
HAL Id: hal-01368635
https://hal.science/hal-01368635

Submitted on 21 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

General theory of three-dimensional consolidation
Maurice A. Biot

To cite this version:
Maurice A. Biot. General theory of three-dimensional consolidation. Journal of Applied Physics, 1941,
12 (2), pp.155-164. �10.1063/1.1712886�. �hal-01368635�

https://hal.science/hal-01368635
https://hal.archives-ouvertes.fr


General Theory of Three‐Dimensional Consolidation
Maurice A. Biot 
 
Citation: Journal of Applied Physics 12, 155 (1941); doi: 10.1063/1.1712886 
View online: http://dx.doi.org/10.1063/1.1712886 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/12/2?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Three-dimensional acoustic scattering by vortical flows. I. General theory 
Phys. Fluids 13, 2876 (2001); 10.1063/1.1401814 
 
General recurrence theory of ligand binding on a three-dimensional lattice 
J. Chem. Phys. 111, 4790 (1999); 10.1063/1.479242 
 
Novel generalization of three-dimensional Yang–Mills theory 
J. Math. Phys. 38, 3399 (1997); 10.1063/1.531859 
 
A general classification of three‐dimensional flow fields 
Phys. Fluids A 2, 765 (1990); 10.1063/1.857730 
 
High Order Perturbation Theory for a Generalized Central Field Perturbation of the Three‐
Dimensional Harmonic Oscillator 
J. Chem. Phys. 56, 586 (1972); 10.1063/1.1676909 
 
 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:

195.221.196.65 On: Wed, 21 Sep 2016 10:22:46

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1334201869/x01/AIP-PT/Continuum_JAPArticleDL_092116/Applied_Physics_Letters_7_13_Sept_High_Energy_banner_ad_1.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Maurice+A.+Biot&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.1712886
http://scitation.aip.org/content/aip/journal/jap/12/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof2/13/10/10.1063/1.1401814?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/111/10/10.1063/1.479242?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/38/7/10.1063/1.531859?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pofa/2/5/10.1063/1.857730?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/56/1/10.1063/1.1676909?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/56/1/10.1063/1.1676909?ver=pdfcov


General Theory of Three-Dimensional Consolidation* 

MAURICE A. BlOT 

Columbia UnifJersity, NeTJJ York, New York 

(Received October 25, 1940) 

The settlement of soils under load is caused by a phenomenon called consolidation, whose 
mechanism is known to be in many cases identical with the process of squeezing water out of 
an elastic porous medium. The mathematical physical consequences of this viewpoint are 
established in the present paper. The number of physical constants necessary to determine the 
properties of the soil is derived along with the general equations for the prediction of settle­
ments and stresses in three-dimensional problems. Simple applications are treated as examples. 
The operational calculus is shown to be a powerful method of solution of consolidation 
problems. 

INTRODUCTION 

I T is well known to engineering practice that a 
soil under load does not assume an instan­

taneous deflection under that load, but settles 
gradually at a variable rate. Such settlement is 
very apparent in clays and sands saturated with 
water. The settlement is caused by a gradual 
adaptation of the soil to the load variation. This 
process is known as soil consolidation. A simple 
mechanism to explain this phenomenon was first 
proposed by K Terzaghi.l He assumes that the 
grains or particles constituting the soil are more 
or less bound together by certain molecular 
forces and constitute a porous material with 
elastic properties. The voids of the elastic skel­
eton are filled with water. A good example of 
such a model is a rubber sponge saturated with 
water. A load applied to this system will produce 
a gradual settlement, depending on the rate at 
which the water is being squeezed out of the 
voids. Terzaghi applied these concepts to the 
analysis of the settlement of a column of soil 
under a constant load and prevented from lateral 
expansion. The remarkahle success of this theory 
in predicting the settlement for many types of 
soils has been one of the strongest incentives in 
the creation of a science of soil mechanics. 

Terzaghi's treatment, however, is restricted to 
the one-dimensional problem of a column under a· 
constant load. From the viewpoint of mathe­
matical physics two generalizations of this are 

• Publication assisted by the Ernest Kempton Adams 
Fund for Physical Research of Columbia University. 

1 K. Terzaghi, Erdbaumechanik aUf BodenphysikaUscher 
Grundlage (Leipzig F.lDeuticke, 1925); "Principle of soil 
mechanics," Eng. News Record (1925), a series of articles. 
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possible: the extension to the three-dimensional 
case, and the establishment of equations valid for 
any arbitrary load variable with time. The 
theory was first presented by the author in rather 
abstract form in a previous publication.2 The 
present paper gives a more rigorous and complete 
treatment of the theory which leads to results 
more general than those obtained in the previous 
paper. 

The following basic properties of the soil are 
assumed: (1) isotropy of the material, (2) re­
versibility of stress-strain relations under final 
equilibrium conditions, (3) linearity of stress­
strain relations, (4) small strains, (5) the water 
contained in the pores is incompressible, (6) the 
water may contain air 'bubbles, (7) the water 
flows through the porous skeleton according to 
Darcy's law. 

Of these basic assumptions (2) and (3) are 
most subject to criticism. However, we should 
keep in mind that they also constitute the basis of 
Terzaghi's theory, which has been found quite 
satisfactory for the practical requirements of 
engineering. In fact it can be imagined that the 
grains composing the soil are held together in a 
certain pattern by surface tension forces and tend 
to assume a configuration of minimum potential 
energy. This would especially be true for the 
colloidal particles constituting clay. It seems 
reasonable to assume that for small strains, when 
the grain pattern is not too much disturbed, the 
assumption of reversibility will be applicable. 

The assumption of isotropy is not essential and 

I M. A. Biot, "Le probleme de la Consolidation des 
Matieres argile uses sous une charge," Ann. Soc. Sci. 
Bruxelles BSS, 110-113 (1935). 
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anisotropy can easily be introduced as a refine­
ment. Another refinement which might be of 
practical importance is the influence, upon the 
stress distribution and the settlement, of the 
state of initial stress in the soil before application 
of the load. It was shown by the present author3 
that this influence is greater for materials of low 
elastic modulus. Both refinements will be left out 
of the present theory in order to avoid undue 
heaviness of presentation. 

The first and second sections deal mainly with 
the mathematical formulation of the physical 
properties of the soil and the number of constants 
necessary to describe these properties. The 
number of these constants including Darcy's 
permeability coefficient is found equal to five in 
the most general case. Section 3 gives a dis­
cussion of the physical interpretation of these 
various constants. In Sections 4 and 5 are 
established the fundamental equations for the 
consolidation and an application is made to the 
one-dimensional problem corresponding to a 
standard soil test. Section 6 gives the simplified 
theory for the case most important in practice of 
a soil completely saturated with water. The 
equations for this case coincide with those of the 
previous publication.2 In the last section is 
shown how the mathematical tool known as the 
operational calculus can be applied most con­
veniently for the calculation of the settlement 
without having to calculate any stress or water 
pressure distribution inside the soil. This method 
of attack constitutes a major simplification and 
proves to be of high value in the solution of the 
more complex two- and three-dimensional prob­
lems. In the present paper applications are 
restricted to one-dimensional examples. A series 
of applications to practical cases of two-dimen­
sional consolidation will be the object of subse­
quent papers. 

1. SOIL STRESSES 

Consider a small cubic element of the con­
solidating soil, its sides being parallel with the 
coordinate axes. This element is taken to be large 
enough compared to the size of the pores so that 
it may be treated as homogeneous, and at the 

aM. A. Biot, "Nonlinear theory of elasticity and the 
linearized case for a bodf under initial stress." 
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same time small enough, compared to the scale of 
the macroscopic phenomena in which we are 
interested, so that it may be considered as 
infinitesimal in the mathematical treatment. 

The average stress condition in the soil is then 
represented by forces distributed uniformly on 
the faces of this cubic element. The corresponding 
stress components are denoted by 

U x T z Til 

Tz UI/ Tx (1.1) 
Ty Tx U •. 

They must satisfy the well-known equilibrium 
conditions of a stress field. 

aUx aT. aTy 

-+-+-=0, 
ax ay az 
aTz auy aTx 

-+-+-=0, 
ax ay az 
aTy aTx au. 
-+-+-=0. 
ax ay az 

(1.2) 

Physically we may think of these stresses as 
composed of two parts; one which is caused by 
the hydrostatic pressure of the water filli!:lg the 
pores, the other caused by the average stress in 
the skeleton. In this sense the stresses in the soil 
are said to be carried partly by the water and 
partly by the solid constituent. 

2. STRAIN RELATED TO STRESS AND 

WATER PRESSURE 

We now call our attention to the strain in the 
soil. Denoting by u, v, w the components of the 
displacement of the soil and assuming the stra'in 
to be small, the values of the strain components 
are 

au aw av 
ex =-, 'Yx=,-+-, 

ax iy az 
av au aw 

ey =-, 'Yy=-+-, (2.1) 
ay az ax 
aw av au 

ez=-, 'Yz=-+-. 
az ax ay 

In order to describe completely the macroscopic 
condition of the soil we must consider an addi-
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tional variable giving the amount of water in the 
pores. We therefore denote by (J the increment of 
water volume per unit volume of soil and call this 
quantity the t1ariation in water content. The 
increment of water pressure will be denoted by u. 

Let us consider a cubic element of soil. The 
water pressure in the pores may be considered as 
uniform throughout, provided either the size of 
the element is small enough or, if this is not the 
case, provided the changes occur at sufficiently 
slow rate to render the pressure differences 
negligible. 

It is clear that if we assume the changes in the 
soil to occur by reversible processes the macro­
scopic condition of the soil must be a definite 
function of the stresses and the water pressure 
i.e., the seven variables 

1'" 1'v 1'. (J 

must be definite functions of the variables: 

Tx Ty T. U. 

Furthermore if we assume the strains and, the 
variations in water content to be small quantities, 
the relation between these two sets of variables 
may be taken as linear in first approximation. 
We first consider these functional relations for 
the particular case where u = O. The six com­
ponentsof strain are then functions only of the six 
stress components u" Uv U. Tx Ty Tz • Assuming the 
soil to have isotropic properties these ·relations 
must reduce to the well-known expressions of 
Hooke's law for an isotropic elastic body in the 
theory of elasticity; we have 

the shear modulus and Poisson's 
solid skeleton. There are only 
constants because of the relation 

ratio for the 
two distinct 

E 
G (2.3) 

2(1+11) 

Suppose now that the effect of the water pressure 
u is introduced. First it cannot produce any 
shearing strain by reason of the assumed isotropy 
of the soil; second for the same reason its effect 
must be the same on all three components of 
strain e" ey ez• Hence taking into account the 
influence of u relations (2.2) become 

U" 11 U 
e,,=---(ull+u,,)+-, 

E E 3H 

Uv 11 U 
ey=---(uz+ux)+-, 

E E 3H 

U z 11 U 

e. =---(u",+uy ) +-, 
,E E 3H 

1',,= T,,/G, 

/,y= Ty/G, 

/'z= Tz/G, 

(2.4) 

where H is an additional physical constant. 
These relations express the six strain components 
of the soil as a function of the stresses in the soil 
and the pressure of the water in the pores. We 
still have to consider the dependence of the 
increment of water content (J on these same 
variables. The most general relation is 

(J =aiUx+a2Uy+aaU.+a4Tx 
+a6Ty+aST .+a7u. (2.5) 

Now because of the isotropy of the material a 
change in sign of T" Ty Tz cannot affect the water 
content, therefore a4=aL=a6=O and the effect 

(2.2) of the shear stress components on (J vanishes. 

1'x= Tx/G, 

1'11= Ty/G, 

/'z= Tz/G. 

In these relations the constants E, G, 11 may be 
interpreted, respectively, as Young's modulus, 

VOLUME 12, FEBRUARY, 1941 

Furthermore all three directions x, y, z must have 
equivalent properties ai=a2=aa. Therefore rela­
tion (2.5) may be written in the form 

where Hi and R are two physical constants. 
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Relations (2.4) and (2.6) contain five distinct 
physical constants. We are now going to prove 
that this number may be reduced to four; in 
fact that H =H1 if we introduce the assumption 
of the existence of a potential energy of the soil. 
This assumption means that if the changes occur 
at an infinitely slow rate, the work done to bring 
the soil from the initial condition to its final state 
of strain and water content, is independent of the 
way by which the final state is reached and is a 
definite function of the six strain components and 
the water content. This assumption follows quite 
naturally from that of reversibility introduced 
above, since the absence of a potential energy 
would then imply that an indefinite amount of 
energy could be drawn out of the soil by loading 
and unloading along a closed cycle. 

The potential energy of the soil per unit volume 
IS 

u = HO'"e,,+ O'lIell+ 0' ,e.+r.,y" 
+ rll'YlI+ rz'Y .+0'0). (2.7) 

In order to prove that H =Hl let us consider a 
particular condition of stress such that 

0'.,=0'11=0'.=0'1, 
r.,=r,,=r.=O. 

Then the potential energy becomes 

U=HO'IE+O'O) with E=e,,+ell+e. 

and Eqs. (2.4) and (2.6) 

3(1-2p) u 
E= Ul+-, 0=uI/H1+u/R. (2.8) 

E H 

The quantity E represents the volume increase of 
the soil per unit initial volume. Solving for Ul 
and u 

E 0 
Ul=---, 

Rt:. Ht:. 

sidered as a function of the two variables E, O. 
Now we must have 

au au 
-=Ul, -=u. 
aE ao 

Hence 
aUI au 
-=-
ao aE 

or 
1 1 
-=--. 

We have thus proved that H =H1 and we may 
write 

(2.10) 

Relations (2.4) and (2.10) are the fundamental 
relations describing completely in first approxi­
mation the properties of the soil, for strain and 
water content, under equilibrium conditions. 
They contain four distinct physical constants 
G, v, Hand R. For further use it is convenient to 
express the stresses as functions of the strain and 
the water pressure rT. Solving Eq. (2.4) with 
respect to the stresses we find 

with 

(J"'=2G(e,,+~) -arT, 
1-2v 

u1l = 2G(e1l+~) -au, 
1-2v 

u'=2G(e.+~) -arT, 
1-2v . 

2(1+v) G 
a=----

3(1-2p) H 

(2.11) 

-E 3(1-2p)0 
u=--+----

HIt:. Et:. 
(2.9) In the same way we may express the variation in 

water content as 

3(1-2v) 1 (2.12) 

ER HHI 
where 

1 1 a 
=---. 

The potential energy in this case may be con- Q R H 
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3. PHYSICAL INTERPRETATION OF THE 

SOIL CONSTANTS 

The constants E, G and v have the same 
meaning as Young's modulus the shear modulus 
and the Poisson ratio in the theory of elasticity 
provided time has been allowed for the excess 
water to squeeze out. These quantities may be 
considered as the average elastic constants of the 
solid skeleton. There are only two distinct such 
constants since they must satisfy relation (2.3). 
Assume, for example, that a column of. soil sup­
ports an axial load po= -u. while allowed to 
expand freely laterally. If the load has been 
applied long enough so that a final state of 
settlement is reached, i.e., all the excess water has 
been squeezed out and u = 0 then the axial strain 
is, according to (2.4), 

po 
e.=--

E 
(3.1) 

and the lateral strain 

vpo 
ex=ey=-= - ve z• 

E 
(3.2) 

The coefficient v measures the ratio of the lateral 
bulging to the vertical strain under final equi­
librium conditions. 

To interpret the constants Hand R consider a 
sample of soil enclosed in a thin rubber bag so 
that the stresses applied to the soil be zero. Let 
us drain the water from this soil through a thin 
tube passing through the walls of the bag. If a 
negative pressure - u is applied to the tube a 
certain amount of water will be sucked out. This 
amount is given by (2.10) 

u 
8=--. 

R 
(3.3) 

The corresponding volume change of the soil is 
given by (2.4) 

U 

E=--. 
H 

(3.4) 

The coefficient 1/ H is a measure of the com­
pressibility of the soil for a change in water 
pressure, while l/R measures the change in 
water content for a given change in water pres-

VOLUME 12, FEBRUARY, 1941 

sure. The two elastic constants and the constants 
Hand R are the four distinct constants which 
under our assumption define completely the 
physical proportions of an isotropic soil in the 
equilibrium conditions. 

Other constants have been derived from these 
four. For instance a is a coefficient defined as 

2(1+v) G 
a= . 

3(1-2v) H 
(3.5) 

According to (2.12) it measures the ratio of the 
water volume squeezed out to the volume change 
of the soil if the latter is compressed while 
allowing the water to escape (u = 0). The coeffi­
cient l/Q defined as 

1 1 a 

Q R H 
(3.6) 

is a measure of the amount of water which can be 
forced into the soil under pressure while the 
volume of the soil is kept constant. It is quite 
obvious that the constants a and Q will be of 
significance for a soil not completely saturated 
with water and containing air bubbles. In that 
case the constants a and Q can take values 
depending on the degree of saturation of the soil. 

The standard soil test suggests the derivation 
of additional constants. A column of soil supports 
a load po= -rr. and is confined laterally in a rigid 
sheath so that no lateral expansion can occur. 
The water is allowed to escape for instance by 
applying the load through a porous slab. When 
all the excess water has been squeezed out the 
axial strain is given by relations (2.11) in which 
we put u=O. We write 

(3.7) 

The coefficien t 
1-2v 

a=----
2G(1- v) 

(3.8) 

will be called the final compressibility. 
If we measure the axial strain just after the 

load has been applied so that the water has not 
had time to flow out, we must put (} = 0 in 
relation (2.12). We deduce the value of the water 
pressure 

rr= -aQe •. (3.9) 

159 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:

195.221.196.65 On: Wed, 21 Sep 2016 10:22:46



substituting this value in (2.11) we write 

(3.10) 
The coefficient 

a 
(3.11) a;=---

1+a2aQ 

will be called the instantaneous compressibility. 
The physical constants considered above refer 

to the properties of the soil for the state of 
equilibrium when the water pressure is uniform 
throughout. We shall see hereafter that in order 
to study the transient state we must add to the 
four distinct constants above the so-called 
coefficient oj permeability of the soil. 

4. GENERAL EQUATIONS GOVERNING 

CONSOLIDATION 

We now proceed to establish the differential 
equations for the transient phenomenon of con­
solidation, i.e., those equations governing the dis­
tribution of stress, water content, and settlement 
as a function of time in a soil under given loads. 

Substituting expression (2.11) for the stresses 
into the equilibrium conditions (1.2) we find 

G aE acr 
GV 2u+-- --a-=O, 

1-21' ax ax 

G aE acr 
GV'2v+-- --a-=O, 

1-2" ay ay 
G aE acr 

(4.1) 

GV'2.zv+-- --a-=O, 
1-2" az az 

V'2 = a2/ax2+a2 / ay2+a2 / az2. 

There are three equations with four unknowns 
u, v, w, cr. In order to have a complete system we 
need one more equation. This is done by intro­
ducing Darcy's law governing the flow of water 
in a porous medium. We consider again an 
elementary cube of soil and call V" the volume of 
water flowing per second and unit area through 
the face of this cube perpendicular to the x axis. 
In the same way we define Vyand V •. According 
to Darcy's law these three components of the 
rate of flow are related to the water' pressure by 
the relations 

acr 
Vx = -k-, 

ax 
acr 

V z = -k-. (4.2) 
az 

The physical constant k is called the coefficient oj 
permeability of the soil. On the other hand, if we 
assume the water to be incompressible the rate of 
water content of an element of soil must be equal 
to the volume of water entering per second 
through the surface of the element, hence 

(4.3) 
at ax ay az 

Combining Eqs. (2,,21 (4.2) and (4.3) we obtain 

aE 1 acr 
kV'2cr = a-+- -. 

at Q at 
( 4.4) 

The four differential Eqs. (4.1) and (4.4) are the 
basic equations satisfied by the four unknowns 
u, v, w, (J. 

5. ApPLICATION TO A STANDARD SOlL TEST 

Let us examine the particular case of a column of soil supporting a load po = - cr. and confined 
laterally in a rigid sheath so that no lateral expansion can occur. It is assumed also that no water can 
escape laterally or through the bottom while it is free to escape at the upper surface by applying the 
load through a very porous slab. 

Take the z axis positive downward; the only component of displacement in this case will be w. 
Both wand the water pressure cr will depend only on the coordinate z and the time t. The differential 
Eqs. (4.1) and (4.4) become 

160 

1 a2w j)w 
---a-=O 
a az2 az ' 

a2cr a2.zv 1 acr 
k-=a--+--, 

az2 azat Q at 

(5.1) 

(5.2) 
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where a is the final compressibility defined by (3.8). The stress O'z throughout the loaded column is a 
constant. From (2.11) we have 

and from (2.12) 

1 aw 
Po= -O'z= ---+aO' 

a az 

aw 0' 
8=a--+-. 

az Q 
Note that Eq. (5.3) implies (5.1) and that 

This relation carried into (5.2) gives 

with 

1 a2w aO' 
---=a-. 
a azat at 

-=--, 
az2 c at 

1 a 1 
-=aL +-. 
C k Qk 

(5.3) 

(5.4) 

(5.5) 

The constant c is called the consolidation constant. Equation (5.4) shows the important result that the 
water pressure satisfies the well-known equation of heat conduction. This equation along with the 
boundary and the initial conditions leads to a complete solution of the problem of consolidation. 

Taking the height of the soil column to be hand z=o at the top we have the boundary conditions 

0'=0 for z=O, 

aO' 
-=0 for z=h. 
az 

(5.6) 

The first condition expresses that the pressure of the water under the load is zero because the perme­
ability of the slab through which the load is applied is assumed to be large with respect to that of the 
soil. The second condition expresses that no water escapes through the bottom. 

The initial condition is that the change of water content is zero when the load is applied because the 
water must escape with a finite velocity. Hence from (2.12) 

aw 0' 
8=a-+-=0 for t=O. 

az Q 

Carrying this into (5.3) we derive the initial value of the water pressure 

O'=Po / (a~Q +a) 
a-ai 

for t=O or O'=--Po, 
aa 

(5.7) 

where ai and a are the instantaneous and final compressibility coefficients defined by (3.8) and (3.11). 
The solution of the differential equation (5.4) with the boundary conditions (5.6) and the initial 

condition (5.7) may be written in the form of a series 

4a-a; { [(7r)2] 7rZ 1 [(37r)2] 37rz } 0'=- --po exp - - ct sin -+- exp - - ct sin -+ .... 7r aa 2h 2h 3 2h 2h 

The settlement may be found from relation (5.3). We have 

aw 
-=aaO'-apo. 
az 

VOLUME 12, FEBRUARY, 1941 

(5.8) 

(5.9) 
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The total settlement is 

f l> ow 8 GO 1 {[(2n+ 1)71"]2 } 
wo= - -dZ= --{a-a.)hpo L exp - ct +ahpo. ° OZ 71"2 0 (2n+1)2 2h 

Immediately after loading (t = 0). the deflection is 

8 co 1 
W;= --(a-ai)hpo L +ahp" 

71"2 0 (2n+1)2 

Taking into account that 
00 1 71"2 

L . Wi = a,hpo, 
o (2n+1)2 8 

which checks with the result (3.10) above. The final deflection for t = 00 is 

w .. =ahpo. 

(5.10) 

(5.11) 

(5.12) 

It is of interest to find a simplified expression for the law of settlement in the period of time immedi­
ately after loading. To do this we first eliminate the initial deflection Wi by considering 

8 00 1 { [( (2n+1)71")2 ]} ws=wo-w;=-(a-ai)hpo L 1-exp - ct . 
71"2 0 (2n+1)2 2h 

(5.13) 

This expresses that part of the deflection which is caused by consolidation. We then consider the 
rate of settlement. 

dw. 2c(a-a;)" {[(2n+1)7I"]2} 
- = Po L exp - ct . 
dt h 0 2h 

(5.14) 

For t = 0 this series does not converge; which means that at the first instant of loading the rate of 
settlement is infinite. Hence the curve representing the settlement w. as a function of time starts 
with a vertical slope and tends asymptotically toward the value (a-a.)hpo as shown in Fig. 1 (curve 
1). It is obvious that during the initial period of settlement the height h of the column cannot have 
any influence on the phenomenon because the water pressure at the depth z = h has not yet had time 
to change. Therefore in order to find the nature of the settlement curve in the vicinity of t=O it is 
enough to consider the case where h = 00. In this case we put 

n/h=~, 1/h=t..~ 
and write (5.14) as 

for h = QO. The rate of settlement becomes the integral 

_8 = 2c(a-ai)PO exp (_7I"2~2ct)d~ 
dw f" c(a-a.)po 

dt 0 (7I"ct)! 
(5.15) 

The value of the settlement is obtained by integration 

ws=f' dW
8

dt =2(a_a,)po(ct )'. 
o dt 71" 

(5.16) 

It follows a parabolic curve as a function of time (curve 2 in Fig. 1). 
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6. SIMPLIFIED THEORY FOR A SATURATED CLAY 

For a completely saturated clay the standard 
test shows that the initial compressibility a, may 
be taken equal to zero compared to the final 
compressibility a, and that the volume change of 
the soil is equal to the amount of water squeezed 
out. According to (2.12) and (3.11) this implies 

Q= 00, a=1. (6.1) 

This reduces the number of physical constants of 
the soil to the two elastic constants and the 
permeability. From relations (3.5) and (3.6) we 
deduce 

2G(1+v) 
H=R (6.2) 

3(1-2v) 

and from (5.5) the value of the consolidation 
constant takes the simple form 

c=kja. 

Relation (2.12) becomes 

8=E. 

(6.3) 

(6.4) 

The general differential equations (4.1) and 
(4.4) are simplified, 

G dE dU 
GV2U+-----=0 

1-2vax ax ' 

Equations (6.5) and (6.8) are the fundamental 
equations governing the consolidation of a com­
pletely saturated clay. Because of (6.4) the initial 
condition 8=0 becomes E=O, i.e., at the instant 
of loading no volume change of the soil occurs. 
This condition introduced in Eq. (6.7) shows that 
at the instant of loading the water pressure in the 
pores also satisfies Laplace's equation. 

(6.9) 

The settlement for the standard test of a column 
of clay of height h under the load po is given by 
(5.13) by putting a,=O. 

8 00 1 
w.=-ahpo L: ---

11'2 0 (2n+1)2 

X{l-exp [ _C2n~1)1l'rct]}. (6.10) 

From (5.16) the settlement for an infinitely high 
column is 

(
ct )! 

w. = 2apo -:; . (6.11) 

It is easy to imagine a mechanical model having 
the properties implied in these equations. Con­
sider a system made of a great number of small 
rigid particles held together by tiny helical 

G aE au 
GV2v+-- - --= 0 

1-2vay ay , 

G aE iJu 

(6.5) springs. This system will be elastically deformable 
and will possess average elastic constants. If we 
fill completely with water the voids between the 

GV2W +-----=0 
1-2vaz iJz ' 

iJE 
k-'Vri'I=-. 

at 
(6.6) 

By adding the derivatives with respect to x, y, z 
of Eqs. (6.5), respectively, we find 

(6.7) 

where a is the final compressibility given by (3.8). 
From (6.6) and (6.7) we derive 

1 aE 
~=--. (6.8) 

c at 

Hence the volume change of the soil satisfies the 
equation of heat conduction. 
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w. 
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t 

-t 
FIG. 1. Settlement caused by consolidation as a function 

of time. Curve 1 represents the settlement of a column of 
height h under a load po. Curve 2 represents the settlement 
for an infinitely high column. 
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particles, we shall have a model of a completely 
saturated clay. 

Obviously such a system is incompressible if no 
water is allowed to be squeezed out (this corre­
sponds to the condition Q= 00) and the change 
of volume is equal to the volume of water 
squeezed out (this corresponds to the condition 
a = 1). If the systems contained air bubbles this 
would not be the case and we would have to 
consider the general case where Q is finite and 
a~l. 

Whether this model represents schematically 
the actual constitution of soils is uncertain. It is 
quite possible, however, that the soil particles are 
held together by capillary forces which behave in 
pretty much the same way as the springs of the 
model. 

7. OPERATIONAL CALCULUS ApPLIED TO 

CONSOLIDATION 

The calculation of settlement under a suddenly 
applied load leads naturally to the application of 
operational methods, developed by Heaviside for 
the analysis of transients in electric circuits. As 
an illustration of the power and simplicity 
introduced by the operational calculus in the 
treatment of consolidation problem we shall 
derive by this procedure the settlement of a 
completely saturated clay column already calcu­
lated. in the previous section. In subsequent 
articles the operational method will be used 
extensively for the solution of various consolida­
tion problems. We consider the case of a clay 
column infinitely high and take as before the top 
to be the origin of the vertical coordinate z. For a 
completely saturated clay a=l, Q= 00 and with 
the operational notations, replacing a/at by p, 

164 

Eqs. (5.1) become 

1 a2w au a2u aw 
--=-, k-=p-. (7.1) 
a az2 az az2 az 

A solution of these equations which vanishes at 
infinity is 

The boundary conditions are for z = 0 

1 aw 

Hence 

uz=-l=--, u=O. 
a az 

Cl=a(;Y, C2 =1. 

(7.2) 

The settlement w. at the top (z=O) caused by the 
sudden application of a unit load is 

ws=a(;) i .1(t). 

The meaning of this symbolic expression 1S 

derived from the operational equation4 

1 (t )t -let) =2 - . 
pi 'II" 

(7.3) 

The settlement as a function of time under the 
load po is therefore 

(
ct )! 

w8 =2apo -; . (7.4) 

This coincides with the value (6.11) above. 

4 V. Bush, Operational Circuit Analysis (John Wiley, 
New York, 1929), p. 192. 
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