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Validity of Thin-Plate Theory in Dynamic Viscoelasticity* 

M. A. B•or 

300 Central Park West, New York, New York 10024 

AND 

F. V. POHLE 

Adelphi University, Garden City, New York 
(Received 17 October 1963) 

Resonance damping for a vibrating plate is investigated both according to the exact equations of dynamical 
viscoelasticity and the classical thin-plate equations derived in mechanics of materials. The plate is assumed 
as isotropic and homogeneous and no shear- or rotatory-inertia corrections have been included in the thin- 
plate approximations. Two types of materials are investigated that correspond to real and complex values 
of the bulk modulus. For each case, the complex shear modulus is t•(lq-ig) and values of g up to 0.10 were 
used in the calculations. The two theories are in excellent agreement in a range of wavelengths as low as 
about ten times the thickness. It is found that thin-plate theory evaluates the damping more accurately 
than it does the static rigidity. 
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coefficients in Eq. (3) 

E(xq- 2tz)/p] '• 
= e•,•q- ey u Rp 
=Ou/Ox 
= (1/2) (Ou/Oy+Ov/Ox) R/R 
=Ov/Oy 
Young's modulus Rp/l•p 
= 4u(X+u)/(X+ 2u) 
damping constant in shear modulus t 
measure of the damping, exact theory u 
measure of the damping, plate theory 
thickness of the plate v 

bulk modulus= Xq- (2/3)u U, V 
wavenumber, Eq. (8) x, y 
wavelength (œ/h= r/'•) 
•q-iG (exact theory) 
•pq-iGp (plate theory) 
ratio of static load to static displacement, 
exact theory 0 

complex ratio of load to dynamic displace- 
ment, exact theory 
ratio of static load to static displacement, 
plate theory 
complex ratio of load to dynamic displace- 
ment, plate theory 
-1/(eq-iG), amplification factor at reso- 
nance, exact theory 
= 1/(epq-iGp), amplification factor at reso- 
nance, plate theory 
time 

= Oqv/Ox-Of/Oy, horizontal displacement, 
Fig. (1). 
= 0 qv/Oyq-Of/Ox, vertical displacement, 
Fig. (1). 
displacement amplitudes of u, v, respectively 
horizontal and vertical coordinates, Fig. (1). 
1-- (co•'/c •'l •') 
1- (co•'/c•.•'l •') 
Eq. (24) 
=lh/2 
=ty 
frequency 
=co/c,1 
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exp(x) 

= 2l•e•y 
= 2lzeyyq- Xe 
mass density 
solutions of wave equations, Eqs. (5) 
= E/J2 (1 q- v) •, shear modulus 
= vEil(l+ v) (1-- 2•)•, Lam•'s constant 
- lz (1 q- ig), complex shear modulus 
= (2•/3)[3v/(1- 2r)-ig•, complex Lam•'s 
constant for material 1. 
Poisson's ratio 

Laplace's operator, in rectangular co- 
ordinates 

= e x 

INTRODUCTION 

IBRATING structural elements may reach danger- ously large amplitudes at resonant frequencies. In 
the past, the resonant conditions have frequently been 
avoided in the design stages, but in many present-day 
problems this is no longer possible unless heavy weight 
penalties are acceptable. It is therefore necessary to 
introduce damping into the design of the structural 
components to reduce the peak stresses and amplitudes 
and to minimize the problem of fatigue. 

Among the many sources of structural damping, that 
due to viscoelastic dissipation (material damping) is 
considered in this report. The presence of even a small 
amount of damping can have a decisive effect on the 
resonant amplitude and stress levels, and the actual 
reduction is very sensitive to the precise amount of 
damping that is present. 

General studies of three-dimensional viscoelastic 

media have been developed in recent years based upon 
new methods and concepts in linear irreversible thermo- 
dynamics. •-4 In the context of these general theories, a 
correspondence principle and an associated variational 
principle were developed •,5,6 that are of extreme 
generality and are applicable to problems including 
dynamics and anisotropy. They provide a complete 
generalization of the so-called viscoelastic analogy, 

1 M. A. Blot, "Theory of Stress-Strain Relations in Anisotropic 
Viscoelasticity and Relaxation Phenomena," J. Appl. Phys. 25, 
1385-1391 (1954). 

2 M. A. Biot, "Variational Principles in Irreversible Thermo- 
dynamics with Applications to Viscoelasticity," Phys. Rev. 97, 
1463-1469 (1955). 

a M. A. Biot, "Deformation of Viscoelastic Plates Derived from 
Thermodynamics," Phys. Rev. 98, 1869-1870 (1955). 

4 M. A. Biot, "Linear Thermodynamics and the Mechanics of 
Solids," Cornell Aeron. Lab. Rept. No. SA-987-S-6 (June 1958); 
presented as a general lecture at the 3rd U.S. National Congress of 
Applied Mechanics, Brown University, June 1958, and published 
in Proc. Natl. Congr. Appl. Mech., 3rd U.S. (1958). 

5 M. A. Biot, "Dynamics of Viscoelastic Anisotropic Media," in 
Proc. Midwestern Conf. Solid Mech., 4th, Purdue Univ., Purdue 
Engr. Expt. Sta. Publ. No. 129 (Sept. 1955). 

0 M. A. Biot, "Variational and Lagrangian Methods in Visco- 
elasticity," in Proceedings of the Madrid CoIIoquium on Deforma- 
tion and Flow of Solids, September 1955 (Springer-Verlag, Berlin, 
1956). 

which had been developed earlier by Alfrey 7 and was 
restricted to the static stress analysis of isotropic 
incompressible media. 

The generalization to compressible isotropic and 
anisotropic media was derived in a paper by Biot in 
1954.1 In two companion papers by the same author in 
1955, 5,6 the term correspondence principle (or corre- 
spondence rule) was introduced in order to emphasize 
the far-reaching consequences of this development. It 
was pointed out that by this principle a vast body of 
results in the theory of elasticity becomes immediately 
applicable to viscoelasticity, including problems of 
vibrations and wave propagation in materials with 
isotropic or anisotropic properties. 

Applications to the dynamic theory of viscoelastic 
plates were also developed in some detail in the quoted 
papers, *.• along with some general theorems for visco- 
elastic continua derived by variational procedures. This 
general formulation and its extension and generali- 
zations make possible the solution of a large number of 
technically important problems involving plates and 
shells. We consider here an application to problems of 
viscoelastic dissipation in plates. 

Practical engineering needs require the use of simpli- 
fied theories such as the well-known thin-plate approxi- 
mation that is derived in texts on the mechanics of 

materials. It is not clear how accurately theories of this 
type can predict the energy dissipation and resonant 
amplitude due to the viscoelastic nature of the material. 
The elementary theories of the type indicated usually 
predict displacements quite accurately, but stresses 
must be interpreted carefully for design purposes; the 
dissipative effects are an even more sensitive reflection 
of the displacement patterns and, for a proper evalua- 
tion of the effectiveness of simplified theory, it is 
necessary to work out fully a problem by the exact 
equations of dynamic viscoelasticity. The correspond- 
ence principle •,*,• can then be used to determine the 
damping according to the exact theory and the results 
can be compared with those derived from the thin-plate 
theory. In the present application, no shear or rotatory 
inertia corrections have been made to the thin-plate 
equations. 

To carry out this program, a simple but typical 
example is taken that is capable of an exact solution 
by the three-dimensional equations of elasticity; the 
elastic moduli can then be replaced by their complex 
equivalents for the viscoelastic material and the 
dissipation can be calculated. An approximate numerical 
procedure has been devised for the evaluation of 
resonance amplitudes, which eliminates handling of 
complex functions. The thin-plate theory can also be 
applied to the same problem, and a precise comparison 
can then be made to determine the validity of the 
thin-plate approximations. The procedure to be used 

7T. Alfrey, "Non-Homogeneous Stress in Viscoelasticity," 
Quart. Appl. Math. 2, 113-119 (1944). 
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subsequently in this paper begins with the exact 
elasticity equations and shows how the thin-plate 
approximation arises as the result of geometric assump- 
tions as to the "thinness" of the plate, and dynamical 
approximations that involve characteristic times of the 
applied sinusoidal loads and the velocities of the 
elastic waves in the plate. 

The object of such comparisons is to arrive at the 
simplest technologically useful governing equations for 
use in more realistic situations. 

The general problem of energy-dissipation mecha- 
nisms in structures has been considered by Lazan, 8,ø 
with a discussion of various engineering measures of 
the dissipation. The measurement of the damping has 
been considered by Plunkett•ø; vibrating-reed tests 
have been described by Bland and Lee n and by Horio 
and Onogi 12 that determine the complex moduli of 
given materials. 

Demer la has presented an extensive bibliography in 
the field of material damping up to 1955; a selected 
bibliography TM to 1959 is also available. 

I. SOLUTION BY EXACT EQUATIONS OF 
DYNAMIC VISCOELASTICITY 

The plate, Fig. (1), is assumed to be isotropic and 
homogeneous; -- m < x< m, --h/2_<y<_ q-h/2. The 
motion is assumed to be independent of the coordinates 
z, and the horizontal and vertical coordinates are (x,y), 
as shown in the Figure. 

The stresses in Fig. (1) are denoted by •x,, •yy, and 
displacements at any point (x,y,t) by (u,v); the stress 
amplitudes at the surface are denoted by (q,r). The 
surfaces of the plate are at y=-4-(h/2); additional 
information can be found in the List of Main Symbols. 

Solutions of the dynamical equations of elasticity 
are required that at y= q-(hi2) reduce to 

•,y= q-q cos(/x) exp(icot), 
(1) 

•xu= r sin(/x) exp(icot). 

It is therefore assumed that surface tractions have 

been applied that are periodic along x and also periodic 

8 B. J. Lazan, "Review of Structural Damping Mechanism," 
in WADC-University of Minnesota Conference on Acoustical 
Fatigue, W. J. Trapp and D. M. Forney, Eds., WADC TR 
59-676, pp. 168-184 (Mar. 1961). 

9 B. J. Lazan, "Energy Dissipation Mechanism in Structures, 
with Particular Reference to Material Damping," in Structural 
Damping, J. E. Ruzicks, Ed. (American Society of Mechanical 
Engineers, New York, 1959), pp. 1-34. 

•øR. Plunkett, "Measurement of Damping," in Structural 
Damping, J. E. Ruzicka, Ed. (American Society of Mechanical 
Engineers, New York, 1959), pp. 133-158. 

n D. R. Bland and E. H. Lee, "Calculation of the Complex 
Modulus of Linear Viscoelastic Materials from Vibrating Reed 
Measurements," J. Appl. Phys. 26, 1497-1503 (1955). 

•'• M. Horio and S. Onogi, "Forced Vibration of a Reed as a 
Method of Determining Viscoelasticity," J. Appl. Phys. 22, 977- 
98• 

•a L. J. Demer, "Bibliography of the Material Damping Field," 
(with abstracts and punched-card codings) Univ. Minn. WADC 
TR-56-180 (June 1956). 

Fro. 1. Notations 

for the plate. 

in time. The deformation is antisymmetric with 
respect to the x axis and represents a bending of the 
plate. The displacements are functions of (x,y,t), and 
at y-q- (h/2) it is required that 

u= q- U sin(/x) exp(icot), 
(2) 

v= V cos(/x) exp(icot). 

The surface stresses (q,r) and the surface amplitudes 
(U, V) can be related linearly as 

(r/lt.t) = a11U-4-a12V, 
(al•= a•l) (3) 

(q/lt•) = a•l S-4-a•2 V, 

where u is the shear modulus. The first problem is the 
determination of the a•i coefficients in Eqs. (3). 

It is well-known that the displacements can be 
written in the form 

u= (O•/Ox)- (O•/Oy) and v= (O•/Oy)q-(O•/Ox), (4) 

and, if u and v satisfy the dynamical equations of 
elasticity, then the conditions on • and •k are that these 
functions satisfy the scalar wave equations 

(s) 
where V • is Laplace's operator in rectangular coordinates 
and c1= (u/p) • is the speed of the shear or S wave and 
c•=[-(X+2u)/(p)•l is the speed of the P wave; X is 
Larn6's constant, p is the mass density, and u is the 
shear modulus. In later work, we shall also make use 
of the known relations 

4u(x+u) E E •E 
•=•; ,=•; X= , (6) 

X-+-2u (1-• a ) 2 (1-4- •) (1-4-•) (1- 2•) 

where • is Poisson's ratio and E is Young's modulus. 
The solutions of the wave equation will be taken in 

the form 

la• = fl(O) sin(/x) exp(•t), 
(7) 

la• = f2(O) cos(/x) exp(icot), 

where 

ly=O and '•= lh/2. (8) 

The parameter q, has a fundamental physical signifi- 
cance. It is inversely proportional to the ratio of the 
wavelength œ to the plate thickness. We write 

.e/h= •/% 

where œ is the wavelength of the deformation. Note 
that in the fundamental mode of a freely supported 

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  195.221.196.65 On: Wed, 21 Sep 2016

10:02:23



DYNAMIC V1SCOELASTICITY 1113 

plate the span is represented by œ/2. A value of 0.3 for 
t corresponds to a span of about 5 times the thickness; 
see Fig. 2. We show that this particular value plays 
an important part as a limiting case for the validity of 
the thin-plate theory. 

The functions f• and f2 satisfy the ordinary differ- 
ential equations 

('=d/dO) (9) 

where •2=1-(•o2/c•212) and 1•22=1--(•o2/c2212). The 
appropriate solutions that have the correct evenness 
and oddness conditions for the vertical coordinates are 

f•=A•cosh(#•O) and f•=A•sinh(#•O). (10) 

Thus, the functions (•,•k) are now known in terms of 
(O,x,t) to within arbitrary constants (A•,A2). If the 
results, Eqs. (7), and (10), are used in Eq. (4), u and v 
are known and by (2) U and V can be written as 

U= A •x sinh (fi•t)- A 2 sinh 
(11) 

V=.42 cosh (•)+.4 2• cosh(•). 

The stresses are given by 

(1/l•)tryy = 2eyy-•- (X/u)e, (1/t•)•xj= 2exy, (12) 

where 

and 
e= e•x+ eyj= (au/ax)+ (av/ay) 

e•v = «[(au/ay)+ (av/ax)•. 

Substitution of Eqs. (11) into Eq. (3) leads to the 
load-displacement relations in the form 

(q/lu)= 2A • sinh (/•7)+A •(1+/• •) sinh (/•7), 
(13) 

(r/lu)= --A •(1+/• 2) cosh (/•,)- 2A 2/•2 cosh (•,). 

The coefficients a•j in Eqs. (3)can now be found by 
elimination of A 1, .4 • from among Eqs. (11), (13). The 
results are 

Daii=/•2(1--/•i2), 

Da12= Da2•= 21•11•2 tanh(/g•)-- (lq-B• •') tanh(/g2•), (14) 
D= tanh (/•)--/•8• tanh (/•). 

If only normal surface forces are present on the plate, 
then r=0, q•0, and 

[•11•22 • •122 1 (q/ltz)=[. • .aV. (15) 
Direct substitutions of the a•i from Eq. (14) into (15) 
show that 

al• /g2 (1-/g• 2 ) 

Fro. 2. Deforma- tions of the plate 
for œ= 10h (•,=0.3).. 

Drawn to scale. 
j ,Z'= Ioh j 

Thus, the relationship between the normal-load com- 
ponent q and the displacement component V is known, 
Eq. (15). 

For a purely elastic plate, resonance takes place if 
q=0, r-0. The characteristic equation is derived by 
introducing this condition in Eqs. (13), or, equivalently, 
by putting q=0 in (15). This yields the well-known 
form 

tanh (/g2•)/tanh (/•) = 4/•/•/(1 q-/g•2) • . (16) 

This characteristic equation is a relationship between 
frequency and wavelength that may be represented on a 
plot using the nondimensional variables •=co/c•l and •. 
The physical significance of • becomes evident when it 
is recalled that •o/l is the phase velocity along x. 

In the present analysis, we assume that if the medium 
is elastic--that is if • and X are real--Eq. (16) is 
satisfied. In other words, the frequency is chosen as a 
function of the wavelength in such a way that the plate 
is at resonance. Moreover, the resonant condition is 
assumed to be defined by the lowest-frequency branch 
of Eq. (16). This branch corresponds to bending 
vibrations that degenerate into Rayleigh waves for 
wavelengths smaller than the plate thickness. 

A. Complex Moduli 

To compute the damping at resonance, the moduli t• 
and X are replaced by complex quantities representing 
the viscoelastic properties of the medium. The moduli 
are functions of the imaginary frequency p=ico. The 
values adopted here are those corresponding to the 
resonant frequency. We consider two types of materials' 
one with zero bulk damping, the other with equal values 
of bulk and shear damping. Two values u= } and u= « 
of Poisson's ratio will be assumed. The examples 
treated below are intended as extreme cases in order to 

bracket a range of properties of common materials. 

1. Material I 

This material is purely elastic for volume changes 
and viscoelastic for shear deformation. The shear 

modulus u is replaced by #=u(lq-ig). For a material 
with bulk elasticity, it was shown • that X is replaced by 

•,= K-- (2/3)# (17) 

where K is a real quantity representing the bulk 
modulus. This may also be written as 

•= (2/3)tz[(3v)/(1--2v)--ig•, (18) 

where vis Poisson's ratio for the purely elastic medium. 
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2. Material II 

For a material of the second type, we choose a 
particular case where # and X contain the sam•Complex 
factor; that is, 

#= t•(lq-ig), •= X (1-+-ig). (19) 

The bulk viscoelasticity is then represented by the 
complex modulus 

2 K= (X-+- ate) (1-+- ig). (20) 

General properties of materials of this type were 
discussed in an earlier paper. 6 The term "homogeneous 
spectrum" was used to indicate this property. The 
term uniform spectrum seems preferable and is used in 
this paper. 

Representative values of g for structural materials 
are in the range 0.01 to 0.10, with values 0.25 being 
typical of materials used in solid propellant grains. 

3. Amplification Factor at Resonance 

This factor is the ratio of the dynamic deflection at 
resonance to the static deflection under the same load 

at zero frequency. 
We first evaluate the plate amplitude under dynamic 

conditions. By the correspondence principle, we now 
_ 

replace t• and X by # and X in Eq. (15). The result is 

q/l• = (alla22-a122) V/all, (21) 

or 

q=RV with R= (ltffd11)(d11622--6122). (22) 

The load_q is now a complex quantity •. The complex 
quantities fil, fi2 and the &j also replace fil, fi2 and 
respectively. 

Under static conditions, co= 0 and the static load q8 is 
given by the limiting value of Eq. (15) as fil and:fi2 
approach unity. Hence, 

2/t• (X-+-t•) 
qs=RV with R= (tanM,-sech2•). (23) 

X-+-2t• 

What we are interested in here is the ratio q/q, at 
resonance. We write this ratio as 

qr/q•= l•/R= eq-iG. (24) 

The complex load qr is that given by Eq. (21) at 
resonance; that is, assuming that if we put g=0 Eq. 
(16) is satisfied. As pointed out above, this relates the 
frequency to the wavelength by a curve that is chosen 
to be the lowest-frequency branch of the characteristic 
equation (16). 

The physical significance of the ratio eq-iG is obtained 
by comparing the static deflection V• to the dynamical 
deflection V, under the same load q at resonance, We 

write 

Hence, 

q= RV,, 
:• (25) 

q = R V,.. 

Vd V, = R/R = 1 / (• n t- iG) (26) 

represents the amplification factor at resonance. 
At resonance, R vanishes for a purely elastic medium. 

The quantity G is a measure of the damping and is of the 
order g for small g. The real part • is of the order g2. 
Since g is sufficiently small, only the linear terms are re- 
tained in the analysis and Gig is then independent of 
g. The validity of this approximation is established 
in the numerical analysis of the problem. 

,,.•, II. THIN-PLATE APPROXIMATION 

• :The equation of motion of a thin plate is 
Eh a O4V O2V 

•+oh•= applied load. 
12(1-- v • Ox 4 OF 

(27) 

If V(x,t) in Eq. (27) is assumed as V cos(/x) exp(icot) 
and the applied load as 2qv cos(/x)exp(cot), then Eq. 
(27) becomes 

2qv= --ohw2Vq-[Eha/12(1-- •,•)•14V, (28) 

or, with '•=lh/2 and E/(1--•,2=4t•(Xq-t•)/(Xq-2t•), as 

(q•,/l•)=L3(X+2•/ -• IV. (29) 
In the static case (co= 0), the result is 

(4/3)( Xq-• •,•aV. (q,v/lt•) = \X-+-2u/ (30) 

With q•v denoting the complex load at resonance for 
the viscoelastic thin-plate theory, we set q•v/q•v 
=•vq-iGv, which is the analog of the expression 
(•q-iG) from the exact theory. By the same reasoning 
used in obtaining Eq. (26), we find the amplification 
factor at resonance for the thin plate to be 

Pr•,/V,• 1/(ev+iOv. (31) 

In the present case, we find that 

x[ (32) 1 + (4/9)[ (1 - 2u)/(1 - u) •22j 
or 

1-- •+ •2• Gv/g= (2/3)( •--7 '/ (33) 
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DYNAMIC VISCOELASTICITY 1115 

for g2<<l; however, the exact dependence of Gv/g can 
be computed in this case. If v= «, Gv/g is independent 
of g; if v=•, for example, the multiplying factor is 
1--O.095g2/(l+O. 197g•). If g=-}, this factor is 0.9944; 
at g= «, the factor is 0.96. Hence, the linearized value of 
Gv/g is sufficiently accurate in the case of the thin-plate 
equation. 

A. Thin-Plate Equation as a Limiting Case 
of the Exact Theory 

To show how the exact theory may be used to 
determine the thin-plate equation as a limiting case, 
we return to Eq. (16) a-rid expand the hyperbolic 
tangents to two terms to write the result as 

(q•/lt•)= {-'•(1-• u) 
+-- 2•{•22(1+}•12)2--4}•14-] V. (34) 3 1-•1 

Since •5• 2= 1- (w•c•F), •2 •= 1- (w•c•F), and c• • 
= (t•/o), c22= (X-t-2t•)/•, we may write Eq. (34) as 

2q•= --phw2Vq -• 
14hal• 

12 

x (35) 
If (w2/c•l)<<l and (w•c2212)<(1, since 1--(c•/c2) •' 

=(X+u)/(X+2u), Eq. (35) immediately reduces to 
Eq. (28). The equation of motion of a thin plate can 
therefore be obtained as a limiting form of the exact 
equations, under conditions that require assumptions 
both of a geometric nature as well as of a dynamic 
nature. 

yon Kgrm5n 15 has also treated the problem of 
applying the equations of static elasticity theory 
to obtain a simplified beam equation; the final results 
are the same when proper comparison is made of the 
differences between plane stress and plane strain. 

In the derivation of the thin-plate/load-deflection 
relationship from the exact solution, two terms were 
neglected in comparison with the terms retained. If 
the neglected ter•ms are included in the analysis, the 
results are more complex, but in a typical case (v=-}) 
the previous linearized result of Gv/g= 13/18 becomes 

•4 "Selected Bibliography on Structural Damping" in Structural 
Damping, J. E. Ruzicka, Ed. (American Society of Mechanical 
Engineers, New York,..1959), pp. 159-165. 

•5 T. von Kgrmgn, "Uber die Grundlagen der Balkentheorie," in 
Collected Works I! (Butterworth's Scientific Publications Ltd., 
London, 1956), pp. 153-163. 

Gvg= (13/18)-t-(1/18) (5•2•-1-•2•), where now -•= (9•2•)/ 
(8-5•2•-•2 •) and the Gvg ratio is now a function of -•. 
If we anticipate the numerical results and take f•2= 0.302 
(-•=0.763), then the improved value of Gvg is 0.810, 
as compared with 13/18=0.722. The exact result for 
Gig in this case is 0.813, so that good agreement is 
possible at least up to values of -•= •, or well beyond 
the range of the conventional beam theory, which 
would not be expected to hold much beyond -•=0.30. 

III. NUMERICAL PROCEDURE 

The quantity q•/(lt•)= f(ig), a function of the argu- 
ment (ig), where f(0)=0 from the resonance condition. 
Hence, the expansion begins with the term linear in g 
and, to first-order terms, q•/(lt•)=f'(O)ig. Only real 
quantities are needed to evaluate f'(O). However, the 
frequency equation (16) must; be solved to determine 
the relationship between •2= (o•c•/l) and .•=lh/2. The 
outline of the procedure may be illustrated as follows. 

A. Material I 

Material I is purely elastic for volume changes and 
viscoelastic for shear deformation (K-K). We have 
the following data' 

v=-}, O<q•<2 

•2=•/c•l, 

" 

X=t•; •=t•(lq-ig), 7,=t•(1--•ig). 

To obtain an approximate solution of the frequency 
equation (16), we write this equation in the form 

sinh (•52'r) cosh (•5•) (! q-•a• = 4•51•2 sinh (•5•) cosh 

and approximate each hyperbolic function to three 
terms to obtain the approximate equation 

•22+ ('•2/9) (-- 84-14•2 •- 5•2 •) 
q- (,•/270) (-48+ 116•22- 86•2•+ 19•2 •) = O. (36) 

If the first two terms of Eq. (36) are used and -• is 
assigned,/22 can be computed from a quadratic equation 
and resubstituted into (36) to obtain-•2 from a quadratic 
equation. This easily determines a set of initial (•2--•) 
values that can be used in the transcendental equation 
(16) to determine the final values of (•2--•), which are 
used in the subsequent calculations. In the thin-plate 
approximation, G•g= 13/18, a constant independent 
of 

To simplify the calculation of Gig to terms that are 
linear in g (g<<l), we write 

q/(lt•) = [ (1 q- ig)F (ig) V]/[• (1 - •) • 
= --f(ig)=f•(O)ig-}-..., 
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where 

F(ig)=.41•fi•. tanh(/•23')--(1+/•22) 2 tanh(/•.3'),. (37) 

Since/51•':= 1-122/ (1+ig), (dt•2/dg)g=o = (122/2151)i and/52 
may be expanded in terms of g; the same procedure can 

_ 

be used for tt2 and for all combinations that appear in 
f(ig). The quantities/51 and/52 are, of course, real and 
known since f• is known. Consistent application of this 
expansion procedure leads to the value of f'(0), which 
will involve only the real quantities/52,/52, 3' and hyper- 
bolic functions of real arguments. 

B. Material II 

For a material of the second kind, which exhibits 
bulk viscosity •= (Xq- ]u) (1 q- ig) and •,= X (1-big), 
fi= u(1 q-ig); this material has a uniform spectrum. For 
a given value of v, the resonant (f•--3') relationship 
is the same as for the first material. However, 
=l--f•2/(lq-ig) and l•.•'=l--fF/3(lq-ig) if v=•, and 
this change requires only slight modifications in the 
previous work; in fact, only two numerical coefficients 
of F in Eq. (37) must be changed and all other numerical 
work is the same. 

When v= «, X= o• and/•22= 1--122,/%.•'= 1 ;/•22= 1--fF/ 
(1-t-/g), t]•. •'= 1 and these results are the same as before 
in the incompressible case. Thus, the results for both 
material are the same if v= «. 

An exact evaluation for the elasticity solution is 
involved but straightforward; a linearized calculation 
is again a simple matter. A complete (nonlinear) calcu- 
lation in this case showed precisely the same behavior 
upon g as in the thin-plate.approximation, which 
justifies the use of the linearized calculations throughout 
the analysis. 

I a '7'= œh/a 
i _J 

= ,o '; 
Fro. 3. Ratio of damping factor G/Gv as a function of q,=lh/2. 

Material I: Elastic for volume changes and viscoelastic for shear 
deformation. Material II' Uniform spectrum (exhibits bulk 
viscosity). Corresponding values of wavelength-to-thickness ratio 
œ/h are also shown. 

IV. PRESENTATION AND DISCUSSION OF RESULTS 

The ratio C/Cv gives,. a comparison of the amplifi- 
cation factor at resonance for the exact and ihin-plate 
theories. This rati ø as a function of 3'-lh/2 is shown in 
Fig, = (3) for materials i and 2 (v=« and i). In the 
calculations made to obtain the curves, the quantities 
Gig and Gv/g were computed for small g. Since the 
technological range of interest is for values of g to 0.10, 
the results are accurate for purposes of comparison and 
for direct use in applications. 

Figure (3) shows that in the range 0< 3'< 0.3 there is 
almost no detectable error in the case v= «; for 
the error is about 4% at •,= 0.30. At values of 3,=0.60, 
the errors are (V = «) 1% and (v=¬) 9% for Material 
and 3% for Material II. In each case, the thin-plate 
theory under-estimates slightly the damping that is 
present. 

For completeness, the resonance amplitudes Vr and 
lvrv themselves should be compared. This requires an 
evaluation of the static deflection. We write 

From Eqs. (23), we find the static-deflection ratio 

(V•v/V,)= 3/(23' a) (tanh3'- 3' sech23') 
= 1- (4/5)'r•'+ (51/105)-r%. 

This ratio is plotted in Fig. (4). 
For the static deflection (at zero frequency), the 

thin-plate theory underestimates the deflection; for 
3'= 0.30, the error is about 7%. The resonant amplitude 
results from the combined effect of the damping and the 
static-deflection corrections, which act in opposite 
directions. The latter correction is appreciably larger 
and the validity of the thin-plate theory is appreciably 
better for the evaluation of the damping than for the 
static rigidity. For wavelengths larger than ten times 
the thickness, the error of the thin-plate theory de- 
creases rapidly. 

1.0 

0.8 

0.6 
V__sp 
vs 0.4 

0.2 

0 

Fro. 4. Comparison of static deflections by exact (V,) and thin- 
plate (V,•) theories. 
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V. CONCLUDING REMARKS 

In evaluating the resonance amplitude of a homoge- 
neous isotropic viscoelastic plate, the thin-plate 
approximation is found to hold in the range 0 < • < 0.30, 
or for wavelengths larger than about ten times the 
thickness. The present results, Fig. (3), shoW:' that 
G/G• is close to unity in this range, for both cases 
•=¬ and «. The incompressible case (u=«) provides 
better agreement than u=l, although the latter is in 
error by less than 4% in the stated range. In each case, 
the thin-plate theory slightly underestimates the 
damping; the thin-plate theory will therefore slightly 

overestimate the resonant-amplitude factor. Com- 
parison of the thin-plate and exact theories for static 
deflections shows an opposite behavior; i.e., the thin- 
plate theory underestimates the deflections. The error 
of the thin-plate theory for the damping is smaller than 
for the static deflection 
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