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The procedure to be followed in the transient 
solution of the oscillatory network is first to 
neglect the resistance matrix [RJ and to obtain 
the natural frequencies Wr and the modal 
matrices (k r ) by the methods of the first part of 
this paper. 

Then if the relation (155) which may be 
written in the form 

(kr)'[SJ(k r) / (kr)'[LJ(k r) 
»( (kr)'[RJ(k r) /2 (k r) ,[LJ(kr»2 (160) 

is satisfied the solution is given by (157) and the 
various 'attenuation constants are obtained from 

(159) by direct matrix multiplication. The rest 
of the solution proceeds as before. 

XIII. CONCLUSION 

The simplicity and power of the iterative 
matrix method of solution for the transient and 
steady-state behavior of oscillatory circuits is 
evident from the above discussion. If the amount 
of resistance is small as it is in many practical 
circuits this method of solution is most simple 
and direct. It is hoped that this presentation will 
give an impetus to the use of the method in 
dealing with this type of circuit. 

Increase of Torsional Stiffness of a Prismatical Bar Due to Axial Tension* 

M. A. BIOT 

Columbia University, New York, New York 

(Received March 22, 1939) 

The author's theory of elasticity of the second order is being applied to calculate the increase 
of torsional stiffness of a prismatical bar when an axial tension is initially imposed upon it. 
It is found that the classical shear stress distribution is not affected by the axial stress. However, 
an increase of torsional stiffness is produced due to the fact that the boundary condition over 
the cross section contains not only the shearing stress but also the product of the axial stress 
by the rotations. This increase of torsional stiffness turns out to be proportional to the polar 
moment of inertia of the cross section with respect to its center of gravity. 

BEFORE treating the special problem of tor­
sion of a bar under an initial axial stress we 

shall first summarize the results of the general 
theory of elasticity for the small deformations of 
a body under initial stress.! 

We denote by 
Sll S12 S13 
S21 S22 S23 
S31 S32 S33, 

(1) 

the initial state of stress in an elastic body. These 
components of stress are symmetric Sp.p = Spp. and 
they must satisfy the equilibrium conditions 

as11/ ax+as12/ ay+aS13/aZ= 0, 

as21/ aX+aS22/ ay+aS23 / az = 0, 

aS3r/ aX+aS32/ ay+aS33/aZ = o. 
(2) 

* Publication assisted by the Ernest Kempton Adams 
Fund for Physical Research of Columbia University. 

1 M. A. Biot, "Non-Linear theory of elasticity and the 
linearized case for a body under initial stress," Phil. Mag. 
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We now assume that the material undergoes a 
small deformation. The deformation is associated 
with displacements of components uvw, rotations 
of components, 

Wx = Haw/ay -av/ az), 

W y = Hau/ az - awl ax), 

W z = Hav/ ax - auf ay) 

and strain components 

e11 = au/ax, e12=e21=Hav/ax+au/ay), 

(3) 

e22=avjay, e23=e32=Haw/ay+av/az), (4) 

e33= aw/az, e31=e13= Hau/az+aw/ax). 

Because of the small deformation the initial 

27,468 (1939). Also: "Theory of elasticity with large dis­
placements and rotations," Proc. Fifth International 
Congress for Applied Mechanics (Cambridge, U. S. A. 
1938). "Theorie de I'elasticite du second ordre," Ann. Soc. 
Sci. de Bruxelles (1939). 
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stresses are modified. Vve denote the stress incre­
ments by: 

S11 S12 S13 

S21 S22 S23 

SSl S;12 S33. 

(5) 

These symmetric stress components S!,v=SV!, are 
referred to axes which rotate locally with the 
material so that they are only functions of the 
strain. They must satisfy equilibrium conditions 
which will be different from the classical equa­
tions for a material initially in a free unstressed 
condition. 

Equations expressing these conditions rigor­
ously have been derived in the general theory. 
For example, one of these equations expressing 
equilibrium conditions in the x-direction reads 

(iSll OS/2 OS13 ow. oW z 
-+-+-+(511-522)--2512-

ox oy oZ oy ox 

ow" oW y oW y 

+S12-- (Sl1-533)--2S13-
oz az ox 

ow" (OWY Owz) OSll 
-513-+523 --- +--(e22+e33) 

dy oy az ox 

0512 aSIa 
+--(e33+e11) +--(ell +ezz) 

oy oz 

(6) 

We have two other similar equations. The 
boundary conditions can be expressed by means 
of the increment of force per unit area at the 
boundary. For example, the x-component of this 
boundary force increment is 

Aj x = slla+slziJ+S13'Y + [5 lSWy - 5 12W .]a 

+ [523Wy - 5 22W zJiJ + [S33Wy - 5 23W zJ'Y 

+511[e22+e33Ja+512[e33+ell]iJ 
+S31[ell +ezz]'Y (S12e12+S13e13)a 

- (513e23+S11e21)tl- (Sne3l +S12e3Z)')'. (7) 

In these relations a{3'Y are the directional co­
sines of the normal direction to the boundary 
before deformation. 

VOLUME 10, DECEMBER, 1939 

In the particular problem that we have here 
in mind, the torsion of a prismatical part sub­
mitted to an axial tension, the above equations 
are very much simplified. Taking the z axis 
along the axis of the bar, the initial stresses are 
(Fig. 1) 

000 
000 (8) 
o 0 5 33 , 

where S33 = S is a constant representing the 
initial axial tension. The equilibrium equations 
become 

OSH OS/2 OS13 OWy 
-+-+-+5-=0, 
ox oy OZ OZ 

OS21 OS22 OS23 aw" 
-+--+--s-=o, 
ox ay oZ oz 

OS3l OS32 OSS3 (OW Y OW'') 
-+-+-+5 --- =0 
ax oy az ax ay 

and the boundary conditions 

Afx=slla+s12tl+s13'Y+5wy'Y, 

Ajy = S21a+s22iJ+S23'Y - Sw,,'Y, 

Af. =S31a+ssz{3+SS3'Y+5(ell +e22)')' 

-5e13a -Se2af3. 

(9) 

(10) 

No approximations have been introduced in 
the above equations except the basic one that, 
the displacements are small. We shall now con-

s 

z 
FIG. 1. 

861 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:

195.221.196.65 On: Wed, 21 Sep 2016 10:24:03



sider the relation between the strain and the 
stress increments S"p, Here of course we have to 
introduce some approximations and simplifying 
assumptions as we do not know what these 
relations are for a material under an initial stress. 
However we will assume that these relations are 
the same as for the material in its natural un­
stressed state and if we assume this state to be 
isotropic, we may write 

Eeu = Su - V(S22+S33), 
Ee22 = S22 - ,,(su +S33), 
Ee33 = S33 - V(S22+SU), 

2Ge12=Sl2, 

2Ge23=S23, 
2Ge3l =S31' 

(11) 

That this is an approximation is obvious first for 
a theoretical reason. It was shown by the author l 

that the stress-strain law (11) is in contradiction 
with the existence of a potential energy and that 
the error is of the order 5 j E. Moreover a material 
which in its natural state is isotropic cannot re­
main such when it is stretched so that an isotropic 
stress-strain relation is also an approximation. 
Again here the error must be of the order 5jE. 

Keeping these remarks in mind we may solve 
the problem of torsion by means of Eqs. (9), (11) 
and the boundary conditions (10). We are going 
to show that the classical stress distribution of 
Saint Venant for the torsion of a prismatical bar 
is also a solution of our problem for the distribu­
tion of stress increments S!'p. The difference with 
the classical solution will appear only on the 
boundary of the cross section ip the form of an 
increase in torsional stiffness. We put as in Saint 
Venant's solution 

Sll = S22 = S33 =S12 = 0 
U= -(Jyz 
v=(Jxz 
w=w(x, y). 

(12) 

We also assume that S23 and S3l are only functions 
of x and y. 

We deduce ell = e22 =e33=e12 = 0, hence the first 
four relations (11) are satisfied and the two last 
ones become 

G(owjoy+(Jx) =S23 
G( -(Jy+owjox) =S~l. 

(13) 

The two first equilibrium Eqs. (9) are also satis­
fied because 

862 

wx=w(owjay-(Jx), wy=H -(Jy-awjax) (14) 

do not depend on z. The third Eq. (9) becomes 

aS3l aS32 (a
2
w a

2
w) 

--+--5 -+- =0. 
ox oy ox2 oy2 

Now from Eq. (13) we deduce 

G(02W + 02W) = OS3l + OS~. 
ox2 oy2 ox oy 

Hence combining (lS) and (16) 

OS3r/ ox+ OS32j oy = o. 

(lS) 

(16) 

(17) 

As we know Eqs. (13) and (17) are the classical 
equations of Saint Venant's problem of torsion 
of prismatical bars. This can be immediately 
verified by introducing a stress function if; such 
that s31=oif;joy and S32= - (oif;jox). Then Eq. 
(17) is satisfied and the elimination of w between 
Eqs. (13) yields the well-known equation, 

02if;jax2+02if;joy2= -2G(J. (18) 

However, we still have to satisfy the boundary 
conditions (10). At the surface of the prismatical 
bar 'Y = O. Expressing that this surface is free of 
forces we find the two first relations (10) to be 
identically satisfied and the last one becomes 

Now because 

this condition may be written 

s3la+s32~ = O. 

This is the same boundary condition as in Saint 
Venant's problem, namely that the shear stress 
on the cross section be tangent to the contour of 
the section. Eq. (18) with the boundary condi­
tions (19) determines completely the shear stress 
S3lS32 and its distribution over the cross section is 
therefore the same as in the classical solution of 
Saint Venant. 

We will now calculate the total torque over 
the cross sections. For this purpose we must use 
expression (10) for Afx and b.jy with 'Y = 1, 
a=~=O. 

We find 

b.jx=s13+5wy, b.jv=S23-5wx' (20) 
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From Eqs. (13) and (14) 

W,,=tS23/G-OX, Wy = -tS3t/G-Oy, (21) 

hence the force along x and y acting on the cross 
section are 

~f,,=sd1-S/2G) -SOy, 

~fy=s23(1-S/2G) +SOx. 

The torque is 

T;= (1-S/2G) f f (-S13Y+S23X)dxdy 

(22) 

+SO f f (X 2+y2)dxdy, (23) 

where the double integral is extended to the area 
of the cross section. The term 

Tsv = f f (-S13Y+S23X)dxdy (24) 

represents the torque calculated by the Saint 
Venant theory in the assumption that the bar is 
initially in its natural unstressed state. In the 
second term appears the polar moment of inertia 

of the cross section with respect to the origin of 
the coordinates. It depends on the choice of this 
origin. However the position of this origin is not 
arbitrary because the forces acting on the cross 
section are only a pure torque if 

f f ~fxdxdy= f f ~fydxdy=O. (25) 

Now we know that the Saint Venant shear dis­
tribution is a pure torque and therefore if we 
introduce expression (22) in the condition (25) 
the latter becomes 

J J ydxdy= J J xdxdy=O. (26) 

Hence the origin must be at the center of 
gravity of the cross section and 

is the polar moment of inertia of the cross section 
with respect to its center of gravity. 

VOLUME 10, DECEMBER, 1939 

The expression for the torque may be written 
finally 

T= (1-Sj2G)Tsv+IGSO. (27) 

This simple expression has been obtained with 
the only assumption that the stress-strain rela-

s 

FIG. 2. 

tion is the same as the classical Hooke's law for 
an isotropic medium. As we remarked above this 
is an approximation which involves an error of 
the order S/2G. Therefore the term S/2G in the 
factor (1- Sj2G) is not significant as it represents 
a quantity of the order of what we neglected 
from the start. We write, therefore 

T= Tsv+IGSO. (28) 

We will now discuss the application of this 
formula to various cases. 

Consider first a circular section. In this case 
the Saint Venant torque is 

Tsv = GIGO 

and the total torque is 

T=IGO(G+S) =GIGO(l+SjG). 

Here the correction SjG due to the axial stress is 
of the order of what we neglect in the theory and 
for this case the correction term loses its physical 
significance. It would not be so, however, for 
sections having a low torsional rigidity in their 
natural state. 

863 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:

195.221.196.65 On: Wed, 21 Sep 2016 10:24:03



Consider for instance the case of a strip of 
rectangular cross section (Fig. 2). The thickness 
of the strip being c and the width b (Fig. 2). 
The Saint Venant torque is 

T sv = "ibc3GO. 

The polar moment of inertia 

When the strip is submitted to an axial tension 
S, applying Eq. (28), the total torque is 

cb
3 

[1(b)2
S J T=lbc3GO+-so=lbc3G 1+- - - O. 

12 4 c G 

We see that if the thickness c is small compared 
to the width, b, the correction Hb/c)2S/G can 
become very large. 

As another example we take the case of a circu­
lar thin-walled cylinder split along a generator 
(Fig. 3), the radius being r and the thickness, c. 
The Saint Venant's torque is 

FIG. 3. 

and the polar moment of inertia is 

271'r3c=10. 

The total torque when the cylinder is submitted 
to an axial tension S is, therefore: 

The correction in this case is 3(r/c)2S/G. If for 
instance, S/G= 1/1000 and r/c= 10, the increase 
of torsional rigidity is 30 percent. 

The Theory of Klystron Oscillations 

DAVID L. WEBSTER 

Stanford University, Stanford University, California 

(Received June 23, 1939) 

The principles governing the oscillations in a klystron may be divided into four groups: 
(1) those of space resonance within each rhumbatron, previously discussed by Hansen; (2) the 
equations of coupled circuits, with modifications appropriate to space-resonant systems; (3) 
the kinematics and dynamics of cathode-ray bunching, previously discussed by the author; 
(4) the constraint on phase relations between the rhumbatrons introduced by the cathode-ray 
bunches. It is shown here that (4) makes the oscillations assume forms very different from those 
familiar in free oscillations. These forms are described by general equations and then these 
equations are applied to three specific problems: maximizing the power output from an oscil­
lator, minimizing the power input for an ideal regenerative amplifier, and finding how stable 
the frequency is against changes in cathode potential. 

I. INTRODUCTION 

T HE klystron, described in this Journal by 
R. H. Varian and S. F. Varian,! consists 

essentially of two space-resonant oscillators of 

one of the types described previously by Hansen 2 

and Hansen and Richtmyer3 and called rhumba­
trons, with various accessories which include a 

2 W. W. Hansen, "A Type of Electrical Resonator," J. 
App. Phys. 9, 654 (1938). 

) Russell H. Varian and Sigurd F. Varian, "A High 
Frequency Oscillator and Amplifier," J. App. Phys. 10, 
321 (1939). 

864 

• W. W. Hansen and R. D. Richtmyer, "On Resonators 
Suitable for Klystron Oscillators," J. App. Phys. 10, 189 
(1939). 
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