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the slotted line preceding the short circuit would give 
rise to an extraneous reflectipn which would distort 
the standing-wave pattern, it was necessary to machine 
the slot flush and square with the plane of the short 
circuit. 

The probe carriage was a narrow slab long enough 
to keep the slot always covered, thus minimizing 
contamination and evaporation of· the dielectric. The 
ways for guiding the probe carriage along the slot 
were ground parallel to the center conductor within 
0.0002 in. to insure constant probe depth. Spring-loaded 
roller bearings kept the probe carriage aligned with 
the center of the slot, and a micrometer screw of 1-mm 
pitch, geared to a revolution counter and having an 
indexed head of 100 divisions, was used to drive the 
probe carriage along the slot. Probe displacements 
were discernable to 0.001 mm and accurate to about 
0.005 mm. 

Instrumental Errors 

In the measurement of Ao by means of the distance 
between minima of the standing wave in air, a precision 
of ±O.Ol peJ;cent with comparable accuracy was 
consistently obtained. In nonpolar Classless) dielectrics, 
the wavelength determination was only slightly less 
accurate" In medium and low loss dielectrics, Ad was 

measurable with an accuracy of ±0.1 percent, corre­
sponding to a ±0.2 percent error in the computed value 
of l. In high loss media, however, the accuracy was 
somewhat less because of the reduced probe signal 
amplitude which decreased the null sensitivity. 

In the measurement of absorption index, the es­
timated attenuator error was ±0.1 db, which corre­
sponds to a numerical error of ±0.0018 in K, when 
measured by the traveling-wave method, and to a 
percentage error of ±O.S percent in log" or ± 1.2 percent 
in K, when measured by the standing-wave method. 
In the breadth-of-the-minimum method, the error in 
K varied from 2 percent to 10 percent, depending on 
the magnitude of K. Thus, for the standing-wave 
method, the estimated error in the computed value of 
f" was 1.4 percent, the errors in the other methods 
varying with the absorption index. 
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The paper deals with the propagation of unattenuated elastic waves in a cylindrical bore through an 
elastic material of infinite extent filled with a fluid. The phase and group velocity dispersion curves are plotted 
for axial symmetric waves in the coupled fluid-solid system. 

1. INTRODUCTION 

A N analysis is here presented of the problem of 
propagation of elastic waves in a fluid contained 

in a circular bore through an elastic solid of infinite 
extent. Only waves of axial symmetry which are pure 
sinusoids along the axial direction are considered here. 
We are dealing essentially with the interaction between 
the compressible fluid and the elastic solid in the gen­
eration of propagation phenomena along the axis of the 
bore. 

In view of the complexity of the phenomenon a 
clearer understanding is attained by first treating in 
Sec. 2 the problem of propagation of surface waves in 
the empty bore. In this case the surface wave, which is 

* Consultant Shell Oil Company Exploration and Production 
Research Laboratory, Houston, Texas. The present paper is 
based on an unpublished Shell Oil Company report dated October 
15, 1949. 

analogous to a Rayleigh wave at the plane boundary of a 
semi-infinite solid, exhibits a dispersion. The phase 
velocity increases with the wavelength from the 
Rayleigh wave velocity to that of shear waves in the 
solid. No unattenuated waves are propagated beyond 
a certain wavelength at which a cutoff occurs. A family 
of phase and group velocity dispersion curves exists 
with the Poisson ratio as a parameter. 

Propagation in a :fluid-filled bore is taken up in Sec. 3. 
The dispersion curves are first considered for the case 
of a :fluid which is either confined in a rigid bore or 
suspended in free space. This corresponds to the limiting 
case of a fluid of zero or infinite density. In this case 
waves in the fluid are not affected by the elasticity of 
the solid. The cases of finite density are intermediate 
between the above, with one exception, and they corre­
spond to interaction between fluid and solid waves. It 
is pointed out that not all waves result from the inter-
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998 M. A. BlOT 

action of fluid and solid waves. It is found that one 
branch of the dispersion curve bears no resemblance 
to any of the waves occurring independently in either 
medium but is caused solely by the interaction of the 
two media. This wave is designated hereafter by the 
appellation "Stoneley wave" because of its analogy 
with the waves occurring at the interface of two media. 
For the larger wavelengths these waves correspond to 
the well-known phenomenon of the water hammer in 
tubes. No cutoff occurs for this wave. Plots of phase and 
group velocity as function of wavelength to diameter 
ratio are presented for various combinations of the 
three basic parameters. These parameters are v.1 c, the 
ratio of shear velocity in the solid to the sound velocity 
in the fluid, the ratio pi PI of the fluid density to solid 
density, and Poisson's ratio P. Work by H. Lambi on this 
problem appears in a very early publication but results 
are given only for waves of large wavelengths. As the 
present analysis shows, this represents only a very 
limited aspect of the problem. 

2. PROPAGATION OF WAVES IN A CYLINDRICAL 
EMPTY BORE 

We consider a cylindrical bore of circular cross section 
in an elastic solid of infinite extent. This section is con­
cerned with the case where the bore does not contain 
any fluid. Being a relatively simple case it is treated 
first, and we focus our attention on the phenomenon of 
propagation of axial-symmetric waves at the surface 
of the bore. These waves are the analog of Rayleigh 
waves propagating at a plane boundary. Our purpose 
is to determine how the propagation is affected by the 

/ 
I 
\ , 

."..----

"­---

z 
w 

~------------------~y 

" 
f) " "-

" " 
FIG. 1. Cylindrical coordinate system, Z along the axis of the bore. 

I H. Lamb, On the Velocity of SouruJ in a Tube as Affected by the 
Elasticity of the Walls, Mem. Proc. Manchester Lt. and Phil. Soc., 
Vol. XIII, No.9 (1898). 

axial symmetric nature of the phenomenon. Because a 
dimension has been introduced, namely, the diameter 
D of the bore, it must be expected that dispersion will 
occur; the velocity of the surface wave becomes a 
function of hiD, the ratio of the wavelength A to the 
diameter. 

Since we are dealing with a three-dimensional phe­
nomenon we have three displacement components of the 
solid, U, V, W. We put 

(U, V, W)=grad4>+curlf, (2.1) 
with 

(2.2) 

The last equation applies to each Cartesian component 
of the vector f. 

In Eq. (2.2) Vo and v. represent the velocity of dilata­
tional and rotational waves, respectively. 

v
o
=[2G(1-V) ]i, 

Pl(1-2v) 

v.= (GI PI)!' 

and G= shear modulus of solid, PI = mass density of 
solid, v= Poisson's ratio. Because of the axial symmetric 
nature of the phenomenon, the vector f is tangent to 
a circle of radius r, centered on the z axis and parallel 
with the x, y plane (Fig. 1). Hence 

l/t",= -l/t sin8, l/t1l=l/t cos8. (2.3) 

Similarly, introducing the radial displacement R 

U=R cos8, V=R sin8. (2.4) 

The quantities ¢, l/t, and R functions only of the coordi­
nates rand z. Writing the two Eqs. (2.2) in cylindrical 
coordinates the first one becomes 

i)2¢ 1 a4> a24> 1 a2¢ 

-+--+-=--. 
or2 r ar OZ2 v.2 a~ 

(2.S) 

The second Eq. (2.2), written, for instance, for the 
component l/t", is 

02l/t", 1 al/t", 1 a2l/t", a21/1", 1 021/1., 
-+--+--+-=--. 

or2 r ar r2 a02 az2 1).2 a~ 

Introducing the value (2.3) for 1/1., 

021/1 1 a1/l 1/1 a21/1 1 021/1 
-+----+-=--. 
ar2 , a, ,2 OZ2 1},2 a~ 

(2.6) 

The two Eqs. (2.S) and (2.6) for the unknown scalars 
¢ and 1/1 solve the axially symmetric problem. 
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The displacement components are expressed by means 
of cP and 1/;. Equations (2.1) become in the present case 

ocp 01/; 
R=---, 

ar az 

acp al/; I/; 
W=-+-+-. 

az ar r 

The stress components O"r and 7 (Fig. 1) are 

with 

[
oR II ] 

O"r=2C -+--E , 
ar 1-211 

7=c[aR + aw], 
az ar 

aR R aw 
E=-+-+-. 

ar r az 

(2.7) 

(2.8) 

The stress components may also be expressed directly 
in terms of cJ> and 1/;. Substituting (2.7) into (2.8) and 
taking into account (2.S) and (2.6) 

(2.9) 

with 
b= 11/1-11. 

The solutions of Eqs. (2.5) and (2.6) for unatten­
uated waves propagating in the z direction are 

FIG. 2. Portion of 
cylindrical bore. o = 2 d 

The first boundary condition yields a relation between 
CPo and 1/;0 

l/;oK1(ka) (2vNL a2)= 2v.2mlcJ>oKo'(ma), (2.12) 
or 

cJ>0 (2-~12)K1(ka) 

We use the notation 

d 
Ko'(u)=-Ko(u), 

du 

d2 
Ko"(u)=-Ko(u). 

du2 

(2.13) 

Introducing the second boundary condition O"r=O we 
have 

- P1a2bcpoKo(ma) 
cJ>= cJ>oKo(mr) cos(lz- at) 
if; = if;oKl(kr) sin(lz- at), 

(2.10) + 2V.2p1[cpom2Ko"(ma) -l/;oklKt'(ka) J= 0. (2.14) 

where CPo and 1/;0 are two constants and 

a v 
m=l(1-~22)l, ~2=-=-, 

vel Ve 

a V 
k=l(1-.l12)i, .11=-=-. 

v.l V. 

(2.11) 

The phase velocity of the waves in the z direction is 
designated by v. Ko and K1 are modified Bessel functions 
of the second kind of zero and first order. These func­
tions are real and vanish exponentially at infinity. 
Denoting by D= 2a (Fig. 2) the bore diameter, the 
boundary conditions are 

7=O} at r=a. 
r=O 

This expression may be written in terms of Ko and K 1. 
We introduce well-known identities satisfied by Bessel 
functions 

Ko'(u) = -K1(u), 

1 
Ko"(u) +-Ko' (u) = Ko(u) , (2.15) 

u 

1 
Ko"(u) = -K1'(u)=-K1(u)+Ko(u). 

u 

With these relations, Eq. (2.14) may be written 

-brNoKo(ma)+2cJ>o(1- ~22{~a K1(ma) + Ko(ma) ] 

+2"'o(1-r12)1[k~ K1(ka)+Ko(ka)] =0. 
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FIG. 3. Phase velocity of surface waves in empty bore. 

With the value (2.13) for the ratio 1/IoNo this becomes 

-2(Z-t12)(1-t22)![_1 +Ko(ma)] 
ma Kl(ma) 

!;}(2- t}) Ko(ma) 
+b Q 

(1- t22)! K1(ma) 
Substituting 

, [t]2 
b=1-2 r: ' 

we nnd 

4(1-~?)![~+ Ko(ka)] 
ka K1(ka) 

2(2-t12)(1-;-22)i (2-;-12)2 Ko(ma) 
O. (2.16) 

ma (1-t22)i Kl(ma) 

Since ma=la(1-U)i, ka=la(1-r12)i, this last equa­
tion determines the phase velocity of the axial sym­
metric surface waves as a function of the Poisson ratio 
and the variable la= (2'1ra/X) = 'Ir(D/X). Hence the wave 
shows a dispersion function of the ratio of the wave­
length to the diameter of the bore. Physically it must 

I. 7 

~ 
u; 

1.5 

14 -

o 

~ 
~ 

~ 
~ 
. -

FIG. 4. Cut-off wavelength 
in empty bore. 

be expected that for very short wavelengths (la large) 
the velocity must coincide with the velocity of the 
Rayleigh wave at a plane boundary. This may be 
verified by putting la= 00 in Eq. (2.16) for large values 
of the argument the asymptotic value of the Bessel 
function is 

KO(U)=K1(u)=e-{:U) \u~oo). 
Hence in that case Eq. (2.16) reduces to 

(Z-r12)2 
4(1-t12)i 0 

(1-t22)t 
(2.17) 

which coincides with the equation for the Rayleigh 
wave at a plane boundary. Equation (2.16) has been 
solved numerically, and a plot of the velocity ratio 
v/v.= r1 as a function of XjD is shown in. Fig. 3 for 
values of the Poisson ratio v varying between 0 and !. 
A significant feature is that all these curves show an 
increase of the phase velocity v with increasing wave 
length until v becomes equal to the value ~). for the 
shear wave. The curves are terminated at that point 
which corresponds to a cut-off wavelength XO' For wave­
lengths larger than this wavelength Xc the waves cannot 
propagate without attenuation. The ratio AciD depends 
on the Poisson ratio as follows. 

TABLE I. 

X./D 

o 1.670 
0.15 1.583 
0.25 1.517 
0.35 1.445 
0.50 1.310 

The curve 1Ic1 D is plotted against v in Fig. 4. 
The existence of this cut-off wavelength for axial 

symmetric surface waves is a consequence of two facts: 
first, that the phase velocity increases with the wave­
length,and second, that the radical (1- (12) tin Eq. (2.16) 
must be real. Physically these two facts may be under­
stood by bearing in mind that an axial symmetric de­
formation gives rise to circumferential stresses which 
do not exist in the two-dimensional case. This causes an 
apparent increase of rigidity of the material for such 
symmetric deformations. This rigidity becomes greater 
as the wavelength increases, that is, as the depth at 
which the surface waves are felt becomes larger. It is 
natural therefore that this apparent increase of rigidity 
causes an increasing value of the phase velocity. This 
increase, however, cannot occur beyond the point when 
the velocity of the surface waves becomes larger than 
the shear,wave velocity, because a disturbance propa­
gating at the surface with such a velocity causes shear 
waves to be radiated, and the energy of the surface 
waves would be dissipated . 

Finally it is interesting to derive the group-velocity 
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curves for such waves. The group velocity Vg is 

vg=da/dl. 
We may write 

Vg/V 8 = d(rIla)/ d(la) , 

that is, the ratio vg/v. is the derivative of the product 
fIla considered as a function of lao The value vg/v. is 
plotted as a function of la= 7rD/}" in Fig. 5 for different 
values of the Poisson ratio 11. 

3. PROPAGATION OF WAVES IN A CYLINDRICAL 
BORE FILLED WITH A FLUID 

We consider the same problem as in the previous 
section with the addition of a fluid in the bore. We first 
study the behavior of waves in the fluid independently 
from the solid. For axially symmetric waves the displace­
ment potential ¢ of the fluid satisfies the wave equation 
expressed in cylindrical coordinates (c = velocity of 
sound in the fluid), 

a2¢ 1 a¢ a2¢ 1 a2¢ 
-+--+-=--. (3.1) 
ar2 r ar ar2 c2 at2 

The solution ¢ may be written 

<f>=I{r(;2 -12 ) !]ei(lz-at) 

and 

a2 

for ->12, 
c2 

<f>= f{r(p- ::) fjei(IZ_at) for :: <12. 

(3.2) 

10 is the Bessel function of zero order of the first kind 
and fo the modified Bessel function of zero order of the 
first kind. 

10Ciu)=fo(u). 

The first solution corresponds to conical waves which 
are reflected at the boundary while the second solution 
corresponds to Stoneley waves. 

The fluid pressure for each case is 

a2<f> 
p= - p-= pa21o[rl(t2-1)!]ei(lz-at) for ~> 1, 

afl 

and (p=mass density of the fluid) 

p=pa210[rl(1-f2)t]ei(lz-at) for f<1. 
(3.3) 

We have put f= v/ c; v= a/I is the phase velocity along 
the z direction and c is the velocity of sound in the fluid. 
Denoting the radial displacement of the fluid by 

R'=iJ<f>/ar, 
and using the relations 

d d 
11(U) = --Jo(u) 11(u)=-lo(u), 

du du 

we may write for each case 

R' = -1(f2-1)tl1[rl(t2-1)t]ei(lz-at), 

R' = 1(1- r2)iJ l[r1(1- f2)l]eHZ.-atl. 
(3.4) 

0 

t* · 
· "--- •• 5 

· cl 

\"---
v • 35 

, 
v· .25 

\\ 0 y. 15 

· '-- v • 0 

1,-, 
" 0 

FIG. S. Group velocity in empty bore. 

The corresponding ratios of pressure to fluid displace­
ment at the boundary r= a are therefore 

p a 2p J o[la(t2-1)lJ 
for t>1 

R' I CtL 1)tl{laCt2-1)!] 

and (3.5) 

p a2p I o[/a(1- t2)lJ 
-=- for t<1. 
R' 1 (1- F)lfl[la(1- t2)1] 

If the fluid is contained in a rigid wall, R' = 0 and the 
corresponding velocities are given by the equation 

(f2-1)tl1[/aCr2-1)t]=O. (3.6) 

The root t= 1 corresponds to waves with their plane 
normal to the axis, while the equation 

(3.7) 

corresponds to the reflected conical waves. The con­
stants f3n are the roots (f3n~O) of the Bessel function 
11. For each root, if we plot the velocity t as a function 
of h!D(D=2a, }..=wavelength) we obtain a hyperbola. 
Similarly a cylindrical fluid column free at the boundary 
has reflected conical waves corresponding to the 
equation 

Q.,,----t----t----+-----i 
-i--

FIG. 6. Phase velocity in fluid for either a rigid wall 
or the absence of solid wall. 

(3.8) 
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and again this equation represents a family of 
hyperbolas. 

The branches corresponding to Eq. (3.6) are plotted 
in Fig. 6 as functions of A/D= nila. They are marked 
pi PI = 0 because they also correspond to the case where 
the wall is elastic but the fluid has a very small density 
relative to the solid. The branches corresponding to 
Eq. (3.8) are represented in the same Fig. 6 and marked 
p/Pl= 00. 

We shall now introduce the effect of the elastic wall. 
Using equations established in the previous section we 
derive the ratio of normal stress to displacements at the 
solid boundary. The stresses in the solid are obtained 
by substituting expressions (2.10) into (2.9). One of the 
boundary conditions r=O for r=a is the same as in 
Sec. 2 and leads to the same relations (2.12) and (2.13) 
between ¢o and 1/;0, For the normal stress O"r we have 
at r=a 

O"r [ b 
--= --a2¢oKo(ma)+m2¢oKo"(ma) 
2V.2Pl 2V,2 

-kl1/;oK/(ka)] cosUz-at). (3.9) 

The radial displacement R is given by (2.7) 

R= [m¢oKo'(ma)-I1/;oK 1(ka)J cos(lz-at). 

By using Eq. (2.12) we may simplify this to 

a2 

Rl= ---1/;oKl(ka) cos(lz-at). (3.10) 
2V,2 

If we divide (3.9) by (3.10) and replace ¢o/1/lo by its value 
(2.13), we get 

O"r b(2-t12) Ko(ma) 

v/P11R (1- 522)t Ko'(ma) 

2 . Kol/(ma) 
--(2- 512)(1- 522)11 __ -

t12 Ko'(ma) 

4 Kl'(ka) 
+-(1-512)1--. (3.11) 

512 Kl(ka) 

.. 
IH- I / / 

4 

f /~ / 
( 

3 

II / , 

I II V 
.olL/ 
. 

+-
I.' 

FIG. 7. Phase velocity in fluid-filled bore for 
v./c=1.5, p/Pl=l, p=l. 

By using identities (2.1S) this becomes 

O"r b(2-512) Ko(ma) 

If we express b as 

we may write 

O"r (2- 512)2 Ko(ma) 

V.2PllR U(1- U)t K1(ma) 

2 (2-512)(1- 522)t 
+ 

t12 ma 

We now introduce the boundary condition at the fluid­
solid interface 

-p/R'= ur/R for r=a. 

From (3.5) and (3.12) this may be written for t> 1 
(reflected waves) 

4(1- t 12)t[~+ Ko(ka )] 
ka K1(ka) 

2(2-5l2)2(1-tl)t (2-t12)2 Ko(ma) 

ma (1-522)t K 1(ma) 

P 514 J o[la(t2-1)tJ 
(3.13) 

PI (i'2-1)t J 1[la(t2-1)!J' 

Similarly for 5 < 1 (Stoneley waves) 

4(1- 512)t[~+ Ko(ka)] 
ka Kl(ka) 

2(2- 512)2(1- 522)t (2- f12)2 Ko(ma) 

ma (1- 522)! Kl(ma) 

p t14 I o[la(1-t2)!J 

PI (1- 52)! I 1[la(1- 52)!J' 
(3.14) 

The two Eqs. (3.13) and (3.14) determine the dispersion 
of the waves in the fluid-solid system. The functional 
relationship of these equations becomes clear if we recall 
the significance of the symbols. Consider 5 as the 
unknown variable 

5=V/C, 51=Ct/V., t2=V.t1/Vc' 
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FIG. 8. Phase velocity for Stoneley type wave for various density ratios (branch marked S in Fig. 7). 

Hence rl and r2 are functions of r through the param­
eters v./ c and v./ve. The parameter v./ve is a function 
of the Poisson ratio v only. 

ve/v.= 2(1-v)/1- 2v. 

When v varies from zero to 0.5, ve/v. varies from 
Y1= 1.414 to co. Also we remember that 

ka= la(l- r12)t, ma= la(1- r22) 1. 

Therefore Eq. (3.13) and (3.14) may be considered as 
determining implicitly the value of r=v/c as a function 
of the wavelength variable la= 7rD/h for given values of 
the parameters v./ c, p/ PI, v. These three parameters 
which characterize the fluid-solid system determine 
the nondimensional dispersion curves of the waves. 
Plots have been derived from these equations and will 
now be discussed. 

Figure 7 is a plot of the dispersion curves r=v/c as 
a function of h/ D(h= wavelength, D= diameter of the 
bore) for the following particular values of the charac­
teristic parameters: 

v./c=1.5, p/Pl=l, 11=1/4. 

These curves show the same qualitative behavior as 
the curves for waves in the fluid alone, plotted in Fig. 6. 
The horizontal line of Fig. 6 which corresponded to 
plane waves becomes branch S in Fig. 7 and represents 
Stoneley waves propagating with a velocity lower than 
the velocity of sound in the fluid. The branches marked 
1, 2, 3 correspond to the reflected waves. There are an 
infinite number of such branches and only three of them 
have been represented. 

Figure 8 is a plot of the Stoneley wave branch S of 
the dispersion curve to exhibit the influence of the 
density ratio p/ Pl. The value of f= vic is plotted as a 
function of h/ D for 

v.lc= 1.5, 1I=t, 

and four values of pi PI: 

pi PI = 0.4, 0.6, 0.8, 1.0. 

The velocity tends toward a horizontal asymptote for 
large A./ D. The asymptotic value is found to be 

v 1 

c [1+ (pc21 PIV.2)J! 

v 1 
or (3.15) 
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FIG. 9. Group velocity fo~ Stoneley type waves of Fig. 8. 
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FIG. 10. Phase velocity of reflected type waves for various density ratios 
(branches marked 1,2,3, etc., in Fig. 7). 

This formula is valid for all values of pi PI and II. 

lt shows that the asymptotic value depends only on a 
single parameter pc21G which is the ratio of the com­
pression rigidity of the fluid pc2 to the shear modulus G 
of the solid. lt will be noted that the phase velocity 
becomes practically independent of the wavelength X 
for ratios AID of the order of S. It may be said that for 
XID>S we are in a region where the Stoneley waves 
become identical with those studied in the classical 
theory of the water-hammer phenomenon. For small 
value's of the wavelength, the velocity coincides with 
the Stoneley wave velocity at a plane interface of two 
semi-infinite media. 

Figure 9 is a plot of the group-velocity curves corre­
sponding to the Stoneley waves of Fig. 8. Denoting by Vg 
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FIG. 11. Group velocity for reflected type wave of 

branch 1 of Fig. 10 for two density ratios. 

the group velocity 

Vg deNa) 
-=--. 
c d(la) 

The derivative is taken with respect to la= 7rDIX 
considered as the independent variable. The value vgle 
is plotted versus la for four values of pi PI (density ratio 
of fluid to solid). 

Figure 10 shows a series of phase-velocity curves for 
the reflected wave branches. The value vie is plotted 
versus AID for the same particular values of the param­
eters, v.le and v, namely, 

v.lc=1.S, v=t· 
The first branch is plotted for four values of the 
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FIG. 12. Group velocity for reflected type waves of 
branch 2 of Fig. 10 for two density ratios. 
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parameter 
pi Pi = 0.4, 0.6, 0.8, 1.0. 

The second and third branches are plotted for two 
values 

pi Pi = 0.4 and 1.0. 

The second branch is plotted also for the value pi Pi 
= 0.01228 in order to show how the curve approaches 
the case pi Pi = 0 when pi Pi becomes very small. The 
extreme cases pi Pi = 0 and pi Pi = <Xl are plotted as 
dotted lines. They are made up of the same hyperbolas 
as in Fig. 6 and of the surface-wave dispersion curve 
marked R. This surface wave is nothing but a Rayleigh 
wave of axial symmetry. Its dispersion curve R is the 
same as the surface-wave dispersion curve for v= t 

I~ 
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"'I--+-h4'~::::~::::.=t~.s'I+--+---t--+---t----l 

r--+-f1H-/_+---t---1\r+t· O.Oll2. 

\ ._ . __ .f---.o------ ____ _ 

1.-
FIG. 13. Group velocity for branch 2 of Fig. 10 for 

the case of a small fluid density. 

plotted in Fig. 3, for the case of an empty bore. The case 
pi Pi =0.01228 illustrates how, for small values of the. 
density ratio, the dispersion branches tend to follow 
two successive hyperbolas pi Pi = 0 and the intersecting 
curve R for the pure surface wave. Whatever the value 
of pi Pi all branches pass through the intersections of 
the R curve with the hyperbolas pi Pi = <Xl • 

Figure 11 shows group-velocity curves for the first 
branch of the reflected waves of Fig. 10. The ratio vole 
is plotted versus la for the two cases pi Pi = 0.4 and 1.00. 
Also v.lc= 1.5, v=t. Note the existence of a minimum 
value of the group velocity. 

Figure 12 shows group-velocity curves for the same 
cases as in the previous Fig. 11, but for the reflected 
waves of the second branch. 

Figure 13 shows the group-velocity curve for the 
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FIG. 14. Influence of Poisson's ratio on the group 
velocity of the Stoneley type waves. 

second branch of Fig. 10 in the case p/ Pi = 0.01228. It is 
seen that for small values of pi Pi the curve tends to 
follow either one of the three group-velocity curves cor­
responding to the case pi Pi = 0 which are shown as 
dotted lines. The dotted curve on top of the figure is 
the group velocity for the Rayleigh wave in the empty 
bore, while the two lower ones are group velocities for 
the reflected fluid waves between rigid boundaries. 

Figure 14 illustrates the influence of the Poisson ratio 
v on the group velocity of Stoneley waves for the case 
v.lc= 1.5, pi Pi= 1. Two plots of volc versus la are shown 
for v=! and v=t. 
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FIG. 15. Influence of Poisson's ratio on the group 
velocity of reflected type waves of branch 1. 

Figure 15 illustrates the influence of the Poisson ratio 
v on the group velocity of the first branch of the re­
flected waves for the case vs I c = 1.S, pi Pi = 1. Two plots 
of Vole versus la are shown for v=! and v=t. 
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