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A Hydrodynamic Analogy for Shearing Stress Distribution in Bending* 

M. A. BIOT 

Columbia University, New York, N. Y. 

It is shown here that the shearing stress distribution in the combined shear and bending is 
represented with practical accuracy by the distribution of velocity in the flow of a perfect fluid 
over the area of the cross section. This flow is produced by a linear distribution of sources above 
the neutral axis and of sinks below the neutral axis, the intensity of these sources and sinks 
being proportional to the distance to the neutral axis. For hollow beams the additional con- 
dition must be added that the circulation of the velocities is zero around each hole of the cross 
section. The analogy which is rigorous for a material of zero Poisson ratio holds within a small 
correction for the general case. 

I T was established by Saint-Venant from the left arbitrary. As will be shown hereafter 
mathematical theory of elasticity that the system of stress components ~~7~7~ (Fig. 1) 

combination of bending and shear in a uniform 
beam of arbitrary cross section yields a very 
simple distribution of the bending stresses, which 
coincides with the one derived from elementary 
strength of materials. The shearing stresses, 
however, do not obey such a simple law and 
the usual mathematical treatment does not 
yield easily a fairly approximate idea of their 
distribution. 

Our purpose is to show that the shearing stress 
distribution can be visualized by means of a 
rather simple physical analogy and furthermore 
that the fundamental equations at the base of 
this analogy may be reached directly by a short- 
cut method. 

I. THE GENERAL CASE OF COMBINED BENDING 

SHEAR AND TORSION 

We consider a uniform beam (Fig. 1) referred 
to a system of rectangular coordinates x, y, z. 
The z axis is parallel with the beam, the x axis 
passes through the center of gravity G of the 
cross section and coincides with one of the 
principal axes of inertia of this cross section. 
The location of the origin along the x axis is 

* Publication assisted by the Ernest Kempton Adams 
Fund for Physical Research of Columbia University. 
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a 
is 

compatible with the theory of elasticity and 
may be selected in such a manner as to result 
in the combination of a bending moment M and 
a total shear S perpendicular to X. 

We impose upon the stresses the further 
restrictions : 
(1) That (T= has a linear distribution along z and y 
by putting 

fir: = (S/l)yz. (1) 

I is the moment of inertia of the cross section 
with respect to the x axis. 
(2) That the shearing stress (TV, 7y ) acting on the 
cross section be independent of the location of 
this cross section, i.e. independent of Z. 

The above stress system, in order to be com- 
patible with the theory of elasticity, must verify 
the following set of equations: 
(1) The generalized Hooke’s law 

FIG. I. 
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au/ax = - (p/EI)Syz, (2) 

dv/dy = - (p/EI)Syz, (3) 

awla = (S/EI)yz, (4) 

au/ay+av/ax=o, (5) 

a f.d/a.+aw/ax = r,jG, (6) 

dv/dz+aw/ay = rJG. (7) 

(2) The condition of internal equilibrium 

aTs/ay+a7,/aX = - aa,/az = - (s/l)y. (8) 

In these equations u, v, w are the coordinate 
increments; the original coordinates x, y, z of a 

FIG. 2. 

point attached to the material become (x+u), 
(y+u), (z+w) after deformation. 

E is the elasticity modulus, G the shear 
modulus and p the Poisson ratio of the material. 

It can be readily verified that Eqs. (2), (3), (5) 
become identities and that the other Eqs. (4)) (6)) 
(7) are compatible if we put 

u=af/ax, V= -af/ay, (9) 

f= ((S/6-WYZ3) + (W/6E0ZY3) 
- ((fiS/2E0x2yz) +wxyz, (10) 

where w is a constant to be determined later.1 
Since we are primarily interested in the dis- 

tribution of r2. and 7y we now proceed to eliminate 
w between (6) and (7). Taking into account (9) 
and (10) we find 

a~,/ay-a~z/ax=-(~/(i+~))(s/I)~+2Gw. (11) 

This last equation with the condition of 

1 Form (10) of f is not the most general that can be 
found. However, it only differs from this general form by 
terms which correspond to a displacement of the whole 
beam as a solid body. 

equilibrium (8) solves our problem. It is con- 
venient to introduce the two stress functions cp 
and # in the following way. 

ry= -aV/ax-a+/ay, 
rz= -acd/ay+a+/ax. (12) 

From (8) and (11) we deduce that these two 
stress functions verify the following equations, 

(a2/aX2+aVy%= (W)Y, (13) 

(az/axz+a/ay2)G=(~/(1+~))(S/I)X-2Gw. (14) 

We also have as boundary condition that the 
shearing stress is tangent to the contour of the 
cross section 

r&y-r&x=0 

or (acp/ax)dy-(aca/ay)dx--~=O. 

We may split this condition into the following 
two : 

(adadh - @daddx = 0, (15) 

$J = const. (16) 

From Eqs. (13) and (14) it appears that the 
shearing stress distribution is made of the super- 
position of the following systems of stress (a) 
and (b) one being represented by a hydro- 
dynamic analogy and the other by a membrane 
analogy. 

k$zd 
FIG. 3. 
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FIG. 4. 

(a) One is the gradient of the function 
~(x, y). Eqs. (13) and (1.5) show that it may 
be represented by the velocity distribution 
in the two-dimensional flow of a perfect fluid 
with sources of intensity (S/l)y per unit area. 
The function cp(x, y) is the hydrodynamic 
potential of this flow. Above the x axis we have 
positive sources of intensity proportional to 
their distance to this axis, and below the x axis 
we have negative sources of intensity also pro- 
portional to their distance to this axis. Since we 
have assumed the x axis to pass through the 
center of gravity of the section, the total flow 
out of the sources equals the total flow dis- 
appearing in the sinks. 

(b) The other part of the stress defined by 
the stress function #(x, y) depends on the Poisson 
ratio. It may be represented by the membrane 
analogy. The membrane is stretched so as to 
rest on a horizontal plane boundary the contour 
of which is the same as that of the beam section. 
The membrane is submitted on one side to a 
pressure fi distributed linearly in a direction 
parallel with the neutral axis according to the 
law fi= -(~/(l+~))(S/l)x+2Gw. The stress is 
equal to the slope of this membrane and tangent 
to the contour lines of equal height. The local 
rotation of the section is -(1/2G)(p/(l+p)) 
)( (S/l)x+w. Both this rotation and the stresses 
(b) represented by the membrane depend on the 
choice of the constant w and the location of the 
origin on the x axis. 

It can be proved as in the theory of the mem- 
brane analogy for pure torsion that the (b) 
stresses result in a torque of value equal to twice 
the volume under the membrane. 
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II. THE CASE OF PURE SHEAR AND BENDING 

Let us first assume that the Poisson ratio p=O. 
In that case by choosing w=O the stress system 
(b) disappears and there is no rotation of the 
cross section. This is a case of pure shear and 
bending. The shear stresses are rigorously de- 
termined by the hydrodynamic analogy, and 
they result into a total shear S applied along a 
definite line of action perpendicular to the x axis. 
We could also tind in the same way the line of 
action of a pure shear acting in a direction 
parallel with the x axis. The point of intersection 
of these two lines of action defines the center of 
shear C (Fig. 2). 

If the Poisson ratio is not zero a force acting 
through the center of shear produces not only 
the above stress system (a), but also a certain 
stress system (b). For instance if the total shear 
acts through the center of shear C, the corre- 
sponding system (b) will be found by choosing 

FIG. 5. FIG. 6 

the constant w so that the system will be com- 
posed of two equal and opposite torques. In 
terms of the membrane analogy this means that 
we must choose the zero pressure line so as to 
make the amount of positive volume under the 
membrane equal to the amount of negative 
volume. This additional system (b) appears as a 
correction to (a) when the effect of lateral con- 
traction is taken into account. It originates from 
the fact that the lateral contraction due to the 
existence of the normal bending stresses on 
the cross section varies from one section to the 
other, thus changing the shape of these sections 
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relative to one another and introducing addi- 
tional shears and rotations (Fig. 3).2 

This effect will in general be very small and it 
is justified to neglect the injiuence of the lateral 
contraction in the afiplications and to take only 
into account the stresses given by the hydro- 
dynamic analogy. We note that when p is not 
zero there is no such thing as really pure shear 
since there will always be a rotation whatever 
the location of the resultant shear S. 

III. EXAMPLES FOR SOLID BEAMS 

(1) Rectangular cross section (Fig. 4). The flow 
lines are vertical and the velocity is calculated 
from the value of the total flow. The stress r 
being at a distance y from the neutral axis we 
have 

h/2 
br= 

s 
(Syll)bdyv 

ll 

7= (S/21)[(h/2)2-yq. 

(17) 

It is the well-known parabolic distribution. 
From the theory above it appears that this is 
rigorously correct when p = 0 and when p# 0 the 
correction is generally very small, so that it can 
be considered as a very good approximation in 
the latter case. 

(2) Section with a fillet. It is known that the 
effect of a semi-circular fillet on potential flow 
is to double the velocity of the fluid at the fillet. 
Such a fillet will be expected to introduce a 
stress concentration factor of about two (Fig. 5). 
For a section with a sharp slit the total shear 

FIG. 7. 

2The separation of the shearing stresses in these two 
systems has also been considered by C. Weber, “Biegung 
und Schub in geraden Balken,” Zeits. f. angew. Math. u. 
Mech. 334-348 (1924). 

In order to determine the problem we must 
introduce the extra condition that the displace- 
ment ze, will be single-valued. We have 

dw= (dzer/dx)dx+(aw/dy)dy. 

Using relations (6), (7)) (9), (lo), this becomes 

dzer=(l/G)(~&c+rrdy) 

- ((aY/dXas)dX) + ((w/aYwY>. 

The function ~(x, y) will be single-valued if 
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will be infinite at the slit. In practice this will 
produce local plastic flow (Fig. 6). 

(3) Open thin section. For a circular thin tube 
(Fig. 7) of thickness b cut open along its length 
the flow at an angle ti is 

bT= 
I 

‘(3 sin 6/l)brd0, 
l 0 

T=(sr2/1)(1-cos 0). 

IV. HOLLOW BEAMS 

(18) 

In a hollow beam the cross section contains one 
or more holes. The hydrodynamic potential cp is 
not necessarily single-valued since an arbitrary 
circulation may be added around each hole. 
Moreover the value of the function 9 is not 
given along the boundary. It has only been 
derived in the general theory that 1c, must be a 
constant along one boundary contour, but this 

FIG. 8. 

constant may be different 
contour. 

for each different 



rydx+ r&y = (20) 

where these integrals are taken on a closed 
contour C around each hole. The ‘right-hand 
side of this equation may be expressed as a 
double integral extended to the area D inside 
the contour C and we may write condition 
(20) as 

$ T&-+T.dY 
C 

= ss (l~/(l+~>>(~/~)x-2G~)dxdy. 
D 

Considering now relation (12) this last condition 
may be replaced by the following two 

f 
(adwdx+ @daY)dY = 0, 

C 
(21) 

$ w/aY)dx - (w/ax)dY 
C 

= ss ((-~l(l+~))(Sll)x+2Gw)dxdy. (22) 
D 

This amounts to stating that the stress system 
(a) given by the hydrodynamic analogy and the 
stress system (b) due to the lateral contraction 
considered separately both yield a single-valued 
displacement w. 

Condition (21) expresses that the hydro- 
dynamic potential must be single-valued, i.e., the 
circulation around each hole must be zero. 
Here again it is legitimate to assume that in 
most cases the stress due to the lateral con- 
traction is negligible and to consider as a good 
apfiroximation the system of stresses re#resented by 
the hydrodynamic analogy with the condition that 
the circulation is zero. 

V. REMARKS REGARDINGTHE ELASTICAANDTHE 

DISTORTION OF THE SECTION 

From (9) and (10) we deduce for the vertical 
displacement of the points originally on the z 
axis 

ZI = - (S/6E1)z3. 

This coincides with the shape of the elastica 
found by elementary strength of materials. 

It must be added that in practice this is not the 
only deformation that occurs since we must also 
take into account the local effect of the dis- 
tribution of stress at the boundaries and around 
the points of application of the load. A small 
additional deflection depending only on this 
local effect will have to be added, and it is to be 
expected that this additional value is roughly 
proportional to the total shear. 

It is quite obvious that a cross section does 
not remain plane after the deformation of the 
beam. The amount of distortion and the shape 
of the distorted section may easily be deduced 
from the hydrodynamic analogy if we neglect 
the effect of the lateral contraction. 

Assuming p=O, o=O in (10) and the con- 
sequence $J= 0 we obtain from (6) and (7) 

aw/ax= -(i/G)(acp/ax), 
-(S/2EI)s2+a~/ay= -(l/G)(a&ay). 

We conclude 

w= -(1/G)cp+(S/2EI)z2y. 

The second term represents the rotation of the 
section as a plane perpendicular to the elastica, 
hence the first represents the distortion. Hence 
the distortion is represented by the hydrodynamic 
potential. 

By use of this result the distortion of a 
rectangular section with circular fillet is repre- 
sented in Fig. 8. 
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