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Nonlinear Error Bounds via a Change of Function

Dominique Azé1
· Jean-Noël Corvellec2

Abstract This work can be seen as a sequel to our previous paper, which dealt with

local nonlinear error bounds for lower semicontinuous functions on complete metric

spaces, based on estimates of the strong slope of the function through the distance to a

sublevel set. Here, we consider estimates of the strong slope through the values of the

function, and we provide characterizations of nonlinear local and global error bounds

that are again obtained by a reduction to the linear case. Our main tool is a simple chain

rule for the strong slope. We provide several examples showing that recent results in

the literature can be recaptured from our general framework.

Keywords Nonlinear error bounds · Asymptotically well-behaved functions ·
Descent methods in optimization

Mathematics Subject Classification 49J53 · 49J52 · 90C30

1 Introduction

In our previous paper [1], we developed a general approach to nonlinear local error

bounds, where the basic assumptions are estimates of the strong slope (of a lower
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semicontinuous function defined on a complete metric space) through the distance to

a sublevel set. The main tool was a so-called change-of-metric principle that allows

reducing the nonlinear case to the linear one (systematically studied in [2]), and the

results were refinements of those of [3], where the local case was not addressed in a

satisfactory manner.

In this paper, we develop the theory of nonlinear error bounds based on assump-

tions that are estimates of the strong slope through the values of the function outside

a sublevel set. This was also treated in [3] (and related therein to the notion of asymp-

totically well-behaved function) in the global case, through an ad hoc argument that

is again unsatisfactory, in particular since it does not extend to the local case. Here,

we use a simple calculus lemma, a chain rule for the strong slope (Lemma 4.1), that

reduces the nonlinear problem to a linear one, both in the local and global case (and

which accounts for the title of the paper). We thus start with a presentation of the char-

acterization of error bounds in the linear case, which was already (partly) addressed

more than ten years ago in our papers [2,4]. However, not only was the local case

not treated in a systematic way in these papers, but we shall here do things in a way

that fits the mentioned reduction procedure, and that takes into account more recent

developments (both ours and in the literature).

Technically, the results in this paper are obtained in a simpler way than those of

[1,3], but it could be said that they do not serve the same purposes. Roughly speaking,

the latter are related to the notion of metric (sub) regularity and to applications to

sensitivity analysis in optimization, while the former fit problems of convergence

in descent methods. As a matter of fact, an important motivation for our present

study comes from the papers [5–7], which basically deal with that kind of problem,

and we conclude this work with an example of convergence of a descent method in

optimization, following [5,7].

The paper is organized as follows. In Sect. 2, we recall the notion of strong slope

and its relationship with subdifferential notions, while specifying our main notations.

In Sect. 3, we establish the characterization of local and global linear error bounds

through the variational principle. In Sect. 4, we deduce the nonlinear results through a

chain rule for the strong slope. In Sect. 5, we focus on so-called Hölderian error, which

has been mainly considered in the literature, some examples of which we describe. In

Sect. 6, we make a few remarks in the specific case of convex functions (on Banach

spaces). In Sect. 7, we compare our main assumption with that of [1], we give a new

result under the former assumption, and we describe an application to the convergence

of a descent method in optimization, as mentioned above.

2 Basic Notations and Notions

Throughout the paper, we let X denote a metric space endowed with the metric d, and

we let f : X → R ∪ {+∞} be an extended-valued function that will generally be

required to be lower semicontinuous. For x ∈ X and ρ > 0, we denote by Bρ(x) (resp.

Bρ[x]), the open (resp., closed) ball of radius ρ > 0 centered at x . For Y ⊂ X , we let

d(x, Y ) := inf{d(x, y) : y ∈ Y } ,
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with the usual convention d(x,∅) = +∞. For −∞ < a < b ≤ +∞, we let:

[ f ≤ a] := {x ∈ X : f (x) ≤ a} , [ f < b] := {x ∈ X : f (x) < b}

denote the sublevel sets of f , and we let

[a< f < b] := [ f <b]\[ f ≤ a]

denote the slice between a and b. When b = +∞, we write

dom f := [ f <+∞] , [ f > a] := [a< f < + ∞] .

As usual, for a ∈ R, we let a+ := max{a, 0}.
Given x̄ ∈ X with a := f (x̄) ∈ R, we say that the function f has a nonlinear local

error bound at x̄ if there exist γ : ]0,+∞[ → ]0,+∞[ continuous and ρ > 0 such

that

f (x) ≥ a + γ (d(x, [ f ≤ a])) for every x ∈ Bρ(x̄)\[ f ≤ a] .

We say that f has a nonlinear global error bound with respect to [ f ≤ a] if the

inequality holds for all x ∈ [ f >a] (that is, Bρ(x̄) is replaced by X ).

Recall from [8] that for x ∈ dom f , the strong slope of f at x is defined by

|∇ f |(x) :=

⎧
⎨
⎩

0 , if x is a local minimum point of f

lim sup
y→x

f (x) − f (y)

d(x, y)
, otherwise

.

(For x /∈ dom f , we set |∇ f |(x) := +∞). The strong slope allows developing general

results in variational analysis, while it easily compares with (sub)derivative notions in

the case when (X, ‖·‖) is a (real) normed vector space—so that these results are both

enlightening from the point of view of the abstract theory, and useful from the point

of view of applications.

Let us recall a few such comparisons (some of which will be referred to later).

Denoting by (X∗, ‖·‖∗) the topological dual of (X, ‖·‖), for x ∈ dom f and u ∈ X\{0},
set:

f ′(x; u) := lim inf
t→0+, v→u

f (x + tv) − f (x)

t
,

∂ F f (x) :=
{

x∗ ∈ X∗ : lim inf
y→x

f (y) − f (x) − 〈x∗, y − x〉
‖y − x‖ ≥ 0

}
,

which are the lower contingent derivative of f at x in the direction u and the Fréchet

subdifferential of f at x , respectively. From the definitions, it is easy to see that

|∇ f |(x) ≥ sup
‖u‖=1

(
− f ′(x; u)

)
(1)
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(with equality if X is finite dimensional), and

|∇ f |(x) ≤ d∗(0, ∂ F f (x)) := inf{‖x∗‖ : x∗ ∈ ∂ F f (x)} , (2)

with equality if f is convex, in which case, if x is not a minimum point of f we also

have

|∇ f |(x) = sup
y �=x

f (x) − f (y)

‖x − y‖ .

Roughly speaking, estimate (1) is of primal type (in applications, it is related to results

involving tangent cones), while estimate (2) is of dual type (related to results involving

normal cones). In general, a major estimate is

|∇ f |(x) ≥ lim inf
(y, f (y))→(x, f (x))

d∗(0, ∂ f (y)) , (3)

where ∂ is a subdifferential operator. From known considerations in “classical” non-

smooth analysis, given a specific subdifferential operator ∂ , (3) holds for any lower

semicontinuous f whenever (X, ‖·‖) belongs to some appropriate class of Banach

spaces: See, e.g., [2, Section 4], and the beginning of Section 6 in [1] for details and

references. For instance, if ∂ = ∂ F , then (3) holds (for any lower semicontinuous f )

if X is an Asplund space. (See, e.g., [9, Example 2.5] for many other examples).

3 Characterization of Linear Error Bounds

In order to obtain sufficient conditions in our error bound results, we use the following

straightforward consequence of the variational principle (for which a major reference

is [10]). See [1, Proposition 2.1] for a proof, and [1, Remark 2.1] for some comments.

Proposition 3.1 Let (X, d) be a complete metric space, f : X → R ∪ {+∞} be

lower semicontinuous, and U be a (nonempty) open subset of X. Then:

f (x) − inf
U

f ≥
(

inf
U

|∇ f |
)

d(x, X\U ) for every x ∈ U . (4)

Theorem 3.1 Let (X, d) be a complete metric space, f : X → R ∪ {+∞} be lower

semicontinuous, C ⊂ X, −∞ < a < b ≤ +∞, and σ, ρ > 0. Assume that:

|∇ f |(x) ≥ σ for every x ∈ Bρ(C) ∩ [a< f < b] . (5)

The following two properties hold:

(a) If [ f ≤ a] �= ∅, then

f (x) − a ≥ σd(x, [ f ≤ a]) for every x ∈ C ∩ [a< f < b] with d(x, [ f ≤ a]) ≤ ρ ;
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(b) If C ∩ [ f <a+σρ] �= ∅, then [ f ≤ a] �= ∅, and

f (x) − a ≥ σd(x, [ f ≤ a]) for every x ∈ C ∩ [a < f < a+σρ] .

Proof Let x ∈ C ∩ [a< f <b], set X̃ := [ f ≤ f (x)], let f̃ denote the restriction of f

to X̃ , and set U := Bρ(C) ∩ [ f̃ >a], so that

d(x, X̃\U ) ≥ min{ρ, d(x, [ f ≤ a])} .

On the other hand,

f̃ (z) = f (z) and |∇ f̃ |(z) = |∇ f |(z) for every z ∈ X̃ ,

so that

f (x) − a ≥ σd(x, X̃\U )

according to (4, 5). Thus, if d(x, [ f ≤ a]) ≤ ρ, then d(x, X̃\U ) ≥ d(x, [ f ≤ a]),
which yields (a). If f (x) − a < σρ, then d(x, X̃\U ) < ρ, which shows that

d(x, X̃\U ) = d(x, [ f ≤ a]) indeed, yielding (b) (in particular, [ f ≤ a] �= ∅). ⊓⊔

Theorem 3.2 (Characterization of linear local error bound) Let (X, d) be a complete

metric space, f : X → R ∪ {+∞} be lower semicontinuous, −∞ < a < b ≤ +∞,

x̄ ∈ [ f ≤ a], and σ > 0. Consider the following statements:

(a) There exists r > 0 such that

|∇ f |(x) ≥ σ for every x ∈ Br (x̄) ∩ [a < f < b] ; (6)

(b) There exists ρ > 0 such that

f (x) − c ≥ σd(x, [ f ≤ c]) for every c ∈ [a, b[ and x ∈ Bρ[x̄] ∩ [c< f <b] .

(7)

Then, (a) ⇒ (b) with ρ := r/2, and (b) ⇒ (a) with r := ρ.

Proof (a) ⇒ (b): Apply Theorem 3.1(a) with C := Br/2[x̄], ρ := r/2, and arbitrary

c ∈ [a, b[ in place of a.

(b) ⇒ (a): This follows from the definition of the strong slope, as showed in [2,

Proposition 2.1]. We give the details for the reader’s convenience. Let x ∈ Bρ[x̄] ∩
[a< f <b] and σ̃ ∈ ]0, σ [ . For n ∈ N such that cn := f (x)−1/n ≥ a, let xn ∈ [ f ≤ cn]
be such that

f (x) − cn ≥ σ̃d(x, xn) .

Then, 0 < d(x, xn) → 0, so that x is not a local minimum point of f , and

f (x) − f (xn)

d(x, xn)
≥ f (x) − cn

d(x, xn)
≥ σ̃ ,
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so that |∇ f |(x) ≥ σ̃ , whence |∇ f |(x) ≥ σ . ⊓⊔

Theorem 3.3 (Characterization of linear global error bound) Let (X, d) be a complete

metric space, f : X → R ∪ {+∞} be lower semicontinuous, −∞ < a < b ≤ ∞
with [a< f <b] �= ∅, and σ > 0. The following are equivalent:

(a) |∇ f |(x) ≥ σ for every x ∈ [a < f < b] ;
(b) [ f ≤ a] �= ∅, and

f (x) − c ≥ σd(x, [ f ≤ c]) for every c ∈ [a, b[ and every x ∈ [c < f < b] .

Proof (a) ⇒ (b): Apply Theorem 3.1(b) with C := X , arbitrary c ∈ [a, b[ in place

of a, and arbitrary ρ ∈ ]0, (b − c)/σ [ such that [ f <c+σρ] �= ∅.

(b) ⇒ (a) is obtained like in the previous theorem. ⊓⊔

Remark 3.1 As far as we know, the first example of (linear) error bound appeared

in Rosenbloom [11]. Anticipating the well-known result by Hofmann [12], [11,

Lemme 3] provides an error bound for the distance to a convex polyhedral cone,

and [11, Lemme 4] provides an error bound for the distance to a convex polyhedron,

in a special case. In the general nonconvex case, the first sufficient conditions for local

error bounds date back to [13] (more recently, see also [14]). The above three theo-

rems gather and synthesize the approach developed in our earlier papers [2,4] where

indeed, the local case was not presented as such (the emphasis was put on (local)

metric regularity, see the coming remark about this notion). We thus provide here a

unified and direct presentation of both cases.

Remark 3.2 Given f : X → R ∪ {+∞}, consider the multifunction

epi f := {(x, c) ∈ X ×R : f (x) ≤ c} ,

that is, epi f (x) = [ f (x),+∞[ if x ∈ dom f and epi f (x) = ∅ otherwise. Under the

assumptions (and using the notations) of Theorem 3.3, [6, Theorem 2] states:

The following properties are equivalent and imply that [ f ≤ a] �= ∅:

(i) |∇ f |(x) ≥ σ for every x ∈ [a < f < b] ;
(ii) ( f (x) − c)+ ≥ σd(x, [ f ≤ c]) for all (x, c) ∈ U := [a < f < b]× ]a, b[ ;

(iii) epi f is σ -metrically regular on U .

Property (iii) means that for every (x̄, c̄) ∈ U , there exists ε > 0 such that

d(c, epi f (x)) ≥ σd(x, (epi f )−1(c)) for all (x, c) ∈ U ∩ (Bε(x̄)×]c̄ − ε, c̄ + ε[ ) .

Clearly, for (x, c) ∈ X ×R we have

(epi f )−1(c) = [ f ≤ c] and d(c, epi f (x)) = ( f (x) − c)+,

so that (iii) reads: For every (x̄, c̄) ∈ U we have

(iii)′ ( f (x) − c)+ ≥ σd(x, [ f ≤ c]) for all (x, c) ∈ U ∩ (Bε(x̄)×]c̄ − ε, c̄ + ε[ ) ,
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which is a priori weaker than (ii). Moreover, while (i) ⇒ (ii) is (a) ⇒ (b) in Theorem 3.3

(yielding also [ f ≤ a] �= ∅), (iii)′ ⇒ (i) is similar to (b) ⇒ (a) in Theorem 3.2, that

is, it depends only on the definition of the strong slope: There is no need to use Zorn’s

lemma as in [6]. In the sequel, we shall refer several times to [6], which contains many

interesting observations on the matter we are dealing with. We already mention that,

similarly as what is observed in [6, Remark 3], Theorem 3.3(b) is equivalent to

(iv) σdH([ f ≤ c2], [ f ≤ c1]) ≤ c2 − c1 for all a ≤ c1 < c2 < b ,

where dH is the Hausdorff-Pompeiu metric:

dH([ f ≤ c2], [ f ≤ c1]) := max{eH([ f ≤ c2], [ f ≤ c1]), eH([ f ≤ c1], [ f ≤ c2])}
= eH([ f ≤ c2], [ f ≤ c1]):= sup{d(x, [ f ≤ c1] : x ∈ [ f ≤ c2]}.

Remark 3.3 In [15, Definition 2], Chao and Cheng introduce the notion of subslope

which is denoted and defined by

†|∇ f |(x) := sup
y∈D(x)

f (x) − f (y)+

d(x, y)

for x ∈ dom f , and †|∇ f |(x) := +∞ for x /∈ dom f , where

D(x) := {y ∈ X : d(y, [ f ≤ 0]) ≤ d(x, [ f ≤ 0])} .

In [15, Theorem 2], the authors establish the following result (we use our notations):

Let (X, d) be a complete metric space, let f : X → R ∪ {+∞} be proper and

lower semicontinuous, and let σ>0. The following are equivalent:

(i) †|∇ f |(x) ≥ σ for every x ∈ [ f >0].
(ii) [ f ≤ 0] �= ∅, and f (x) ≥ σd(x, [ f ≤ 0]) for every x ∈ [ f >0].

Indeed, (i) ⇒ (ii) is contained in [14, Theorem 3] (see also [2, Remark 2.2 (b)]), while

(ii) ⇒ (i) readily follows from the definition of the subslope. Since it does not involve

all values c ≥ 0, this statement is formally simpler than that of Theorem 3.3. However,

since the subslope is a global notion (as is the global slope introduced in [16]), we

prefer to stick with results based on the strong slope, sharing Ioffe’s opinion at the end

of [17, Section 5], that the interest of the sufficient condition in Theorem 3.3 lies in

the fact that it “gives a global estimate based on purely infinitesimal information.”

We conclude this section with a “bilateral” result, where for a ∈ R, [ f = a] :=
{x ∈ X : f (x) = a}.

Proposition 3.2 Let (X, d) be a complete metric space with connected balls, and

f : X → R be continuous with

|∇ f |(x) = |∇(− f )|(x) for every x ∈ X .

7



(a) Let x̄ ∈ X with a := f (x̄) ∈ R, and σ, ρ > 0. Assume that

|∇ f |(x) ≥ σ for every x ∈ B2ρ(x̄)\[ f = a] .

Then,

| f (x) − a| ≥ σd(x, [ f = a]) for every x ∈ Bρ(x̄) .

(b) Let −∞ < a < b ≤ +∞ with [a < f < b] �= ∅ and σ > 0. The following are

equivalent:

(i) |∇ f |(x) ≥ σ for every x ∈ [a < f < b] ;
(ii) [ f = c] �= ∅ for every c ∈ [a, b[ , and

| f (x) − c| ≥ σd(x, [ f = c]) for all (c, x) ∈ [a, b[ ×[a< f <b] .

Proof Since X has connected balls and f is continuous, for c ∈ R such that [ f ≤ c] �=
∅ and for x ∈ [ f > c] we have d(x, [ f ≤ c]) = d(x, [ f = c]). Thus, the conclusions

are obtained applying Theorems 3.2 and 3.3 to both f and − f . ⊓⊔
Remark 3.4 Observe that (ii) above is equivalent to

(v) σdH([ f =c2], [ f =c1]) ≤ c2 − c1 for every a ≤ c1 < c2 < b

(recall the end of Remark 3.2), which was observed in [6, Proposition 6], from which

we borrowed the assumption that X has connected balls.

4 Characterization of Nonlinear Error Bounds

In this section, we establish a general (though elementary) chain rule for the strong

slope that is used to reduce our main results on nonlinear error bounds to the linear

ones in the previous section.

Lemma 4.1 Let (X, d) be a metric space, f : X → R ∪ {+∞} be lower semicon-

tinuous, −∞ < a < b ≤ +∞, and ϕ : ]a, b[ → R be of class C1 with ϕ′ > 0.

Then,

|∇(ϕ ◦ f )|(x) = ϕ′( f (x))|∇ f |(x) for every x ∈ [a< f <b] .

Proof Of course, ϕ ◦ f : [a< f <b] → R. Let x ∈ [a< f <b]. We first show that

|∇(ϕ ◦ f )|(x) ≤ ϕ′( f (x))|∇ f |(x). We may assume that |∇ f |(x) < +∞ and that

|∇(ϕ ◦ f )|(x) > 0. Thus, there exists a sequence (xn) converging to x such that

|∇(ϕ ◦ f )|(x) = lim
n→∞

ϕ( f (x)) − ϕ( f (xn))

d(x, xn)
> 0 ,

so that f (xn) < f (x) (because ϕ is increasing) and f (xn) → f (x) (because

|∇ f |(x) < ∞). Let zn ∈ ] f (xn), f (x)[ be such that
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ϕ( f (x)) − ϕ( f (xn)) = ϕ′(zn)( f (x) − f (xn)) ,

then

|∇(ϕ ◦ f )|(x) = lim
n→∞

ϕ′(zn)
f (x) − f (xn)

d(x, xn)

= ϕ′( f (x)) lim
n→∞

f (x) − f (xn)

d(x, xn)
≤ ϕ′( f (x))|∇ f |(x) .

We then show that |∇(ϕ◦ f )|(x) ≥ ϕ′( f (x))|∇ f |(x). We may assume that |∇ f |(x) >

0 and that |∇(ϕ ◦ f )|(x) < +∞. Thus, there exists a sequence (xn) converging to x

such that

|∇ f |(x) = lim
n→∞

f (x) − f (xn)

d(x, xn)
> 0 ,

so that (for n large enough) 0 < f (xn) < f (x) (because f is lower semicon-

tinuous at x). From which ϕ( f (xn)) < ϕ( f (x)) (because ϕ is increasing) and

ϕ( f (xn)) → ϕ( f (x)) (because |∇(ϕ ◦ f )|(x) < ∞), so that f (xn) → f (x) (because

ϕ is increasing, again). Let zn ∈ ] f (xn), f (x)[ be such that

ϕ( f (x)) − ϕ( f (xn)) = ϕ′(zn)( f (x) − f (xn)) ,

then

|∇(ϕ ◦ f )|(x) ≥ lim
n→∞

ϕ′(zn)
f (x) − f (xn)

d(x, xn)
= ϕ′( f (x))|∇ f |(x) .

⊓⊔

Notation 4.1 Given b ∈ [0,+∞], we denote by �b the set of continuous α : ]0, b[ →
]0,+∞[ such that for some (hence for all) t ∈ ]0, b[ we have:

ϕα(t) :=
∫ t

0

ds

α(s)
< +∞ .

Thus, if α ∈ �b, then ϕα : ]0, b[ → ]0,+∞[ is of class C1, is increasing, extends

continuously to [0, b[ with ϕα(0) = 0, and we may set:

ϕα(b) := sup
0<t<b

ϕα(t) .

Keeping this notation in mind, the following are the two main results of this paper.

Theorem 4.1 (Characterization of nonlinear local error bound) Let (X, d) be a com-

plete metric space, f : X → R ∪ {+∞} be lower semicontinuous, −∞ < a < b ≤
+∞, x̄ ∈ [ f ≤ a], and α ∈ �b−a . Consider the following statements:

9



(a) There exists r > 0 such that

|∇ f |(x) ≥ α( f (x) − a) for every x ∈ Br (x̄) ∩ [a< f <b] . (8)

(b) There exists ρ > 0 such that

ϕα( f (x) − a) ≥ ϕα(c − a) + d(x, [ f ≤ c])

for every c ∈ [a, b[ and every x ∈ Bρ[x̄] ∩ [c< f <b].
Then, (a) ⇒ (b) with ρ := r/2, and (b) ⇒ (a) with r := ρ.

Proof According to Lemma 4.1, (8) reads

|∇(ϕα ◦ f )|(x) = ϕ′
α( f (x) − a)|∇ f |(x) = |∇ f |(x)

α( f (x) − a)
≥ 1

for every x ∈ Br (x̄)∩[a< f <b]. Since ϕα : [0, b−a[ → [0, ϕα(b−a)[ is one-to-one

increasing, the result readily follows from Theorem 3.2 applied to ϕα . ⊓⊔

In a similar way, we deduce from Theorem 3.3 the following characterization of a

nonlinear global error bound.

Theorem 4.2 (Characterization of nonlinear global error bound) Let (X, d) be a com-

plete metric space, f : X → R∪{+∞} be lower semicontinuous, −∞ < a < b ≤ ∞
with [a< f <b] �= ∅, and α ∈ �b−a . The following are equivalent:

(a) |∇ f |(x) ≥ α( f (x) − a) for every x ∈ [a< f <b] .

(b) [ f ≤ a] �= ∅, and

ϕα( f (x) − a) ≥ ϕα(c − a) + d(x, [ f ≤ c]) for all c ∈ [a, b[ and all x ∈ [c< f <b] .

Remark 4.1 Recalling the last part of Remark 3.2, note that the assertions of Theo-

rem 4.2 are equivalent to:

(c) dH([ f ≤ c2], [ f ≤ c1]) ≤ ϕα(c2 − a) − ϕα(c1 − a) for all a ≤ c1 < c2 < b .

The main part in the above two theorems is of course the sufficient condition (a) ⇒
(b), with c := a in (b). In the case of Theorem 4.2, it reads (i) ⇒ (ii) with:

(i) |∇ f |(x) ≥ α( f (x) − a) for every x ∈ [a< f <b] ;

(ii) [ f ≤ a] �= ∅, and f (x) − a ≥ ϕ−1
α (d(x, [ f ≤ a])) for every x ∈ [a< f <b] .

This was already proved in [3, Theorem 6.1], through a different argument, essentially

based on property (c) above (an argument previously used in [4, Theorem 4.2] in a

particular case). Here, we provide a more satisfactory (truly variational) approach,

by reducing the nonlinear case to the linear one through Lemma 4.1, which naturally

yields a local result as well (see [3, Remark 6.1 (b)]). We note that in the quoted results

of [3,4], the function α is not assumed continuous, but it is assumed nondecreasing,

in which case the function ϕα is concave. A typical such situation is
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ϕα(t) := 1

σ
tγ with σ > 0 and 0 < γ < 1 , (9)

which we shall emphasize in the following section. As pointed out in [3, Section 6],

the existence of a (continuous) nondecreasing α : ]0, b − a[ → ]0,+∞[ such that (i)

above holds is equivalent to the fact that f is so-called asymptotically well behaved

in [a< f <b], that is: For every sequence (xk) ⊂ [a< f <b],

|∇ f |(xk) → 0 ⇒ f (xk) → a .

See [3, Remark 6.1], and Example 5.3 below, for bibliographical comments on this

notion.

Remark 4.2 A main step in the above proof of Theorem 4.1 is to write assumption (8)

as

ϕ′( f (x) − a)|∇ f |(x) ≥ 1 for every x ∈ Br (x̄) ∩ [a< f <b] (10)

(with ϕ = ϕα). According to the terminology used in [6] (also used in [7]), inequality

(10) could be termed a generalized Kurdyka–Łojasiewicz inequality. Indeed, such

inequality was considered by Kurdyka in [18] in the case when f is a C1 function

defined on a Hilbert space X . The original inequality was established by Łojasiewicz

in the 1960s, in the case when f is (sub)analytic on Rn and ϕ is of the type (9), an

inequality that was used to establish the convergence of the trajectories of dynamical

systems, see, e.g., the short survey [19].

5 Error Bounds of Order γ > 0 and Examples from the Literature

In this section, we specialize the sufficient parts of Theorems 4.1 and 4.2 to the case

when α(s) := τ sθ with τ > 0 and θ < 1. This is the case that has been essentially

considered in the literature, which is natural due to its simplicity and its applicability.

We thus give several examples of recent results that can be recovered from our general

approach.

Corollary 5.1 Let (X, d) be a complete metric space, f : X → R∪ {+∞} be lower

semicontinuous, −∞ < a < b ≤ +∞, and σ, γ > 0.

(a) Let x̄ ∈ [ f ≤ a], and ρ > 0. Assume that

|∇ f |(x) ≥ σ

γ
( f (x) − a)1−γ for every x ∈ B2ρ(x̄) ∩ [a < f < b] .

Then,

( f (x) − a)γ ≥ σd(x, [ f ≤ a]) for every x ∈ Bρ[x̄] ∩ [a < f < b] .

(b) Assume that [a< f <b] �= ∅, and that

|∇ f |(x) ≥ σ

γ
( f (x) − a)1−γ for every x ∈ [a < f < b] .

11



Then, [ f ≤ a] �= ∅ and

( f (x) − a)γ ≥ σd(x, [ f ≤ a]) for every x ∈ [a< f <b] .

Example 5.1 Let (X, 〈· , ·〉) be a real Hilbert space, let A : X → X be a bounded

self-adjoint operator, and define f : X → R ∪ {+∞} by

f (x) := 〈Ax, x〉 if ‖x‖ = 1 ,

f (x) := +∞ otherwise. It is immediate that for x ∈ dom f :

∂ F f (x) = 2Ax + Rx

(of course, we identify X with its dual), from which it is readily seen that

d(0, ∂ F f (x)) = 2‖Ax − 〈Ax, x〉x‖ = 2‖Ax − f (x)x‖ .

Let λ0 = inf X f be the lower bound of the spectrum of A. When λ0 is an eigenvalue

of A, argmin f is the intersection of the associated eigenspace X0 with the unit sphere.

Assume that λ0 is isolated in the spectrum of A, let X1 := X⊥
0 , and let λ1 be the lower

bound of the spectrum of the restriction of A to X1, so that λ0 < λ1. We have (see,

e.g., [20, (10.11)]):

‖Ax − λ0x‖2 ≥ (λ1 − λ0)〈Ax − λ0x, x〉 = (λ1 − λ0)( f (x) − λ0) for x ∈ dom f ,

so that for x ∈ [ f <λ1] we obtain

d(0, ∂ F f (x))2 = 4‖Ax − f (x)x‖2 = 4‖Ax − λ0x − ( f (x)x − λ0x)‖2

= 4(‖Ax − λ0x‖2 − ( f (x) − λ0)
2)

≥ 4(λ1 − f (x))( f (x) − λ0)

(see [20, Lemma 10.2]). Thus, given λ ∈ ]λ0, λ1[ , we have

d(0, ∂ F f (x))2 ≥ 4(λ1 − λ)( f (x) − λ0) for every x ∈ [ f ≤ λ] ,

or, according to (3):

|∇ f |(x) ≥ 2(λ1 − λ)
1
2 ( f (x) − λ0)

1
2 > 0 for every x ∈ [λ0< f ≤ λ] .

In all the results quoted from the literature, in the examples below, we freely use

our notations in order to provide a more straightforward comparison with our results.

We note that all these results were obtained using the variational principle.

Example 5.2 In [21, Corollary 2 i), ii)], Ngai and Théra establish the following, which

is their main result on nonlinear error bounds:
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Let X be an Asplund space, and let f : X → R∪{+∞}be lower semicontinuous.

Then:

i) If there are σ, γ > 0 such that γ ‖x∗‖ f (x)γ−1 ≥ σ for all x /∈ [ f ≤ 0],
x∗ ∈ ∂ F f (x), then

d(x, [ f ≤ 0]) ≤ 1

σ
f (x)

γ
+ for all x ∈ X .

ii) Let x̄ be in the boundary of [ f ≤ 0]. Let us suppose that there exist

realσ, γ, ρ > 0 such that γ ‖x∗‖ f (x)γ−1≥σ , for all x ∈ B2ρ(x̄)\[ f ≤ 0],
x∗ ∈ ∂ F f (x), then

d(x, [ f ≤ 0]) ≤ 1

σ
f (x)

γ
+ for all x ∈ Bρ(x̄) .

Indeed, as recalled earlier, (3) holds in the above setting, so that for x /∈ [ f ≤ 0] (resp.,

x ∈ B2ρ(x̄)\[ f ≤ 0]) we have:

|∇ f |(x) ≥ lim inf
(y, f (y))→(x, f (x))

d∗(0, ∂ F f (x)) ≥ σ

γ
f (x)1−γ ,

yielding the assumptions of Corollary 5.1. Note that the assumption that x̄ belong to

the boundary of [ f ≤ 0], though not essential in an abstract result, is the interesting

case in practice since it yields that Br (x̄) ∩ [ f >0] �= ∅ for any r > 0.

Example 5.3 In [22, Corollary 6.5.4], Facchinei and Pang establish the following

result:

Let S ⊂ D ⊂ Rn with S closed convex and Dopen, let f : D → R be of class

C1 with a := inf S f ∈ R, and let γ ∈ ]0, 1] and δ > 0. Assume that

d(−∇ f (x),N (x; S)) ≥ δ( f (x) − μ)1−γ for every x ∈ [ f >a] . (11)

The following statements hold:

(a) For every sequence (xk) ⊂ S,

lim
k→∞

d(−∇ f (xk),N (xk; S)) = 0 ⇒ lim
k→∞

f (xk) = a .

(b) [ f ≤ a] �= ∅ .

(c) ( f (x) − a)γ ≥ γ δd(x, [ f ≤ a]) for every x ∈ S .

Indeed, let g := f + ιS , where ι(x) := 0 if x ∈ S and ι(x) := +∞ if x /∈ S. From

elementary calculus, we have

∂ F g(x) = ∇ f (x) + N (x; S) for every x ∈ S ,

where N (x; S) := {z ∈ Rn : 〈z, y − x〉 ≤ 0 ∀ y ∈ S} is the normal cone to S at x .

Thus, d(0, ∂ F g(x)) = d(−∇ f (x),N (x; S)), so that
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|∇g|(x) ≥ δ( f (x) − a)1−γ for every x ∈ S ,

according to (3) and (11), and (b), (c) follow from Corollary 5.1(b).

Observe that property (a) is immediate from (11). Facchinei and Pang mention

it in order to relate their result with the notion of asymptotical good behavior (of

f in [ f >0]) introduced by Auslender and Crouzeix in [23] for the study of non-

coercive convex minimization problems on Rn . Such property might be called a

concrete asymptotical good behavior property, to be checked in applications (using

(sub)differential notions fitting the problem). Note that, due to (3), such concrete

property implies the abstract one (using the strong slope) mentioned at the end of

Remark 4.1, so that the abstract theory may indeed be applied to the problem under

study.

Example 5.4 In [17, Theorem 7], Ioffe establishes the following result:

Let X be a complete metric space, let f : X → R∪{+∞} be lower semicontin-

uous, let U be an open subset of X , let β be a 1-Lipschitz function on X which

is positive on U , and set

Uβ :=
⋃

x∈U

Bβ(x)(x) .

Assume that for some k ≥ 1 and σ > 0:

|∇(k) f |(x) > σ for every x ∈ [ f >0] ∩ Uβ .

Then, [ f ≤ 0] �= ∅ and

f (x)
1
k ≥ σd(x, [ f ≤ 0]) for everyx ∈ U with 0 < f (x) < (σβ(x))k .

Here, |∇(k) f | := |∇[ f ] 1
k |, where [ f ] 1

k (x) := | f (x)| 1
k sign( f (x)). Indeed, in order

to obtain that [ f ≤ 0] �= ∅, it must first be assumed that there is some x ∈ U with

0 < f (x) < (σβ(x))k . Then, set ρ := β(x). According to the definition of |∇(k) f |,
we have

|∇[ f ] 1
k |(y) ≥ σ for every y ∈ Bρ(x) ∩ [0<[ f ] 1

k <σρ] ,

and the conclusion follows from Theorem 3.1(b), applied to [ f ] 1
k with C := {x}. Note

that the inequality need not be strict in the main assumption, while we may consider

any constant k > 0, i.e., we need not restrict ourselves to the “concave case” k ≥ 1

(an assumption used in Ioffe’s proof for the computation of |∇(k) f |).
We conclude this section with a nonlinear version of Proposition 3.2(a).

Proposition 5.1 Let (X, d) be a complete metric space with connected balls, and

f : X → R be continuous with

|∇ f |(x) = |∇(− f )|(x) for every x ∈ X .
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Let x̄ ∈ X with a := f (x̄) ∈ R, and σ, ρ > 0. Assume that

|∇ f |(x) ≥ σ

γ
| f (x) − a|1−γ for every x ∈ B2ρ(x̄)\[ f = a] .

Then,

| f (x) − a|γ ≥ σd(x, [ f = a]) for every x ∈ Bρ(x̄) .

Remark 5.1 Let f be analytic in a neighborhood of 0 ∈ Rn , with f (0) = 0. In [19],

Łojasiewicz mentions that the following assertions are equivalent:

(i) There exist θ ∈ ]0, 1[ and r > 0 such that

‖∇ f (x)‖ ≥ | f (x)|θ for every x ∈ Br (0) ;

(ii) There exist σ, γ, ρ > 0 such that

| f (x)| ≥ σd(x, [ f =0])γ for every x ∈ Bρ[0]

Of course, implication (ii) ⇒ (i) relies on the fact that f is analytic, and is definitely

not true in general, in the continuous case.

6 Remarks on the Convex Case

In this section, (X, ‖·‖) is a Banach space with topological dual (X∗, ‖·‖∗), f : X →
R ∪ {+∞} is convex and lower semicontinuous, and for x ∈ dom f ,

∂ f (x) := {x∗ ∈ X∗ : f (z) − f (x) ≥ 〈x∗, z − x〉}

denotes the Fenchel subdifferential of f at x .

Proposition 6.1 For x ∈ dom f , we have

|∇ f |(x) = d∗(0, ∂ f (x)) ,

and if x is not a minimum point of f we have

|∇ f |(x) = sup
f (z)< f (x)

f (x) − f (z)

‖x − z‖ .

Thus, if a ∈ R is such that [ f ≤ a] �= ∅, we have:

|∇ f |(x) ≥ f (x) − a

d(x, [ f ≤ a]) for every x ∈ [ f > a] .

Proof See, e.g., [2, Proposition 3.1] and [3, Proposition 5.2]. ⊓⊔
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Let −∞ < a < b ≤ +∞ with [ f ≤ a] �= ∅, and assume that there exists an

increasing, continuous ψ : ]0, b − a[ → ]0,+∞[ such that

ψ( f (x) − a) ≥ d(x, [ f ≤ a]) for every x ∈ [a < f < b] ,

so that

|∇ f |(x) ≥ f (x) − a

ψ( f (x) − a)
for every x ∈ [a < f < b] ,

according to Proposition 6.1. Thus, if

ϕ(t) :=
∫ t

0

ψ(s)

s
ds < +∞ for t ∈ ]0, b − a[ ,

then f satisfies the inequality:

ϕ′( f (x) − a)|∇ f |(x) ≥ 1 for every x ∈ [a< f <b] .

This was observed in [6, Theorem 30], in the case when X is a Hilbert space (the

Hilbertian structure being used in the proof), and a := min f .

Theorem 6.1 Let X be a Banach space, f : X → R ∪ {+∞} be convex and lower

semicontinuous, −∞ < a < b ≤ +∞, and 0 < γ < 1. Consider the following

statements:

(a) There exists r > 0 such that

|∇ f |(x) ≥ r( f (x) − a)1−γ for every x ∈ [a < f < b] ;

(b) [ f ≤ a] �= ∅, and there exists ρ > 0 such that

( f (x) − a)γ ≥ ρ d(x, [ f ≤ a]) for every x ∈ [a < f < b] .

Then, (a) ⇒ (b) with ρ := γ r , and (b) ⇒ (a) with r := ρ.

Proof (a) ⇒ (b) is given by Corollary 5.1, (b) ⇒ (a) follows from the above consid-

erations with ψ(s) := sγ /ρ. ⊓⊔

Note that in the previous result, and with respect to Corollary 5.1, we restricted γ

to be less than 1. The reason is that in the convex case, “the slope is nondecreasing

with altitude,” so that an inequality of the type

|∇ f |(x) ≥ α( f (x) − a) for every x ∈ [a < f < b]

should involve a nondecreasing function α. Let us be more specific about this.
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Proposition 6.2 Let X be a Banach space, f : X → R∪{+∞} be convex and lower

semicontinuous, and a ∈ R with [ f ≤ a] �= ∅. Then,

inf
[ f >a]

|∇ f | ≥ inf
[ f = a]

|∇ f | .

Proof See [2, Proposition 3.2]. (Note that [ f = a] �= ∅.) ⊓⊔

Proposition 6.3 Let X be a Banach space, f : X → R∪{+∞} be convex and lower

semicontinuous, and −∞ < a < b ≤ +∞. Assume that there exists a continuous

α : ]0, b − a[ → ]0,+∞[ with

∫ t

0

ds

α(s)
< +∞ for t ∈ ]0, b − a[ ,

such that

|∇ f |(x) ≥ α( f (x) − a) for every x ∈ [a< f <b] .

Then, there exists a nondecreasing, continuous α̃ : ]0,+∞[ → ]0,+∞[ with

∫ t

0

ds

α̃(s)
< +∞ for t > 0 ,

such that

|∇ f |(x) ≥ α̃( f (x) − a) for every x ∈ [ f >a] .

Proof Of course, we assume [a< f <b] �= ∅. For s > 0, set

α̂(s) := inf{|∇ f |(x) : f (x) − a = s} .

Then, α̂ �≡ +∞ (Proposition 3.1 readily implies that dom|∇ f | is dense in dom f ),

and α̂ is nondecreasing, according to Proposition 6.2. By definition of α̂, we also have

|∇ f |(x) ≥ α̂( f (x) − a) ≥ α( f (x) − a) > 0 for every x ∈ [a< f <b] ,

whence
∫ t

0

ds

α̂(s)
≤

∫ t

0

ds

α(s)
< +∞ for t ∈ ]0, b − a[ .

Standard inf-convolution arguments then produce a continuous, nondecreasing α̃ :
]0,+∞[ → ]0,+∞[ with α̃ ≤ α̂ and

∫ t

0

ds

α̃(s)
< +∞ for t ∈ ]0, b − a[ ,

and the result follows. ⊓⊔
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Remark 6.1 This result was obtained in [6, Theorem 29] (where it is formulated in

terms of the generalized Kurdyka–Łojasiewicz inequality), with X a Hilbert space (and

a := inf f ), through more involved arguments. Note that the “standard inf-convolution

arguments” mentioned in the above proof can be found, e.g., in [6, Lemma 45].

7 A Further Comparison and an Application to Descent Methods

Let −∞ < a < b ≤ +∞, and let α ∈ �b−a (recall Notation 4.1) be nondecreasing,

so that ϕ : ]0, b − a[ → ]0,+∞[ defined by

ϕ(t) :=
∫ t

0

ds

α(s)

is of class C1, increasing, and concave, so that β : ]0, ϕ(b − a)[ → ]0,+∞[ defined

by

β(s) := (ϕ−1)′(s)

is continuous and increasing.

Proposition 7.1 Let (X, d) be a complete metric space, f : X → R ∪ {+∞} be

lower semicontinuous, and a b, α, ϕ, β be as above.

(a) Assume that for some x̄ ∈ [ f ≤ a] and ρ > 0 we have

|∇ f |(x) ≥ α( f (x) − a) for every x ∈ B2ρ(x̄) ∩ [a < f < b] .

Then,

|∇ f |(x) ≥ β(d(x, [ f ≤ a])) for every x ∈ Bρ[x̄] ∩ [a < f < b] . (12)

(b) Assume that

|∇ f |(x) ≥ α( f (x) − a) for every x ∈ [a< f <b] .

Then, [ f ≤ a] �= ∅ and

|∇ f |(x) ≥ β(d(x, [ f ≤ a])) for every x ∈ [a < f < b] . (13)

Proof From Theorem 4.1, we have

f (x) − a ≥ ϕ−1(d(x, [ f ≤ a])) for every x ∈ Bρ[x̄] ∩ [a < f < b] .
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Thus, since ϕ′ is nonincreasing, for every x ∈ Bρ[x̄] ∩ [a< f <b] we have

|∇ f |(x)

β(d(x, [ f ≤ a])) = ϕ′(ϕ−1(d(x, [ f ≤ a])))|∇ f |(x)

≥ ϕ′( f (x) − a)|∇ f |(x) = |∇ f |(x)

α( f (x) − a)
≥ 1 .

Similarly, (b) follows from Theorem 4.2. ⊓⊔

Remark 7.1 Properties (12) and (13) are the main assumptions in [1,3], where nonlin-

ear error bound results are derived from the linear case through a “change of metric.”

Though quite natural, that technique is more involved than the one used in this paper,

so that the implications above are only fitting. Proposition 7.1(b) was not observed

in [3], nor was it observed there that the global result [3, Theorem 4.3] indeed holds

without assuming that the function β be nondecreasing, a result we now establish,

after which we provide some comparison between the two types of results.

Theorem 7.1 Let (X, d) be a complete metric space, f : X → R ∪ {+∞} be lower

semicontinuous, −∞ < a < b ≤ ∞, and β : [0,+∞[ → [0,+∞[ be continuous,

with β(s) > 0 for s > 0, and such that

∫ +∞

0

β(s) ds = +∞ . (14)

Assume that [ f ≤ a] �= ∅, and that

|∇ f |(x) ≥ β(d(x, [ f ≤ a])) for every x ∈ [a< f <b] .

Then,

f (x) − a ≥
∫ d(x,[ f ≤ a])

0

β(s) ds for every x ∈ [a< f <b] .

Proof Assume first that β(0) = 0. We may assume that [a< f <b] �= ∅, so that for

c ∈ ]a, b[ sufficiently close to b and for δ > 0 small enough, we have [ f ≤ c]\Cδ �= ∅,

where

Cδ := {x ∈ X : d(x, [ f ≤ a]) ≤ δ} .

For such δ, define βδ : [0,∞[ → ]0,∞[ by

βδ(s) :=
{

β(δ) if s ≤ δ

β(s) if s ≥ δ
,

and consider the metric d̃ = d̃([ f ≤ a], βδ) given by the so-called change-of-metric

principle: See [24, Theorem 4.1], or [25, Theorem 2.2]. Then, d̃ is topologically
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equivalent to d , (X, d̃) is complete (due to (14)), and for every x ∈ U := [ f ≤ c]
\Cδ:

d̃(x, [ f ≤ a]) =
∫ d(x,[ f ≤ a])

0

βδ(s) ds ≥
∫ d(x,[ f ≤ a])

δ

β(s) ds ,

and

|∇̃ f̃ |(x) = |∇̃ f |(x) = |∇ f |(x)

βδ(d(x, [ f ≤ a])) = |∇ f |(x)

β(d(x, [ f ≤ a])) ≥ 1 ,

where |∇̃·| denotes the strong slope with respect to the metric d̃, and f̃ denotes the

restriction of f to [ f ≤ c]. Thus, applying Proposition 3.1 in ([ f ≤ c], d̃) to the function

f̃ , we obtain that for every x ∈ U :

f (x) − a ≥ f (x) − inf
U

f ≥ d̃(x, X\U ) ≥ d̃(x, [ f ≤ a]) ≥
∫ d(x,[ f ≤ a])

δ

β(s) ds ,

and the conclusion follows by letting δ → 0 first, then c → b.

In the case when β(0) > 0, the proof is just simpler, since we may directly use the

metric d̃ := d̃([ f ≤ a], β). ⊓⊔

Remark 7.2 This result extends [3, Theorem 4.3], where β is assumed nondecreasing.

Comparing Theorem 7.1 with Theorem 4.2, observe that in the former, [ f ≤ a] �= ∅
is an assumption (not a conclusion). Indeed, this set is involved in the definition of

the modified metric. Consequently, Theorem 7.1 does not provide the characterization

obtained in Theorem 4.2. Let us mention that property (12) is naturally linked with the

notion of metric (sub)regularity, see, e.g., [1], see also [26] for a quite recent survey

on this notion.

We conclude the paper by illustrating how the results of Sect. 4 can be applied to

the convergence of descent methods. This example is borrowed from the papers [5,7],

as we explain in more detail in Remark 7.3 below.

Example 7.1 Let (X, ‖·‖) be a Banach space, let U be an open subset of X , and let

f : U → R be differentiable, with a uniformly continuous differential D f : U → X∗.

Set

m(s) := sup{‖D f (x) − D f (z)‖∗ : ‖x − z‖ ≤ s} ,

so that m : ]0,∞[ → ]0,∞[ is nondecreasing, finite for small s, with m(s) → 0 as

s → 0. It follows from the mean value inequality that

| f (x) − f (z) − D f (z)(x − z)| ≤ M(‖x − z‖) whenever [x, z] ⊂ U , (15)

where M(t) :=
∫ t

0 m(s) ds ≤ tm(t). Let us consider the following algorithm.
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Parameters: τ, θ ∈ ]0, 1[ .

Step 1. Initialization. Choose x0 ∈ U and δ > 0 such that m(δ) is finite. We assume

that

{x ∈ X : d(x, [ f ≤ f (x0)]) ≤ δ} ⊂ U .

Step 2. Stopping test. Given iterate xk , stop if D f (xk) = 0. Otherwise, let ‖dk‖ = 1

be such that

D f (xk)(dk) ≤ −τ‖D f (xk)‖∗. (16)

Step 3. Linesearch. If f (xk + δdk) ≤ f (xk) + θδ D f (xk)(dk), set tk := δ, xk+1 :=
xk + tkdk and go to Step 2. Otherwise, by a classical backtracking argument, find

tk ∈ ]0, δ/2] such that

f (xk + tkdk) ≤ f (xk) + θ tk D f (xk)(dk) , (17)

f (xk + 2tkdk) > f (xk) + 2θ tk D f (xk)(dk) , (18)

set xk+1 := xk + tkdk and go to Step 2.

From (16) to (17), since tk = ‖xk+1 − xk‖ we have

f (xk+1) ≤ f (xk) − τθ ‖xk+1 − xk‖ ‖D f (xk)‖∗ , (19)

while from (15) to (18), if tk+1 < δ we have

0 < f (xk + 2tkdk) − f (xk + tkdk) − θ tk D f (xk)(dk)

≤ M(tk) + tk(D f (xk + tkdk) − D f (xk))(dk) + (1 − θ)tk D f (xk)(dk)

≤ 2tkm(tk) − tkτ(1 − θ)‖D f (xk)‖∗ ,

that is,

2m(tk) ≥ τ(1 − θ)‖D f (xk)‖∗ . (20)

(a) Assume that the sequence of iterates is infinite [so that the sequence ( f (xk))

is decreasing according to (19], and has a subsequence converging to some x̄ ∈
[ f < f (x0)] (which is the case, e.g., if X = R

n and [ f < f (x0)] is bounded), and

set a := f (x̄). Assume further that for some r > 0 and b > a we have:

‖D f (x)‖∗ ≥ α( f (x) − a) for every x ∈ Br (x̄) ∩ [a< f <b] , (21)
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for some nondecreasing α ∈ �b−a (see Notation 4.1). If xk ∈ Br (x̄) ∩ [a< f <b],
then

τθ ‖xk+1 − xk‖ ≤ f (xk) − f (xk+1)

α( f (xk) − a)
≤ ϕα( f (xk) − a) − ϕα( f (xk+1) − a)

due to (19), (21), and the fact that α is nondecreasing. Consequently, given 0 < ρ ≤
min{r, b/τθ}, if k1 < k2 are such that ϕα( f (xk1) − a) < τθρ and xk ∈ Bρ(x̄) for

k = k1, . . . , k2 − 1, then

τθ

k2−1∑

k=k1

‖xk+1 − xk‖ ≤ ϕα( f (xk1) − a) < τθρ

(note that ϕα( f (xk) − a) < ϕα( f (xk1) − a) for k > k1), which shows that xk2 ∈
B2ρ(x̄), whence

x̄ = lim
k→∞

xk . (22)

Moreover, it follows from (20) that

D f (x̄) = lim
k→∞

D f (xk) = 0 .

Also, Theorem 4.1 and Proposition 7.1 yield

d(xk, [ f = a]) ≤ ϕα( f (xk) − a) ,

β(d(xk, [ f = a])) ≤ ‖D f (xk)‖∗ ≤ 2m(tk+1)

τ (1 − θ)

for all k large enough, where β := (ϕ−1
α )′ (recall from the proof of Proposition 3.2

that d(xk, [ f ≤ a]) = d(xk, [ f = a])).
(b) Assume now that U = X , that f is bounded below, and that, letting a := inf f <

b := f (x0), there exists a nondecreasing α ∈ �b−a such that

‖D f (x)‖∗ ≥ α( f (x) − a) for every x ∈ [a < f < b] . (23)

Theorem 4.2 and Proposition 7.1 yield that argmin f = [ f = a] = [ f ≤ a] is non-

empty and

ϕα( f (x) − a) ≥ d(x, [ f = a]) for every x ∈ [a < f < b] ,

‖D f (x)‖∗ ≥ β(d(x, [ f = a])) for every x ∈ [a< f < b] ,

where β := (ϕ−1
α )′. Of course, f (xk) = a if D f (xk) = 0. On the other hand, if the

sequence of iterates (xk) is infinite, for any K ∈ N we have (similarly as before):
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τθ

K∑

k=1

‖xk+1 − xk‖ ≤ ϕα( f (x1) − a) < +∞

due to (19) and (23), which shows that (xk) converges to some x̄ ∈ [ f <b], and that

tk = ‖xk+1 − xk‖ → 0, so that D f (x̄) = 0 due to (20), which shows that f (x̄) = a.

Remark 7.3 The above example synthesizes some results developed in [5, Sects. 3,

4.1] and in [7, Section. 3] (where X = R
n). In particular, the very nice argument

leading to (22) is given in the proof of [5, Theorem 3.2], which applies to Theorem 3.4

therein, which is itself expressed with a condition of the type of (21). Still, in [5] as

well as in [7], much emphasis is put on the Kurdyka–Łojasiewicz property, which, as

already said, is but another formulation of (21) (in the local case), or of (23) (in the

global case):

ϕ′( f (x) − a)‖D f (x)‖∗ ≥ 1 for every x ∈ [a< f <b] .

We note that this condition was used for the study of convergence of descent methods,

back in [27, p. 49], with ϕ(t) := σ
√

t for some σ > 0.

We finally observe that in [7], it is assumed that the function f is of class C1,1.

Assuming only that D f is uniformly continuous seems as good and natural. Moreover,

with respect to [5,7], we added the error bound estimates provided by our abstract

results.

8 Conclusions

With respect to earlier work of ours, we refined the abstract approach to nonlinear

error bounds for lower semicontinuous functions on complete metric spaces, in the

case when the main assumptions are lower estimates of the strong slope with respect

to the values of the function. Such estimates are linked to the notion of asymptoti-

cally well-behaved functions, and to the Kurdyka–Łojasiewicz inequality, so that our

approach can be used in various settings, as we illustrated through many examples

from the literature. We hope this can help develop systematic approaches that may

simplify and clarify various theoretical and technical aspects of nonsmooth analysis

and optimization.
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