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Note that this phenomenon is the same if we 
put 

The initial condition is then a horizontal tension 
-p and the velocity of shear waves propagating 
in the horizontal direction is 

If we put 0= 0 in this formula we do not find the 
velocity in a membrane or a string under tension. 
This is because the wave in a membrane is not a 
shear wave but a bending wave. For the view
point of the theory of elasticity a bending wave is 
the combination of two waves of the Rayleigh 

type at both free boundaries. 10 If we calculate the 
velocity of these bending waves and then put 
0=0 we find 

which is the velocity of a wave in a membrane 
under tension P. 

This analysis shows that propagation and 
reflections of elastic waves in a material under 
initial stress must follow laws which cannot be 
explained by elastic anisotropy or a change in 
elastic constants. In fact, because the velocity of 
propagation depends on the total initial shear, a 
discontinuity in shear may produce a reflection 
even if there IS no discontinuity in elastic 
constants. 

10 S. P. Timoshenko, "On the transverse vibrations of 
bars of uniform cross section." Phil. Mag. 43, 125 (1922). 

Equations of Finite Differences Applied to Torsjonal Oscillations of Crankshafts* 
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From the viewpoint of torsional oscillations an internal 
combustion engine with a long crankshaft is generally 
considered to be equivalent to a uniform shaft carrying 
equidistant identical disks. It is here shown tha{advantage 
can be taken of the regularity of such a system to simplify 
the calculation of torsional oscillations. This is done by 
applying a mathematical method known as the calculus of 
finite d~fferences. The procedure leads to a frequency 
equation (2.7) of remarkable symmetry in which appear as 
parameter the number n of cylinders in line and two simple 
functions KI and K2 of the frequency which characterize 
the dynamical properties of the machines coupled at both 
ends of the crankshaft. These characteristic functions are 

1. MECHANICAL IMPEDANCE AND DYNAMIC 

MODULUS 

I N the theory of electric networks the concept 
of impedance has proved to be a highly useful 

tool for both the analytical treatment and the 
comprehension of electrical phenomena. Its use 
has been extended to the field of mechanics by 
the introduction of so-called equivalent networks 
or, as in acoustics, by defining the mechanical 
impedance as the ratio of force to velocity. The 

* Publication assisted by the Ernest Kempton Adams 
Fund for Physical Research of Columbia University. 
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of the nature of mechanical impedances, but due to their 
physical interpretation as a spring modulus. (or spring 
constant) generalized to dynamic phenomena, the appel. 
lation dynamic modulus is being preferably used in the 
present paper. The concept of dynamic modulus is briefly 
introduced in the first section, while the second deals with 
the establishment of the frequency equation and an artifice 
for its rapid graphical solution avoiding the necessity of 
plotting an oscillatory function. Numerical applications to 
Diesel engines are treated in the last section. An example is 
also given of an extreme case where the fundamental 
frequency has a very low value and a special method is 
used for the calculation of this frequency. 

latter definition is very useful in compound 
electromechanical systems and in those for 
which the amount of dissipated or radiated 
energy is one of the important features. However, 
in systems without or with negligible dissipation 
constituted, for instance, by a combination of 
masses and springs, it seems preferable to intro
duce as mechanical impedance the ratio of force 
to displacement. When there is no dissipation 
this ratio is a real quantity which can be either 
positive or negative. It generalizes the concept 
of spring constant to the case of harmonic mo-
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tion. In order to distinguish this type of im
pedance from the other we use the appellation 
dynamic spring constant or simply dynamic 
modulus. The following example illustrates the 
above definition.* 

An elastic rod AB of torsional spring constant 
k is clamped at B and carries at A a disk of 
moment of inertia I (Fig. 1). In order to produce 
an harmonic oscillation of the disk of frequency 
w/27r and of amplitude () we must apply to the 
disk a torque 

M = (k-Iw2)O. 

This may be written 

M=K() (1.1) 
with 

K=k+lp2 p=iw i=y'-1. 

The quantity K is the dynamic modulus of the 
system at A. It becomes equal to the static 
modulus k of the rod for small frequencies, it 
vanishes at resonance and is negative for higher 
frequencies. 

In the case of a shaft carrying two disks and 
free to rotate in bearings as illustrated in Fig. 2, 
it is readily verified that the dynamic modulus 
K2 at the left end is obtained by the following 
steps. The dynamic modulus K' at the left of 

R 

FIG. 1. Example of mechanical impedance. 

the system (k, I) alone is given by 

1/K' = 1/k+ 1/ Ip2. (1.2) 

If we add the mass II the dynamic modulus 
becomes K" 

(1.3) 

* Further developments on mechanical impedances, the 
concept of dynamic modulus and. the application of the 
calculus of finite diff,erences to engineering problems will be 
found in a textbook by Dr. Th. von Karman and the 
author (Mathematical Methods in Engineering (McGraw 
Hill Book Co., Inc., New York, 1940». 
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and adding the spring kl the dynamic modulus 
K2 is given by 

(1.4) 

The law of formation of the dynamic modulust 
is the well-known series-parallel combination rule 
for the electrical impedance of a ladder-type 

FIG. 2. Example of mechanical impedance. 

network. From (1.2), (1.3), (1.4) we find 

1 

I 

(1.5) 

The physical meaning of this quantity K2 is that 
a harmonic torque of given frequency w/27r 
acting on the left end of the system produces an 
amplitude at that point which would be the same 
as if the torque were driving an elastic rod 
clamped at the other end and of spring constant 
equal to K 2• Also if we put K 2 =O we obtain the 
frequency equation for the free oscillations of the 
system, while 1/K2=O is the frequency equation 
when it is rigidly clamped at the left end. 

2. FREQUENCY EQUATION 

Using the concept of dynamic modulus and 
a mathematical method known as the calculus of 
finite differences we are now going to show that 
it is possible to establish a frequency equation of 
remarkable simplicity. 

Following the usual procedure we represent 

t A similar rule for the combination of springs is indi
cated in J. P. Den Hartog, Mechanical Vibrations (McGraw 
Hill Book Co., New York, 1934), p. 41. 
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FIG. 3. Schematic representation of an internal combustion 
engine and its end impedances. 

schematically the crankshaft rods and pistons 
by a uniform shaft carrying as many disks as 
there are cylinders in line. (Fig. 3). Let n be the 
number of disks (or cylinders in line) numbered 
from 1 to n, I their moment of inertia and ()x the 
amplitude of oscillation of a disk numbered x. It 
is well known that the amplitudes of three 
successive disks satisfy the equation 

Iw2()x=k( -()x-l+ 2()X-()X+l), (2.1) 

where w is the angular frequency of the oscillation 
and k the torsional spring constant of a section 
of the shaft between two disks. * If we put 
a 2 =Iw2 jk Eq. (2.1) may be written 

()x-l - (2 - a2)().'+()x+l = O. (2.2) 

There are n- 2 such equations for x= 2, 3, "', 
n-1. In order to express the corresponding rela
tions for the end disks we assume that a machine 
of dynamic modulus K 1 is coupled at the left end 
of the shaft and a machine of dynamic modulus 
K2 at the right end. Then the amplitudes of 
oscillation ()l and ()2 satisfy the equations, 

()2- (1-a2+Kl/k)el=0 
()n-l- (1-a2+K2 jk)en= O. (2.3) 

The recurrence Eq. (2.2) is called an equation 
with finite differences of the second order. Such an 

* As pointed out by R. Grammel [see for instance: iiber 
einige dynamische Probleme bei Kolben motoren Schriften 
der Deutschen Akademie der Luftfohrtforschung (1939)J 
due to the existence of play between bearings and crank
shaft journals, the model should include a slight coupling 
between the disks x and x+2. This can also be treated by 
the method of finite differences. It is believed however 
that the classical method of perturbations might yield 
more quickly the corrected modes and frequencies. Another 
correc~ion ~hich can be obtained by the method of per
turbatIOns IS due to the fact that the moments of inertia 
of the disks include a periodic function of time. 
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equation may be treated by methods similar to 
those used in the solution of differential equa
tions, with relations (2.3) playing here the role 
of "boundary conditions." 

Let us first assume that I a I < 2. In that case 
the so-called general solution of Eq. (2.2) is 
known to be 

(),,=A cos ,ux+B sin ,ux, (2.4) 

where A and B are arbitrary constants and ,u is 
related to the frequency by the relation 

w=2(k/I)i sin ,u/2. (2.5) 

The arbitrary constants A and B are determined 
by substituting the general solution (2.4) into the 
boundary conditions (2.3). Putting Kl/k-1 = M, 
Kdk-1=N we find 

A (1 +M cos,u) +BM sin ,u=0 

A [cos ,u(n+1)+N cos ,un] 
+B[sin ,u(n+1)+N sin ,un]=O. (2.6) 

These are two simultaneous equations for A and 
B. A more detailed derivation is given in the 
Appendix at the end of the paper. The elimina
tion of A and B between these two equations 
yields the frequency equation, 

sin ,u(n+ 1) + (M + N) sin ,un 
+MNsin,u(n-l)=O. (2.7) 

We have assumed la\ <2 or w=2(kjI)t which 
means that the frequency Eq. (2.7) yields only 
the natural frequencies of the system which are 
lower than 2(kj I)t. In most practical cases how
ever this range will be sufficient as it will actually 
cover all the frequencies of the system or at least 
the greatest number of them and the most im
portant ones. The limiting value wc=2(k/I)t of 
the frequency has an important physical sig
nificance as regards the response of the crank
shaft to vibrations. In the terminology of electric 
wave filters We is called the cut-off frequency. In 
fact the crankshaft is the mechanical equivalent 
of a low pass filter and it reflects all torsional 
waves of frequency higher than the cut-off fre
quency. For a frequency approaching this limit
ing value the mode of vibration in the crankshaft 
is such that two successive cranks oscillate in 
opposite phases. 

JOURNAL OF APPLIED PHYSICS 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  195.221.196.65

On: Wed, 21 Sep 2016 10:23:29



In principle, in order to find the roots of the 
frequency equation it would be sufficient to plot 
the left side of Eq. (2.7) as a function of p, or w 
and note the abscissas where the curve intersects 
the horizontal axis. This procedure however, is 
generally cumbersome because the function to 
plot is highly oscillatory and requires the calcula
tion of a great number of points. This difficulty 
may be avoided and the numerical work con
siderably simplified by the following artifice. 

We notice that the frequency equation may be 
written in complex form by putting 

el'i/2+ 11;[ e-p.i/2 = A Ie'!'! i 

ep.i/2+ Ne-p.i/2=A 2e'!'2 i . 
(2.8) 

The leftside of the frequency Eq. (2.7) is then the 
imaginary part of A 1A 2e(p.n+'!'!+'!'2)i. An equivalent 
form of the frequency equation is therefore 

where <,01 and <,02 are functions of JJ. given by 

(2.10) 

In Eq. (2.9) the left side represents a smooth 
function of p, generally near to a straight line. 
This form of the frequency equation is therefore 
well fit for solution by graphical methods and 
interpolation. The procedure will be made clear 
by the numerical examples below. 

The method is of course not limited to the 
calculation of frequencies lower than the cut-off 
frequencies. If [ex [ > 2 the general solution of the 
difference equation (2.2) is 

8x=A( -1)x cosh JJ.x+B( -1)'" sinh JJ.X, (2.11) 

where p, is related to w by the relation, 

w=2(k/ J)! cosh p,/2. 

Proceeding as we have done above this leads to a 
frequency equation similar to (2.6) this time with 
hyperbolic instead of circular function. 

The shape of the modes of vibration in the 
crankshaft may be calculated below the cut-off 
frequency by (2.4) and above by (2.11). Using, 
for instance, the first condition (2.6) we may 

VOLUME 11, AUGUST, 1940 

write (2.4) in the form 

8x = C sin (p,x+i3) (2.12) 
with 

tan {j= (l-Kdk) sin JJ./[1 +(Kdk -1) cos P,J 
and C an arbitrary constant. The torsional mode 
of order r is found by substituting the values P,r 

and w" roots of the frequency equation and 
corresponding to that mode. 

3. ApPLICATIONS 

Example 1 
We consider the case of a crankshaft with n 

cranks free at both ends. Then K 1=K2 =O. The 
frequency Eq. (2.7) may be written 

sin p,(n+l)-2 sin p,n+sin p,(n+l)=O 
or sin p,n=O. 

The roots are p,=p'Tr/n (p=O, 1, 2, "', n). The 
values p = 0 and p = n must be excluded because 
they do not correspond to any motion of the 
crankshaft. The (n -1) natural frequencies are 
therefore given by the formula 

p=l, 2, ... , n-l. 

The spectrum of frequencies is represented ill 
Fig. 4. We notice that the highest frequencies 
have a tendency to gather in the vicinity of the 

r--r---.....,. 

~'" "- '\ 
\ 

\ 

FIG. 4. Frequency spectrum of a 12-cylinder in-line engine 
without end impedances. 
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i 3 . .f ; 6 

k h, 

I I, 
FIG. 5. Six-cylinder Diesel with pump flywheel and pulley. 

cut-off frequency wc=2(k/I)~. This is a general 
feature in the oscillations of long crankshafts. It 
is also of interest to consider the frequency equa
tion in the form (2.9). We may write in this case 
<Pl= <P2= -7r/2 then the Eq. (2.9) becomes 

J.tn = multiple of 7r. 

In this case the left side of the equation as a 
function of J.t represents a straight line. 

Example 2 

A six-cylinder Diesel installation is represented 
in Fig. 5. The numerical data are:* 

1=3920 lb. in. sec. ' 
11 = 139800 lb. in. sec.' 
1.=26400 lb. in. sec" 
Ia = 708 lb. in. sec.' 

k=730XI0" in.lb./rad. 
kt=402XlO" in. lb./rad. 
k. = 1334 X 10" in. lb./rad. 
ka = 2070X 106 in. lb./rad. 

The dynamic modulus Kl at the left end of the 
crankshaft is given by 

1/K1 = 1/ka -1/ Iaw2 

and 2k/Kl expressed as a function of J.t by means 
of relation (2.5) is 

2k 2k I 1 

Kl ka 2I3 sin2 J.t/2 

Introducing this in the first formula (2.10) we 
calculate <PI as a function of J.t. In the same way 
we calculate 2k/K2 where K2 is the dynamic 
modulus at the right end of the crankshaft. This 
may be calculated as a function of J.t in the 
following steps 

w2 =4k/lsin2 jJ./2 
1/K'=1/k2 -1/I2w2 

K"= -Ilw2+K' 
2k/K2= 2k/k 1+2k/K". 

* The numerical data for this engine are taken from S. 
Timoshenko, Vibration Problems in Engineering (D. Van 
Nostrand, New York, 1939), p. 150. 
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Introducing this function in the second formula 
(2.10) we calculate <P2. Calculations need only be 
made in the range o <J.t <7r. The frequency 
equation 

6J.t+<Pl+<P2 = multiple of 7r 

will be solved graphically by plotting the left 
side as a function of jJ.. The values of the func
tions <PI, <P2 are given in Table I. 

The curve representing 6}.1 + <PI + <P2 is plotted 
in Fig. 6; the intersections of this curve with the 
horizontals of ordinates 0, 7r, 27r, 37r, 47r, 57r, yield 
the roots of the frequency equation (3.6). These 
roots are in degrees, 

J.tl=12.75 
J.t4= 91.2 

J.ta=63.7 
J.t6= 149. 

The corresponding frequencies are derived from 
the formula w =wcsin J.t/2 wherewc = 2(k/ I)!= 866; 
the natural frequencies are 

866 12.75 
h =- sin --= 15.3 sec.- I 

27r 2 

866 37.5 
iz=- sin ---=44.3 sec.-I 
. 27r 2 

866 63.7 
13=- sin --=72.4 sec.-1 

27r 2 

866 91.2 
14=- sin --=98.3 sec.-I 

2Tr 2 

866 129 
15=- sin -= 124 sec."-l 

27r 2 

866 149 
16=- sin -= 132 sec.-I. 

2Tr 2 

TABLE I. 

I' 1"1 1'" 61'+1"1+1'" 

0 -90 -90 -180 
5 -8.20 -89.3 -67.5 

10 5.75 -88.2 -22.4 
15 14.7 -87.3 17.4 
20 22.1 -86.3 55.7 
30 34.8 -83.7 131 
45 46.5 -82.2 234 
60 56.0 -79.5 336 
75 63.5 -76.3 437 
90 69.1 -75.4 533 

105 73.6 -74.1 629 
120 77.6 -73.6 724 
150 84.1 -78.2 905 
280 90 -90 1080 
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These are the six natural frequencies of the 
system below the cut-off frequency whose value 
is in this case 138 sec.-1. The system has actually 
eight natural frequencies, there are therefore two 
more frequencies higher than 138 but their prac
tical importance is not great. They could how
ever eventually be calculated by the procedure 
indicated above [d. Eq. (2.11)]. 

The complete calculation of the six frequencies 
requires about two or three hours of slide rule 
work. The method is very well fit to discuss 
rapidly the effect on the frequencies of a struc
tural change of the system. If, for example, the 

1080' 

V 900' 
~ 

V 
~/ 72.0' ~, 

V 540' 

360' V 
/ in 

'V "y ~' 
'" 

! 
-180' 45· 90· 135" /6'0' 

FIG. 6. The function 61'+ '1'1 + '1'2 for the engine in Fig. 5 
plotted as function of 1'. 

number of cylinders were 12 instead of 6, the 12 
natural frequencies below 138 would be obtained 
without repeating all the calculations by solving 
the equation 

12,u+~1+~2=multiple of ?r, 

where the functions ~1 and ~2 are numerically 
the same as above. 

VOLUME 11, AUGUST, 1940 

1, 
L 

FIG. 7. A six-cylinder Diesel ship drive with flywheel 
and propeller. 

Example 3 

We consider the six-cylinder Diesel ship drive 
represented in Fig. 7. The propeller is driven by 
a long shaft. The data are,* 

k=k 1=675X106 in. lb./rad. 
k2 = 13.5 X 106 in. lb./rad. 
1 = 2560 lb. in. sec.2 

11=75000 lb. in. sec.2 • 

Since K 1 =0 we may take for ~1 the constant 
val ue ~ 1 = - 90 ° w hile ~2 is calculated as a fun c
tion of iJ. as in the previous example. We find the 
values given in Table II. 

The curve representing 6/J - 90+ \02 as a func
tion of ,u is plotted in Fig. 8. The intersections of 
this curve with the horizontals of ordinates 0, 
?r, 2?r, 3?r, 471", 571", 6?r yield seven roots of the 
frequency Eq. (2.8) 

,u2= 14.9 
,u5=97.0 

,ua=42.0 
,u6= 124.5 

,u4=69.5 
,u7=152. 

The lowest root ,u1 determined by the horizontal 
of abscissa 0 cannot be evaluated easily by this 
method unless the function \02 is calculated very 
accurately in the interval 0--5°. This is not very 
convenient and it is preferable in this case to use 
directly the frequency equation in the form (2.7). 
Since K 1 = 0 it may be written 

sin ,un 
w21 =K2• 

2 sin (,u/2) cos ,u(n-t) 

For small values of ,u the factor 

sin ,un 

2 sin (,u/2) cos ,u(n-t) 

is approximately equal to n and the frequency 
equation becomes 

nw2I=K2• 

* The numerical data of this engine are taken from J. P. 
Den Hartog, Mechanical Vibrations (McGraw Hill Book Co., 
New York, 1934), p. 208. 
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12.60' 

'V 1080' 

V ..., 

900' ~/ 

V ltD' 
V 

540' ~/ 
~V 

";) 
:::t 

170 ~J 90 135 180 

FIG. 8. The function 6IL+'P1+"" for the engine in Fig. 7 
plotted as function of IL. 

It is clear that this equation is the frequency 
equation for the case of a rigid crankshaft. The 
factor A plays the role of a correction factor 
taking into account the elasticity of the crank
shaft. Introducing the numerical data and put
ting z = 2 sin /1-/2 the frequency equation may be 
written 

0.02A+0. 7736- (10.15A+275)z2+275Az4 =0. 

A first approximation for the lowest root is found 
by putting A=6. Neglecting the term in Z4 we find 

0.02 X6+0.7736 
Z2= =2.6SXIO- 3 

10.15X6+275 

Z= 5.15 X 10-2• 

This corresponds to an angle /1-=2.95°. Intro
ducing this value of /1- in the factor A we find 
A = 6.09. This yields the second approximation 

Z2= 
0.02 X 6.09+0.7736+6.09 X275 X (2.65)210-6 

10.15X6.09+275 

z=5.19XIO-2, /1-1=2.98°. 
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__ ~Jmode 

FIG. 9. The shape of the torsional modes in the crankshaft 
of the engine in Fig. 7 for the seven natural frequencies of 
the system. 

This second approximation is quite satisfactory. 
The lowest frequency is 

Z (k)! 
iI=27r I 

o 
5 

10 
15 
20 
30 
45 
60 
75 
90 

105 
120 
150 
180 

5.19XI0-2 

----X 512 =4.24 sec-I. 
271" 

TABLE II. 

<P' 

-90 
158.1 
173.8 
180.07 
184.35 
191.65 
200.0 
208.2 
216.1 
224.1 
231.6 
239.4 
254.7 
270 

6/L-90+<p2 

-180 
98.1 

143.8 
180.07 
214.35 
281.65 
380.0 
478.2 
576.1 
674.1 
771.6 
869.4 

1064.7 
1260 
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The other frequencies are 

1024 14.9 
12=--sin ---=21.2 sec.-1 

27r 2 

1024 42.0 
13=-- sin --=58.4 sec.-1 

27r 2 

1024 69.S 
h=-- sin --=92.8 sec.-1 

27r 2 

1024 97.0 
1.=-- sin --= 122 sec.-1 

27r 2 

1024 124.5 
16=-- sin --= 145 sec.-1 

TABLE III. 

r=1 r=2 r=,~ r=4 r=S 
1ST 2ND 3RD 4TH 5TH 

CRANK MODE MODE MODE MODE MODE 

--------------
x=l 0.999 0,990 933 819 662 
x=2 .996 ,916 453 -258 -819 
x=3 .991 ,773 -258 -996 -469 
x=4 ,983 ,573 -838 -422 933 
x=5 .972 .325 -987 707 241 
x=6 .959 .061 -629 906 -992 

formula (2.12). Since K 1=0 we have 

Slllp, 
tan {3= 

1-cos p, 

p, 
cot -. 

2 

. r=6 r=i 
6TH 7TH 

MODE MODE 
----

466 241 
-994 -682 

656 939 
087 -987 

-945 798 
819 -422 

27r 2 

1024 152 
Hence {3 = 7r /2 - p,/2 and the modes are given by 

j,=-- sin -= 158 sec.-I. 
27r 2 

In this case we obtain all seven natural fre
quencies of the system. The modes of vibration 
in the crankshaft are easily calculated from 

The values are plotted in Fig. 9 and recorded in 
Table III. 

ApPENDIX 

The solution (2.4) is based on the following trigonometrical identities 

sin (x+1)p,-2 sin xp, cos p,+sin (x-1)p,=0 
cos (x+ 1)p,-2 sin xp, cos p,+cos (x-1)p,=0. 

If we choose JJ. so that 
cos p,= 1-!a2 

or a=2sinJJ./2, 

we may verify from the identities that the expression 

8x =A cos J,lx+B sin JJ.X 
satisfies the n-2 equations, 

(a) 

(b) 

(c) 

(d) 

whatever the values of the constants A and B. These constants may be adjusted in such a way that 
expression (c) also satisfies the Eq. (2.3) which may be written 

82 -281 cos p,-M81 =0 
8n- 1 - 28n cos JJ. - N8n = O. 

Substitution of expression (c) in these equations yield 

A [cos 2JJ.-2 cos JJ. cos JJ.-M cos JJ.J+B[sin 2Jl-2 sin JJ. cos J.I-M sin ,uJ=O 
A [cos (n-1)JJ. - 2 cos n,u cos ,u- N cos n,uJ+ B[sin (n-1),u - 2 sin nJJ. cos p,- N sin .uJ = O. 

This may be simplified by taking identities (a) into account 

cos 2JJ.-2 cos IL cos JJ.= 1 
sin 2,u-2 sin J,I cos JJ.=O 

cos (n-1)JJ.- 2 cos n.u cos JJ.= cos (n+ 1)JJ. 
sin (n-1)JJ. - 2 sin nIL cos JJ. = sin (n+ 1).u. 

Equations (f) then take the form (2.6) in the text. 
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(e) 

(f) 
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