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Theory of Elasticity and Consolidation for a Porous Anisotropic Solid 
M. A. BIOT* 

Shell Development Company, New York City, New York 
(Received May 5, 1954) 

The author's previous theory of elasticity and consolidation for isotropic materials U. App!. Phys. 12, 
155-164 (1941)J is extended to the general case of anisotropy. The method of derivation is also different 
and more direct. The particular cases of transverse isotropy and complete isotropy are discussed. 

1. INTRODUCTION 

T HE theory of consolidation deals with the settle
ment under loading of a porous deformable solid 

containing a viscous fluid. In a previous publication! 
a consolidation theory was deVeloped for isotropic 
materials. The purpose of the present paper is to extend 
the theory to the most general case of anisotropy. The 
method by which the theory is derived is also more 
general and direct. The same physical assumption is 
introduced, that the skeleton is purely elastic and con
tains a compressible viscous fluid. The theory may 
therefore also be considered as a generalization of the 
theory of elasticity to porous materials. It is applicable 
to the prediction of the time history of stress and strain 
in a porous solid in which fluid seepage occurs. The 
general equations derived in Sec. 2 are applied to the 
case of transverse isotropy in Sec. 3. This is a case of 
particular interest in the application of the theory to 
soils and natural rock formations, since transverse iso
tropic is the type of symmetry usually acquired by 
rock under the influence of gravity. For an isotropic 
material the equations reduce to a simple form given 
in Sec. 4. They are shown to coincide with the equa
tions derived in reference 1. Application of the theory 
to specific cases was made previously,2-4 and it was 
shown that the operational calculus offers a very power
ful tool for the solution of consolidation problems in 
which a load is applied to the material at a given 
instant and the time history of the settlement is to be 
calculated. These methods are directly applicable to the 
more general nonisotropic case. More general solutions 
of the equations have been developed and will be pre
sented in a forthcoming publication. 

2. GENERAL EQUATIONS FOR THE 
ANISOTROPIC CASE 

sample of bulk volume Vb, It is understood that the 
term "porosity" refers as is customary to the effective 
porosity, namely, that encompassing only the inter
communicating void spaces as opposed to those pores 
which are sealed off. In the following, the word "pore" 
will refer to the effective pores while the sealed pores 
will be considered as part of the solid. It will be noted 
that a property of the porosity f is that it represents 
also a ratio of areas 

(2.2) 

i.e., the fraction S p occupied by the pores in any cross
sectional area Sb of the bulk material. It must be
assumed, of course, that the pores are randomly dis
tributed in location but not necessarily in direction. 
That this relation holds may be ascertained by in
tegrating Sp/Sb over a length of unity in a direction 
normal to the cross section Sb. The value of this integral 
then represents the fraction f of the volume occupied 
by the pores. It is seen that the ratio S pi S b is also inde
pendent of the direction of the cross section. 

The stress tensor in the porous material is 

(2.3) 

with the symmetry property Uij"=Uji. 

The partial components of this tensor do not have 
the conventional significance. If we consider a cube of 
unit size of the bulk material, U represents the total 
normal tension force applied to the fluid part of the 
faces of the cube. Denoting by p the hydrostatic pres
sure of the fluid in the pores we may write 

u=-fp· (2.4) 

The remaining components U xx, U "'II, etc., of the tensor 
are the forces applied to that portion of the cube faces 
occupied by the solid. Let us consider an elastic skeleton with a statistical 

distribution of interconnected pores. This porosity is 
usually denoted by 

We shall now call our attention to this system of fluid 
and solid as a general elastic system with conservation 
properties. The solid skeleton is considered to have com

(2.1) pressibility and shearing rigidity, and the fluid may be 
where V p is the volume of the pores contained III a compressible. The deformation of a unit cube is as-

sumed to be completely reversible. By deformation is * Consultant. 
1 M. A. Biot, J. App!. Phys. 12,155-164 (1941). meant here that determined by both strain tensors in 
2 M. A. Biot, J. App!. Phys. 12,426--430 (1941). the solid and the fluid which will now be defined. The 
aM. A. Biot and F. M. Clingan, ]. App!. Phys. 12, 578--581 d' Itt f th I'd' d . (1941). average ISP acemen componen so. e so I IS eSlg-
• M. A. Biot and F. M. Clingan, J. App!. Phys.13, 35-40 (1942). nated by U"" U II, U., and that of the flUId by U:x, U II, U z. 
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The strain components for the solid and the fluid, 
respectively, are 

au,. (auy au,.) (2.5) exx=-- !ezlI=! --+-- etc. 
ax ox oy 

au" .~fXy=!(aUli + au,,) fzz=-- etc. 
ax ax ay 

By a generalization of the procedure followed in the 
classical theory of elasticity (5) we may write for the 
elastic potential energy V the expression 

2V = uZxe.rx+ulIlIellY+u zzezz+ull.eyz 
+u zxezx+u XyeXY+u€, (2.6) 

with 

If we assume that the seven stress components are 
linear functions of the seven strain components the 
expression 2 V is a homogeneous quadratic function of 
the strain. This function is a positive definite form with 
twenty-eight distinct coefficients. The stress com
ponents are given by the partial derivatives of V as 
follows: 

a v/aexx = ITxx av/aexy=uXY , etc., (2.7) 

av/ae=u. 

This is written 

u xx C11C12C13C14C16C16C171 e"x 
u IIY C22C2SC24C25CZSC27 ellll 

u .. CazC34CS5CZ6CS7 ezz 

u liZ C44C45C46C47 eyz (2.8) 
u xx CSSC56CS7 ezx 
u Z1/ C66C67 l :X1/ u Cn 

Because the matrix of coefficients is that of a quadratic 
form we have the symmetry property 

(2.9) 

The total stress field (2.3) of the bulk material satisfies 
the equilibrium equations 

au "" alJ' Z1/ a 
-+-+-(uzz+u)+pz=o, 

oX oy OZ 

(2.10) 

where p is the mass density of the bulk material and 
X, Y, Z, the body force per unit mass. Substituting in 
(2.10) the stress components as functions of the strains 
from (2.8) we obtain three equations for the six un
known displacement U x ' •• U x' • '. Three further equa-

tions between these unknowns are obtained by intro
ducing tlie law governing the flow of a fluid in a porous 
material. 

We introduce here a generalized form of Darcy's 
law for a nonisotropic material 

r
-ap/ax+PIX] lkXX k

xy 
k:XZ] lUX-

U
"] 

-ap/ay+PIY = k1lx kyy kllz ~1J-~1I' (2.11) 

-op/az+Plz k.z kZll kzz Uz-u. 

where PI is the mass density of the fluid. The matrix kij 

constitutes a generalization of Darcy's constant if we 
include in it the viscosity coefficient. The average 
velocities of the fluid and solid are denoted by 
U x' • ,ux ' • '. 

The symmetry of the coefficients 

(2.12) 

results from the existence of a dissipation function 
such that the rate of dissipation of the energy in the 
porous material at rest is expressed by the positive 
definite quadratic form 

ij 

2D= L k;jUiU j • (2.13) 

If we multiply Eq. (2.11) by f and take (2.4) into ac
count we obtain 

[
au/ox+p1X] [bxx bxy bxz] [Ux-ux] 
aa/ay+p1Y = byx byy byz qY-~1J' 
alJ'/8z+P1Z bzx bZll bzz Uz-u z 

(2.14) 

with Pl=pt/=the mass of fluid per unit volume of bulk 
material. The three equations obtained by combining 
(2.10) and (2.8) in addition to the three Eqs. (2.14) 
determine the six unknown displacement components 
for the fluid and the solid. 

3. THE CASE OF TRANSVERSE ISOTROPY 

The above equations are valid for the most general 
case of a symmetry. In practice, however, materials 
will be either isotropic or exhibit a high degree of sym
metry which greatly simplifies the equations. Let us 
consider first the case of a material which is axially 
symmetric about the z axis. This type of symmetry is 
referred to by LoveS as transverse isotropy (page 160). 
The expression for the strain energy in this case is 

2 V = (A + 2N) (exx+cyy)2+Ce z}+ 2F (eyy+cxx)e zz 

+ L(ell/+e z/)+ N(ex1l2-4exxeyy) 
+2M(exx+eYYh+2Qczz~+RE2. (3.1) 

This expression is invariant under a rotation aroulltl the 
z axis. It is written in such a way as to bring out expres
sions such as cxy2-4e"",ellY and exx+cyy which are in
variant under a rotation about the z axis. The coefficient 
A+2N is written this way for reasons of conformity. 

6 A. E. H. Love, A Treatise On the Mathematical Theory of 
Elasticity (Dover Publications, New York, 1944). 
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184 M. A. BlOT 

Since A does not appear in any other term, the quan
tity A + 2N is an independent coefficient which could 
have been written as P [see (4.5)]' The stress-strain 
relations derived from (2.7) and (3.1) are 

U xx = 2N exx+A (exx+eyy)+Fezz+M t; 

U yy = 2Neyy+A (exx+eyy)+Fezz+M t; 

U zz= Cezz+F(exx+eyy)+Qt; 

uyz=Lellz ; 

u zx= Lezx ; 

uxlI =Ne"'lI; 

u=M(exx+eyy)+Qezz+Rt. 

(3.2) 

There are therefore in this case eight elastic coefficients· 
The equations of flow contain two coefficients of 

permeability, one in the Z direction, the other in the 
x, y plane, and may be written 

au/ ax+Plx = bxxCO x-ux); 

au/ ay+ PlY =bxx(O II-Uy); 

au/ az+Plz = b zz(O z-u z). 

(3.3) 

These equations along with the stress-strain relation 
(3.2) and the equilibrium relations (2.10) yield six 
equations for the six displacement components in the 
case of transverse isotropy. 

4. THE CASE OF ISOTROPY 

In the case of complete isotropy the strain energy 
function (3.1) becomes 

2V= (A+2N) (exx+eyy+ezz)2 
+N(eYZ2+ezx2+eXy2-4eyyc .. 

We shall assume that there is no body force and put 
X=Y=Z=O. Substitution of expression (4.3) into 
the equilibrium Eq. (2.10) for the stresses and the flow 
Eq. (4.4) yield the six equations 

NV'2U+(P-N+Q) grade+(Q+R) gradt=O 

grad (Qe+Rt) =b(a/ at) CO -u). 
(4.5) 

We have put P=A+2N. 
Taking the divergence of the second equation we 

may also write 

NV'2U+(P-N+Q) grade+(Q+R) gradt=O 

QV'2e+ RV'2t = b(a/ at) (t- e). 
(4.6) 

In the previous theory (1) we had obtained these 
equations by a different method and in a different form. 
To show their equivalence we write the stress-strain 
relations by eliminating t from Eqs. (4.3) 

uxx=2Nexx+( A-~)e+ ~ u; 

U yy = 2,Veyy+ ( A-~)e+ ~ U; 

(4.7) 

-4ezzexx-4ezzeyy) Substituting these in the equilibrium relation (2.10) 
+2Q(exx+eyy+ezz)t+Rt2. (4.1) we find 

We put 

The stress-strain relations derived from (2.7) are 

u xx= 2N exx+ Ae+Qt; 

u yy= 2N eyy+ Ae+Qt; 

u zz= 2N ezz+Ae+Qt; 

(4.2) 
NV"2u+[P-N-Q2/RJ grade 

+ (Q+R)/R gradu=O. (4.8) 

We also derive from (4.4) 

a b au Q+R ae 
V'2u=b-(t-e)=---b---. 

at R at R at 
(4.9) 

U yz = 1\T eyz ; 

uzx=l\'e zx ; 

(J'xy=Nc xy ; 

(4.3) Equations (4.8) and (4.9) are in the form obtained in 
reference 1. We note that the significance of u in that 
reference is equivalent to -u/ j in our present notation. 

u=Qe+Rt. 

There are in this case four elastic constants, and this 
checks with the result obtained in reference 1. The 
equations of flow contain a single coefficient b. They are 
written 

au/ ax+P1x =b(O x-uz); 

au/ay+PlY =bCOy-uy); 

au/ iJz+P1Z=bCO z-uz). 

(4.4) 

Consider now the case of an incompressible material. 
This corresponds to the condition 

e(l- f)+ Jt=O. (4.10) 

Since this must be satisfied for all values of u we derive 
from the last relatipn (4.3) that both Rand Q are 
infinite with the condition 

Q/R= (1- j)/ f. (4.11) 

Since A-Q2/R=S must remain finite the stress strain 
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law becomes 
1-f 

uxx=2Nexx+Se+--u; 
f 

1- f 
ulIlI =2NeylI+Se+--u; 

f 
1-f 

uzz =2Ne zz+Se+--u; 
f 

uxy=lvexy. 

(4.12) 

Substituting these expressions in the equilibrium rela
tions (2.10) we derive 

NV'4t+(N+S) grade+(1/f) gradu=O (4.13) 

and from (4.9) 

Taking the divergence of (4.13) 

Hence (4.14) may be written 

ae 
.f(2N +S)'V"2e= b-. 

at 

(4.14) 

( 4.15) 

(4.16) 

This is the equation of heat conduction. Equations 
(4.13) and (4.16) coincide with those obtained in 
reference 1 for the incompressible case. 
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Radiation of Plasma Noise from Arc Discharge 

T. TAKAKURA, K. BABA, K. NUNOGAKI, AND H. MITANI 
Osaka City University, K itaku, Osaka, Japan 

(Received June 8, 1954)* 

The mechanism of radiation of plasma noise inherent to arc discharge is studied experimentally. Intense 
electromagnetic radiation of random noise character is observed at the frequency of plasma oscillation of 
'the ion sheath formed at the cathode drop. Maximum radiation occurs when the external circuit connected 
to the cathode is in resonance with the plasma frequency. The oscillating current in the external circuit is 
concluded to be generated by the periodic electron emission from the cathode caused by small perturbation 
of potential gradient at the cathode surface as a result of the variation in the ion sheath potential. This 
conclusion is supported by several experiments under various air pressures, electrode materials, current 
densities, etc. 

1. INTRODUCTION 

COLD cathode dc arc discharge in air at ordinary 
atmospheric pressure was found to radiate intense 

radio noise in the microwave region equivalent to 
thermal radiation of 106 to 107 OK at 0.5 to 5 amperes 
of discharge current without any external resonance 
circuit. The radiation was observed at frequencies of 
3300 me, 190 mc, 15 mc, and 1.5 mc under various air 
pressures with various electrode materials and shapes by 
detecting the noise involved therein. 

More or less similar investigations were conducted by 
Melloh and others.1 However, little seems to have been 
done in the explanation of the mechanism of noise 
radiation. The present paper deals with the explanation 
of the generation of such noise radiation. 

* The original unrevised manuscript was received September 8, 
1953. 

1 A. M. Mel~oh, Proc. Inst. Radio Engrs. 28, 179 (1940); 
I. Matsumoto, Oyo-Butsuri 15, 21 (1946); 1. Hayashi and E. Abe, 
Rikoken-Hokoku 3, 9 (1949); Davies, Pear, and White, Elec
tronics 23, 96 (1950). 

2. EXPERIMENTAL RESULTS 

(i) The Noise of Arc Discharge at an 
Atmospheric Pressure 

Radiation of noise from dc arc discharge in air was 
observed by using a 3300 me receiver with a band width 
of approximately 4 mc connecting to a horn antenna. The 
condition of discharge was changed by the shape and 
material of the electrodes and the discharge current. 
The radio noise radiated from the arc discharge was 
received by the horn antenna as shown in Fig. 1 (a). 

(a) Influence of Electrode Material 

Relative intensity of radio noise at 3300 mc from the 
dc arc discharge at 1 ampere with electrodes of various 
materials was measured and tabulated in Table I. Care 
was taken to make each electrode of different materials 
in a similar shape. As seen in Table I, the positive elec
trode was found to be of little significance in deter
mining the intensity of the noise. When a carbon or 
mercury electrode was used as the cathode, an excep-
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