation in
thickness of the layer are taken into account.

We must consider values at both top and bottom
surface of the plate for the applied stresses = and g,
the perturbation stresses ¥ and g, the perturbation
velocities U’ and V' and the normal displacement
V. We attach a subseript 1 to the variables at the
top face and a subscript 2 for the variables at the
bottom face.

The four perturbation stresses 7,, ¢, 72, and g
are due entirely to the perturbation velocities U/, V7,
U;, and V] at the two faces. The relation between
these quantities has been derived in a previous
paper in the context of the theory of elasticity.’
It may be immediately extended to the case of a
fluid by replacing the elastic modulus by the viseos-
ity coeflicient and the displacements by velocities.
We must introduce the six coefficients

A = 3(an + biy), D = ¥(a,; — buy),
B = }(a:; + ba), E = $a, — bw), 8.1)
C= %(azz + bzz); F = %(azz - bzz)-

The values of @i, a2, and a,, were already given
by Egs. (5.6). The other three coefficients were
derived earlier.* They are

b, = _4sink’y [ — Ay
M sinh 2y — 2y’ P sinh 2y — 2y’ ©6.2)
_ _dcosh’y
7 sinh 2y — 2y

We also introduce a quadratic function I of the
four perturbation velocities. We write

VAP +
e +

I= Uy) ~ DU
+ V) + FVIVY
+ B(U{Vi — UV + EUIV; — UsV).  (6.3)

Relations between perturbation stresses and veloc-
ities may then be expressed in very compact form,
as shown in some previous papers.’'* These relations

are
o= Iy = o T, = —1y oL
L ) 2 - 7
3U1 aUz (6.4:)
Gy, = { al Fo = — 1 _QL.
@ N 3T a9 1 + g2 = N av;

From Eq. (4.5) the applied stresses are
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L
S I T
Ta
'r)n 1
Fra. 5. System of n fluid layers with initial
compressive stress Pj.
N F - TR L R U
1 2 (6.5)
_, 9l _
TV L= Ty

Consider now a system of n layers (Fig. 5). The
layer numbered j has a thickness h;, a viscosity 1;,
and an initial stress P;. We denote by the subsecript
7 the values of velocities and stresses at the top
face of this layer and by the subscript j 4+ 1 the
values at the bottom face. The quadratic function
I, attached to the layer § is obtained from Eq. (6.3)
by writing subseripts j and j + 1 instead of 1 and
2, and replacing v by v; = ifh; in the values of
the coefficients. We now equate the stresses r and
g in two adjacent layers j and j 4 1 at an interface.
We find

(771[ + N1 a+1) Hl - Pi)Viy

U/ 6.6)

6V7+ (7? I + Bis1 1+]) = O

If the layers are embedded between two viscous
half-spaces we consider them as layers of infinite
thickness denoted by the subseripts 0 and n + 1.
Putting v = o the quadratic functions representing
the half-spaces are drastieally simplified to

I = 20U + V), L= 2U% + Vi) (6.7)

Still more compact expression for the equation are
obtained by using the total quadratic form

n+l

= Z;) n:l; (6-8)
Equations (6.6) are then written
88/9U = (Pivy — P)V,, 0/0Vi = 0. (6.9)
From Eq. (4.8) the value of V7 is
Vi=V, —pV,. (6.10)

By substituting these values info Eags. (6.9) they
become a system of 2n + 2 linear differential
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equations with the time derivatives V; for the
2n + 2 unknown U/ and V; at the n 4+ 1 interfaces.
The case where the stack of layers is free at one
end or both is derived by putting either 5, = 0,
or 7..1 = 0, or both, in the equations.
Note that by Eq. (2.5) we may also write

(6.11)

Integration of the linear system (6.9) yields the
time history of visecous buckling of the multilayered
fluid. The coefficients of the equations are those
of the quadratic functions I,.. They are functions of
time through the variables

Py — P; = 4po(niea ~ m5).

2pot

vi = 3lh; = ™, (6.12)

where «; represents the value of 3lh; at the time ¢ = 0.

The effect of gravity on the stability may be
added by using exactly the same method as in the
case of elastic media which amounts to using an
analog model, replacing the effect of gravity by
interfacial buoyancy forces.* If we include these
gravity forces, Egs. (6.9) become

9 s pyv 99 ., 6§ _
U, = B = BIVe gprdgy =0 619
where

1 n
§=5 Z (pis1 — Pi)gV?n (6.14)
20 =

p; is the density of jth layer, and g is the aceeleration
of gravity. Further simplification of these equations
is obtained by introducing variables u; v; through
the relations

V,' = D,‘@D“, U,, = 1‘1,‘6’“‘- (615)
We derive
Vi=V,~pV, = (6.16)

By substituting these values in equations (6.13) the
factor exp (pot) cancels out. They become

9g"

abin

b,e”"
et

og’ 4
8 - (P - Py;, 2
o, ;44

]

(6.17)

The quadratic form 9’ is obtained from g by replacing
U’ and V! by u; and v,. Similarly ¢’ is obtained
from G by substituting v, instead of V. The new
variables u; and b; represent the intrinsic instability
since the factor exp(pef) corresponding to the
kinematic effect has been eliminated.

Analog Model

Attention is called to the physical significance
of Eq. (6.17). They correspond to an analog model

BIOT

where the interfacial velocities u; and v, are the
same as for a fluid at rest in a given instantaneous
configuration under the action of tangential and

vertical forces represented by the right side of
Eqgs. (6.17).

Single Embedded Layer

As an example consider a single layer of thickness
h viscosity n and stress P embedded between two
fluid half-spaces of viscosity #, and stress P, (Fig. 6).

%n' i Z

SR

Zn‘ _>Pl<_ Z
7

Fig. 6. Layer embedded in an infinite
medium.

The buckling is of the flexural type. Gravity forces
are neglected. Using Eqgs. (4.5) with the values (5.5)
for 7 and § we derive for the stresses at the top
face of the layer

2, U’ + a,,V’) — PIV,
nl(amU' + asz,)-

T =

(6.18)
q =

On the other hand the stresses in the upper half-space
at the interface are obtained by considering the
bottom surface of a layer of infinite thickness. This
amounts to putting ¥y = o and changing the sign
of g and U’ in Eq. (6.18). We derive

T = —2nIU" — PV, g= —291lV’'. (6.19)
Equating the values (6.18) and (6.19) for the stresses
at the interface we find

(o + 20) U’ + na . V' + (P, — P)V = 0,

(6.20)
10U + (n@y: + 29) V' = 0.
As in Eq. (6.15) we put
V = ve™', U' = i’ (6.21)
Substitution in Eq. (6.20) yields
(nary + 2m)it + nab+ Py, — P = 0, 6.22)

Tlalgil + (710/22 + 2771)0 = 0.

By eliminating u we derive the value of the intrinsic
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amplification factor A. We write the result in the
form

t=P/2p p=1vp=A/A (623
The stability parameter is
1 2 .
¢ = T =) [(1 + n°) sinh 2y
+ 2n cosh 2y + (° — 1)2v]. (6.24)

It is a function of v = 1lh and of the ratio of vis-
cosities

n = P,/P = n/n,. (6.25)

For large viscosity contrasts and large wavelengths
(n < 1, y € 1) we find the approximate value

¢= % +n/y (6.26)

This is the same as the value derived by applying
the Euler theory of buckling of thin elastic plates
neglecting interfacial friction and replacing the
elastic moduli p and u, by the corresponding op-
erators qp and 7,p.""*

The value of v for which { is a minumum defines
the “dominant” or buckling wavelength. It is
defined as the wavelength whose amplitude increases
at the fastest rate.’

For large compressive strain we derive

12 7d
log A = fo pdt = [ - 6.27)

This expression yields the intrinsic amplification A
as a funection of time,

¢ M. A. Biot, Proc. Roy. Soc. (London) A242, 444 (1957).
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Generalization to Three-Dimensional and
Variable Initial Strain-Rate

In the foregoing analysis it was assumed for the
sake of simplicity that the initial strain-rate is
constant and two-dimensional. However the results
may be readily extended to more general conditions
provided we retain the assumption that the perturba-
tion remains two-dimensional.

For three-dimensional initial strain-rate in the jth
layer we write

P; = 8y — Sii) = 29,(po + pi),  (6.28)

where the finite strains are

A= exb {—fo‘ Y HO) dti!, A, = exp [fo' polt) dt}.

(6.29)

The strain-rates p, and p) may now be arbitrary
functions of time. The value of v, is

i = kAN = K €xp [ f o + ) dt} (6.30)
o
and expression (6.11) is replaced by
P — P; = 2 ~ 1)Do + o),

which is now a function of time.

With these definitions the differential equations
retain the same form as for the case of two-dimen-
sional and constant initial strain-rate.

In the absence of gravity forces, attention is called
to the possibility of simplifying the differential
equations by using AA\;' as independent variable
instead of the time. This was already illustrated
by Egs. (5.16) and (6.27).

(6.31)



