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Abstract

A good knowledge of the spatiotemporal  patterns of the causes of wildfire ignition is crucial to an
efficient fire policy. However, little is known about the situation in southeastern France because the fire
database contains unreliable data. We used data for cases with well-established causes from 1973 to
2013  to  determine  the  location  of  spatial  hotspots,  the  seasonal  distribution,  the  underlying
anthropogenic and environmental drivers, and the tendency of five main causes to generate large fires.
Anthropogenic ignitions were predominant (88%) near human settlements and infrastructures in the
lowlands,  whilst  lightning-induced  fires  were  more  common in  the  coastal  mountains.  In  densely-
populated, urban areas, small summer fires predominate because of the negligence of private individuals
around their homes, or accidental ignitions near infrastructures. In rural hinterlands, ignitions due to
negligence by  professionals  generate  many medium-sized  fires  from fall  to  spring.  Intentional  and
accidental ignitions contribute the most to the total burned area and to large fires. We conclude that
socioeconomic factors partially control the fire regime, influencing the timing, spatial distribution and
potential size of fires. This improved understanding of why, where and when ignitions occur provides
the opportunity for controlling certain causes of ignitions, and adapting French policy to global changes.
Key-words: fire activity; ignition causes; hotspots; boosted regression trees; fire policy

Short summary
The causes of wildfire ignitions vary regionally and seasonally in southern France. Ignitions resulting
from negligence and accidents are more frequent in urban areas and during summer, whilst intentional
ignitions  are  more  frequent  in  pastures,  and  ignitions  resulting  from professional  negligence  more
frequent in hinterlands from fall to spring. 
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Introduction

Knowing the causes of wildfires and their spatiotemporal variation is crucial for developing effective
fire policies and for managing landscapes in the long-term (Martíne  z et al  ., 2009;  Rodrigue  s et al  .,
2014).  Indeed,  this  information  can  greatly  improve  the  effectiveness  of  fire prevention  and
detection, and the pre-positioning of fire suppression crews (; Oliveir  a et al  ., 2012), thus reducing fire
risk  and  the  probability  of  fires  becoming  large.  However,  such  research  does  not  yet  exist  for
southeastern France although this area experienced, on average, 2600 ignitions and 22,000 ha burned
annually  over  the  period  1973-2013  ().  Until  now, French  fire  policy  has  been  based  on  limited
knowledge of the causes of fires and how they vary in space and time, although great efforts have been
made in the recent years to address these limitations (Chatr  y et al  ., 2010). Developing a more efficient
fire policy requires a good knowledge of the regional variations in fire activity but also of the causes of
fires. Recent studies have revealed that fire activity varies greatly by region according to bioclimatic and
anthropogenic conditions (Curt et al., 2014; Fréjaville and Curt 2015). As a result, ignitions, large fires,
and fires during certain seasons tend to be concentrated in certain places. It is thus crucial to study the
extent to which the regionalization and the seasonality of fire activity may also be linked to variations in
space and time of ignition causes. 

A consensus has recently emerged in Europe aimed at improving the investigation and the classification
of  the  causes  of  ignitions  (Cami  a  et  al  .,  2010).  Most  national  fire  databases,  however,  remain
insufficient to establish accurate fire risk models (Catr  y et al  ., 2010) and contain unreliable data (Catry
et al.  , 2008; Martínez   et al.  , 2009; Rodrigues and de la Riva 2014) which limit the quality of models
derived for the prediction of ignition and also restrict inter-country comparisons (Cami  a et al  ., 2013). It
is thus crucial to select only accurate data based on relevant criteria when constructing robust models
(Rodrigues and de la Riva 2014).

Ignition is the triggering factor of a wildfire, which then propagates according to the fuel, weather, and
topography (Krawchu  k et al  ., 2009; Moreira et al., 2011). The spatial and temporal patterns of ignitions,
therefore,  result  from complex  interactions  between ignition sources,  weather, topography and land
cover (Moreira et al., 2011). In Euro-Mediterranean countries with heavily anthropized landscapes, ca.
90% of wildfire ignitions are caused by humans, while lightning accounts for only ca. 10% of ignitions
(Diaz-Delgad  o  et  al  .,  2004;  Oliveira  et  al.  2013;  Bajocc  o et  al  .,  2010;  Ganteaum  e  et  al  .,  2013).
Lightning fires are generally associated with particular topography and “fire weather”, irrespective of
human activities (Vazquez and Moreno 1998; Arndt et al., 2013). As humans light most fires, ignitions
are related to both the motivation of humans who set fires (i.e. the use or misuse of fire) and regional
variations in the main socioeconomic drivers leading to fires, such as land use (Koutsia  s et al  ., 2010;
Lovreglio et al. 2010), population density (Oliveira et al. 2013; Romero-Calcerrad  a et al  ., 2010), or the
presence of infrastructure (Lovregli  o et al  ., 2010). Past research suggests that ignitions resulting from
human  actions  are  thus  dependent  upon  socioeconomic  factors  (Rodrigues  and  de  la  Riva  2014;
Amatulli et al. 2007) and landscape organization (Moreira et  al.,  2011). The landscapes of southern
Europe have been severely affected by two contrasting socioeconomic changes in recent decades. In
many rural areas, the ‘rural exodus syndrome’ of the 1950s-1960s (Moreir  a et al  ., 2011) has generally
increased  fire  activity  (Pausas  and Paula,  2012)  because  of  the  widespread  increase  in  vegetation
biomass due to the decrease in agropastoral activities (Vélez, 2009), and afforestation with flammable
forest species. At the same time, urban areas, dwellings, recreation areas, infrastructure and resorts have
expanded  into  wildland  and  forests,  thus  creating  fire-prone  and  vulnerable  rural–urban  interfaces
(Moreir  a  et  al  .,  2011)  and  increasing  the  likelihood  of  intentional  fires  due  to  conflicts  between
different  owners  who have different  lifestyles  (Vélez  2009).  Both  changes  have  also  increased  the
occurrence of large and devastating fires (San-Miguel-Ayan  z et  al  .,  2013),  and considerable efforts
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have been made recently to predict their occurrence better (Moreira   et al.  , 2010;  Cardil   et al.  , 2014;
Lahay  e et al  .,  2014). It is of interest to assess whether certain causes of ignition play a part in the
occurrence  of  these  large  fires  because  they  occur  at  locations  and  times  favorable  to  the  rapid
propagation of fire.

Our goal is to better understand why, where and when ignitions occur in southeastern France in order to
improve  the  placement  of  prevention  and  suppression  efforts.  For  this  purpose  we  selected  well-
established causes of ignitions from the Prométhée national fire database (1973-2013) in order to reduce
uncertainties  associated with location  and causes,  which can strongly affect  predictions of  fire  risk
(Thompson and Calkin, 2011; Rodrigues and de la Riva 2014). Five main causes were considered:
natural  (lightning),  intentional,  accidental,  negligence  by  private  individuals  and  negligence  by
professionals. We used spatial pattern analysis to determine the areas with high-concentrations (i.e. the
hotspots)  of each cause,  and we modeled their  occurrence using boosted regression trees based on
socioeconomic and environmental variables. We also tested whether certain causes generated particular
sizes of fires, or were more frequent in certain hours and seasons. This modeling framework aims to
provide better understanding of the regional variations in the causes of ignition for operational fire
management and risk assessment (see ).

Materials and methods

Study area

Our region is the southeastern part of France, which covers 80500 km² (Fig. 1). This fire-prone area
encompasses  large  bioclimatic,  environmental  and  anthropogenic  gradients,  making  it  suitable  for
studying different ignition causes. In short, the study area includes Mediterranean lowlands (Provence,
Languedoc-Roussillon,  Maritime  Alps),  mid-elevation  hinterlands  and  foothills  (southern  Alps,
Cévennes, Ardèche and Pyrénées), and mountain areas (western Alps, Corsica, and Pyrénées; Fig. 1).
Elevation ranges from 0 to 2000 meters a.s.l. (Fig. 1). The Mediterranean areas have low mean rainfall
(< 700 mm yr-1) and high temperatures (> 13°C) conducive to fire activity (Fig. 2), while the hinterland
has a supra-Mediterranean climate with moderate rainfall (700-1150 mm yr -1) and medium temperatures
(11.5-13°C),  and  the  mountain  areas  have   high  rainfall  (>  1150  mm  yr -1)  and  low temperatures
(<11.5°C) which limit  fire  activity. The strong and dry northern  Mistral and  Tramontane  winds are
frequent in the Rhône valley and near the Mediterranean coastline, favoring summer fire activity due to
fuel dryness and increased rate of spread. 

This area also exhibits a range of land covers and land uses, from cultivated land and orchards with very
low flammability to highly flammable forests and shrublands. Mediterranean forests are dominated by
Pinus halepensis Mill. and Quercus species, while mountain forests are dominated by Pinus sylvestris
L.,  Pinus  nigra  Arn.,  Fagus  sylvatica L.  and  Abies  alba Mill.  Flammable  shrublands  (so-called
garrigues and maquis) are common in the southernmost part of the study area. They are dominated by
Quercus coccifera L., Ulex parviflorus Pourr.,  Cistus spp., and Erica arborea L. Human presence and
activity varies from the Mediterranean coast with its high concentration of people, infrastructure and
resorts to the rural hinterland with very low human density.
 

Wildfire database and selection of accurate data for ignition causes
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We used the national Prométhée georeferenced database for the period 1973-2013 (Prométhée, 2015),
which contains data on more than 100,000 wildfires systematically collected by fire crews after each
intervention. For all the fire events recorded, Prométhée gives standardized information comprising the
day and hour of ignition, its location on a 2*2 km grid, the cause of ignition, and the final area burned.
The 2*2 km spatial accuracy of fire data is appropriate for operational fire management.

The Prométhée database regroups the causes of ignitions into five main categories: (i) natural ignitions
caused by lightning (hereafter LIGHTN); (ii) accidental ignitions generated by infrastructure such as
power lines, railways, vehicles,  and garbage dumps (ACCID); (iii) intentional ignition by people in
relation  to  conflicts  over  land  or  hunting,  for  personal  interest,  for  gaming or  pastoralism,  and by
arsonists  or  pyromaniacs  (INTENT);  (iv)  ignitions  due  to  negligence  by  professionals  involved  in
forestry, agriculture, industry or public works (NEGLIGPROF); and (v) ignitions due to negligence by
private individuals during house maintenance, handicrafts, recreation or discarding cigarette butts or hot
ash (NEGLIGPRIV). Prométhée contains a large proportion of uncertain ignition causes because the
assignment of a cause is generally made rapidly by fire crews based on simple assessments. Overall,
74% of the causes were noted as ‘unknown’ and it is likely that investigators’ knowledge of causes, the
instructions for completing the database and assigning each fire a cause, and possibly the motivation and
the resources allocated to populating the database have changed over time and differ between regions.
The systematic investigation of causes by an expert fire investigation unit is a recent development and it
concerns only a small number of ignitions. To overcome this drawback, we used an indicator of the level
of certainty which was assigned to each cause by the authors. It describes how strongly the people who
recorded  the  cause  hold  their  opinion  (i.e.  the  investigator’s confidence  in  the  data).  The  level  of
certainty varies from certain (i.e. the cause is known with no legitimate doubt because of converging
evidence from more than one source), very likely (the cause indicated is highly probable and no other
option is more likely), supposed (the cause is only indicative in the light of the evidence), and unknown
(no evidence or no inquiry). We only used data coded as ‘certain’ and ‘very likely’ because only these
data are considered valid and appropriate for fire cause assessment. They were pooled together and are
hereafter referred to as ‘well established’; they represented 25.3% of the whole database (ca. 25,500 fire
events) and 26% of the total area burned. 

Environmental and socioeconomic factors

We selected an initial set of explanatory variables available for the whole study area which can explain
ignitions, including: (i) fuel types; (ii) topographic variables; and (iii) socioeconomic variables, such as
the density of population and houses, tourist pressure, or industrial infrastructure and roads networks
(Table  1).   In  order  to  select  the  most  accurate  and  explanatory  variables,  we  used  Multi-Linear
Regression  models  (MLR).  This  allowed  us  to  discard  some  redundant  variables  which  were  less
informative such as elevation. All variables were spatialized at the 2*2 km grid and superposed using
the ArcMap™ 10.2 (ESRI Inc.) geographical information system.

Determining the fire causes hotspots

The number of ignitions varies strongly across our study area (Figure 2A), and it is crucial to determine
where the hotspots (i.e. the areas with a high concentration of an attribute) are located for each type of
cause in order to apply specific prevention and suppression measures. Several spatial autocorrelation
statistics can be used to determine such hotspots (Koutsia  s et al  ., 2004; ). We calculated the Getis-Ord
G* statistics () using the ‘spatstat’ R package (Baddeley, 2014). The G* statistic is an efficient and
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flexible approach for determining hotspots (see Rodrigues and de la Riva, 2014), in this case the cells
with dense clusters of ignitions associated with a certain cause. G* compares the local neighborhood
average of each cause of ignition against the global averages, and calculates a z-score which indicates
the extent to which the clustering differs from a random distribution. For each cause of ignition, we
considered a hotspot to exist within the 90% isopleth, which contains 90% of the total ignitions.

Modeling the environmental and human drivers of ignition cause hotspots using boosted regression 
trees

For each cause, we determined what the environmental and anthropogenic drivers are using a boosted
regression tree procedure (BRT).  Results from hotspot analysis are used to construct the dependent
variable. All the pixels within a hotspot for a certain cause were coded as 1, and the others were coded
as 0. BRT analysis is a machine learning method that has proved well-suited to exploring environmental
data without the restrictive assumptions of parametric statistics (e.g. Aertse  n et al  ., 2010; Viedm  a et al  .,
2012; Cur  t et al  ., 2015) and optimizing the predictive performance of models (De'ath, 2007). BRTs are
flexible and easy to interpret (Elit  h et al  ., 2008) and they take account of collinearity between variables,
which is likely to occur with anthropogenic and environmental data.  The BRT procedure generates
multiple regression trees based on training data and sequentially fits the residuals of the previous trees to
provide a final ensemble tree – a process known as ‘boosting’ (De'ath, 2007). We used the ‘gbm’ R
package (Ridgeway, 2013) with a Bernoulli (logistic) error structure. Half of the data were used for
building the model (the training dataset), and half to evaluate the accuracy of the classification (the
validation dataset). Using the recommendations of Elith et al. (2008), the number of trees in each BRT
was set automatically to 20-fold cross-validation, we selected a bag fraction (training data randomly
selected  for  computing each tree)  of 0.5,  a  shrinkage or  learning  rate  of  0.005 which controls  the
learning speed of the algorithm, and a tree complexity of 5. This generated a minimum of 3000 trees per
model. The quality of the models and their predictive performance was assessed using the area under the
receiving operator curve (AUC; Pearce and Ferrier, 2000). A model with an AUC < 0.6 is considered
very poor, moderately good when AUC is 0.6 to 0.9, and excellent when AUC > 0.9. In the first step, the
BRT procedure uses all explanatory variables and indicates the effect of each variable on the response
after accounting for the average effect of all variables in the model (Elit  h et al  ., 2008 Appendix S2). The
final simplified model keeps only the most significant variables (the ‘drop-off’ step) using methods
analogous to backward selection in regression (Elit  h et al  ., 2008). 

Temporal analysis of fire causes

We examined the hourly and seasonal frequency of each fire cause in order to determine whether there
was specific timing to certain causes. For this purpose we undertook tests of prevalence of each cause
according to the time interval (hour of the day or season). Each test compares the observed proportion
for  each  cause  and  each  hour  or  season  to  the  expected  value  from a  null  hypothesis  of  no  time
differences in cause. The test used 10,000 Monte Carlo random simulations to indicate the extent to
which the observed value differs from the expected random value, and a p-value indicates the statistical
significance thresholds. 

Relationship between fire causes and fire size
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We tested whether certain causes generate significantly more fires of a certain size than others using
tests of prevalence as described above. We derived six fire size classes (< 1 ha, 1-10 ha, 11-50 ha, 51-
100 ha, 101-200 ha, and > 200 ha) from the Prométhée database, which correspond to the percentiles 70,
95,  97,  98  and  99  of  the  distribution,  and  to  frequency  size  thresholds  commonly  used  in  Euro-
Mediterranean countries (e.g. Camia et al., 2013). Each fire was assigned a fire size class. The test of
prevalence compared the observed proportion for each fire cause and each fire size class against the
expected value calculated using 10,000 random Monte Carlo iterations, and then tested the significance
on the basis of the p-value.

Results

Based on the well-established causes of fire for the 1973-2013 period, this study shows that there are
significant differences in the contribution of each ignition cause to fire frequency and burned area size.
Ignitions due to negligence are the major cause with respect to number (ca. 60% of all ignitions), but
they  represent  only  ca.  30%  of  the  total  burned  area  (Table  4).  Conversely,  intentional  ignition
represents ca. 20% of all ignitions but accounts for ca. 40% of the area burned. Accidental ignitions
generate ca. 19% of the total burned area and only 12% of the number of fires, in contrast to lightning
fires that account for 6% and 10%, respectively.  

Each cause has a specific spatial pattern and also specific drivers (Fig. 4) with a major contrast between
human-caused fires and lightning-induced fires. Overall, lightning-induced fires were driven by fuels
whereas  human-caused  fires  were  driven  by  socioeconomic  variables.  The  spatial  hotspot  analysis
indicated that lightning fires were clearly concentrated in few large clusters in coastal or hinterland
mountains (Fig. 3A). The BRT procedure indicated that these lightning hotspots corresponded to steep
slopes with high cover of forest and shrublands, and low densities of population, housing, and roads
(Fig. 6 in Appendix). In contrast, the human-caused fires were concentrated at low elevations with low
to medium habitation density, a high density of fire suppression forces, roads, artificial land cover (i.e.
urban,  industrial,  mines,  garbage  dumps),  and  on  steep  slopes  with  high  cover  by  shrublands  and
medium-high forest cover.

Intentional ignitions were concentrated in small clusters in Corsica and the Mediterranean lowlands
(Fig.  3B),  which  correspond  to  moderately  populated  areas  with  intermediate  road  density, at  low
elevations  but  on steep slopes,  and  with shrublands,  pastures  and agropastoral  areas,  artificial  land
cover, or forests (Fig. 7 in Appendix; Table 4). Accidental ignitions were recorded preferentially on the
seashore and in the Rhône valley, in the vicinity of the main infrastructure,  roads or dwellings and
irrespective of fuel cover (Fig. 3C; Fig. 8 in Appendix). Ignitions resulting from professional negligence
were concentrated in large clusters at mid-elevations (Fig. 3D), in areas with a high density of houses,
roads and population, on moderate-to-steep slopes, in areas covered by forests, agropastoral lands and
shrublands  (Fig.  9  in  Appendix).  Ignitions  due to  the  negligence of  private  individuals  were  more
scattered (Fig.  3E).  They mostly occurred  in  densely  inhabited  areas  with  agricultural  and pastoral
activity, irrespective of whether there was high fuel cover (Fig. 10 in Appendix).
 
Most BRT models provided good prediction of ignition causes with AUC values of 0.730 ± 0.006 (mean
± SE), 0.764 ± 0.004, 0.748 ± 0.004, 0.747 ± 0.004, and 0.772 ± 0.003 for lightning fires, intentional
ignitions,  accidental  ignitions,  ignitions  due  to  negligence  by  professionals,  and  ignitions  due  to
negligence by private individuals, respectively (Fig. 4). This allowed us to produce maps to predict the
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occurrence  of  ignition  hotspots  for  the  different  causes  (Fig.  5  in  Appendix),  which  showed  good
agreemens with the maps of the observed values (Fig. 3).

We found that  most  ignitions had rather  similar  hourly distributions,  with  human-induced ignitions
occurring  preferentially  between 13:00  and  17:00,  while  lightning  fires  peaked between 15:00  and
19:00. In contrast, the seasonal patterns differed between the causes: intentional or accidental ignitions
and lightning fires were statistically more frequent in summer, while all ignitions due to negligence were
more likely from fall to spring (p < 0.05; Table 2).

The prevalence tests indicate that there is a relationship between fire size and ignition cause. Intentional
ignitions preferentially generated fires larger than 10 ha, and, in particular, large fires > 200 ha ( p <
0.05;  Table  3).  Accidental  ignitions  were  not  associated  with  generating  a  statistically  significant
occurrence pattern with respect to fire size with the exception of a positive effect for large fires (> 200
ha). In contrast, ignitions due to negligence by professionals preferentially generated small and medium
fires (p < 0.05; Table 3), while ignitions due to negligence by private individuals generated very small
fires < 1 ha (p < 0.05; Table 3). Lightning ignitions generated more very small fires than expected
according to a random distribution and fewer medium fires (p < 0.05; Table 3). In total, some human-
caused fires (i.e. accidental and intentional) generate larger fires than lightning fires.

Discussion

We demonstrated that each of the five main causes of wildfire ignition displays typical features as
concerns  spatial  location,  drivers,  seasonality  and  propensity  to  generate  certain  sizes  of  fires
(summarized in Table 4). Accordingly, we affirm that the causes of ignition contribute to explain the
regional variations in fire regime in southeastern France in combination with climate and environmental
factors (Fréjaville and Curt, 2015). Only the daily patterns are similar for all human-caused ignitions,
peaking between 13:00 and 17:00, while lightning fires peaked between 15:00 and 19:00, thus fitting
with data for Europe as a whole (Ganteaum  e et al  ., 2013). Overall, 95% of the ignitions occur between
07:00 and 22:00 and coincide with the peaks of human (Vélez, 2009) and lightning activity (Poelman et
al. 2013), and of fuel dryness (Sandé Silva et al., 2010).

Two human causes contribute the most to the fire occurrence in our study area. Intentional ignitions are
not the most frequent but are those that are responsible for the highest proportion of burned area and that
preferentially generate large fires.  Indeed, they occur preferentially in summer when fire weather is
conducive to fire propagation and wildland fuels are dry; during this period lighting fires is strictly
forbidden. They are more frequent in shrublands, forests and pastures where they can lead to high-
intensity and rapid crown fires which are difficult to suppress (Cur  t et al  ., 2013). The individuals who
ignite such fires intentionally do so with the expectation of causing significant damage and gaining
financial interest with respect to land property, pastoralism or hunting, or solving a conflict; a special
case is that of arsonists who expect to generate large fires in order for the pleasure of seeing fire or
firemen activity. Hotspots of intentional ignitions are frequent in Corsica and in the coastal lowlands,
where pastoralism and conflicts concerning land property are more likely. Accidental ignitions occur
throughout the year, although most frequently in summer because of favorable environmental conditions
for ignition, and they generate a significant proportion of large fires. They are clearly concentrated in
areas with high levels of wildland–urban interface, resorts, tourism, and near infrastructure such as road
corridors, railways, garbage dumps, and electricity lines. Hotspots are located in the Rhône valley, on
the Mediterranean coastline, and in southern Corsica. Ignitions resulting from negligence are the most
numerous although they tend to result in small to medium fires. They typically peak from fall to winter
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when fuels are not dry, when fire use is temporarily authorized for managing fuels in forests, pastures,
and gardens. Those ignited by private individuals during home maintenance or leisure are mostly small
because  they  generally  occur  in  urban  areas  where  fuel  is  limited  or  managed,  and  where  the
intervention of firefighters is rapid. Many are localized in the vicinity of highly urbanized areas of the
eastern  Mediterranean  coastline.  Fires  ignited  by  professionals  are  mainly  small  to  medium.   This
probably  relies  to  the  fact  that  professionals  are  experimented  and  generally  use  fire  in  moderate
weather conditions (fall to spring) during which they can control propagation. 

The  features  typical  of  each  ignition  cause  account  for  the  regional  variations  of  fire  regime  in
southeastern France (i.e. the so-called ‘pyroregions’; Cur  t et al  ., 2014). Indeed, areas with high burned
area (Fig. 2) are clearly superimposed on areas with high density of human-caused ignitions (Fig. 3 B-
E). They include the Mediterranean lowlands, Corsica (35% of the number of fires and 37% of the
burned area), and the Maritime Alps. In these areas intentional and accidental ignitions predominate
during summer due to the presence of urban areas and infrastructure. These pyroregions combine many
factors triggering fires: hot weather, heavy fuels, and high human activity (Frejaville and Curt 2015;
Cur  t et al  ., 2014). Mid-elevation hinterland and rural areas of Cévennes and Ardèche also have high fire
activity, but mainly from autumn to spring for the management of vegetation. In these pyroregions, fuel
is generally abundant, and fire size remains moderate because the weather is not conducive to large fires
from fall to spring. This contrast between highly urbanized areas and rural areas may diminish to the
increasing urban sprawl into rural areas, as observed in many European countries (Moreira et al., 2011).
Together with the expansion of shrubby and forest  fuels  in  the landscape and with climate change
(Frejaville and Curt 2015), this may increase fire risk. In this context it is of great interest to monitor
changes in population, infrastructure, land cover and land uses in order to improve the prediction of fire
hazards and to adapt the fire policy in the long-term. Intentional and accidental ignitions, which have the
propensity  to generate  large and destructive fires,  should be especially  monitored in  the context  of
climate change.

Lightning-caused fires differ drastically from human-caused fires. They are concentrated in few large
clusters in mountains and coastal areas with low anthropogenic pressure but high fuel biomass, thus
confirming that they can spread only under favorable environmental conditions (Nasto  s et al  ., 2014).
Their  spatial  patterns  resemble  that  of  summer  lightning  strikes  in  France  (Poelman  et  al.  2013),
supporting the idea that lightning strikes may cause a fire only when they reach sufficiently dry surface
fuel (Wotto  n et al  ., 2003; ). In our study, lightning-caused fires rarely grew large, in contrast to the
situation recorded in Greece (Nasto  s et al  ., 2014). This may be due to the fact that surface fuels are not
dry enough in summer in our cool mountains to allow fires to become large. Lightning fires should be
monitored even if they cannot be prevented  (Martine  z et al  ., 2009) because they represent 11.3% of all
ignitions and up to 25% in the Southern Alps (Fréjavill  e et al  .,  2016), and because they develop in
remote areas where they are difficult to detect and to suppress (Vacik   et al.  , 2011). Lightning fires could
become more  frequent  with climate  change,  as  shown in Switzerland (Reinekin  g et  al  .,  2010) and
Austria (Vacik   et al.  , 2011; Mulle  r et al  ., 2013. ).

Implications for fire policy: the leverage effect

Assessing why, where and when wildfire ignitions occur should allow the targeting of prevention in
southeastern France, and provide an opportunity to reduce fire risk, especially the occurrence of large
fires.  Considerable  efforts  have been  made in  France during the past  decade to  better  prevent  and
suppress fires, resulting in a great decrease in the number of ignitions and of the total area burned each
year (Chatry et al., 2011; Rodrigue  s et al  ., 2013; Fréjaville and Curt, 2015). However, firefighters face
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three major issues: (i) the current strategy for pre-positioning fire crews still relies on limited knowledge
about the location of ignitions, their seasonal variations and their drivers; (ii) the occurrence of large and
destructive fires in summer; and (iii) the investment in fire suppression may decrease in certain regions
(Chatry et al., 2011). Based on this study, we propose better targeting of the local strategy in highly fire-
prone  Mediterranean  areas,  concentrating  on  summer  intentional  ignitions  in  northern  Corsica  and
Provence. Many of those fires were ignited in pastures by local people to protest against land issues,
taxes, regulations or real-estate speculation. A significant decrease in these fires has recently resulted
from regulation of livestock premiums and agreements  about  land management between the public
decisions-makers  and the  local  population.  Stabilizing  or  improving  this  situation  in  the  long-term
would greatly decrease fire activity in France and the pressure exerted on fire crews. In Mediterranean
areas with high human and infrastructure density, surveillance (pre-positioning) is already performed.
Vegetation management (grass mowing and shrub clearing) would also decrease fire risk associated with
accidental ignitions or ignitions due to the negligence of private individuals. It has proved very efficient
in limiting ignition and propagation but it is rarely undertaken. Although unpopular, law enforcement
may be the only solution because urban areas require most of resources for fire suppression and would
increase with any expansion of rural–urban interfaces and population (Badia-Perpinya and Pallares-
Barbera, 2006). Information and educational campaigns directed at private individuals would also help
because many people have limited knowledge of fire risk and fire use (Chatry et al., 2010; Montiel et
al., 2010). Some municipalities have already banned vegetation fires in order to limit fire risk and the
emission of particles into the atmosphere, and this is probably the best solution. In this case, efforts
should  be  focused  on  grass-mowing  and  shrub-clearing.  In  hinterland  forests,  and  pastoral  and
agricultural lands, reducing ignitions due to the negligence of professionals from fall  to spring is a
priority. Efforts should be focused on better information about the daily fire danger from fall to spring,
banning  fires  when  the  fire  weather  risk  is  moderate  to  high,  specific  training  courses  for  less
experienced professionals, demonstrations of prescribed burning by experts, and specific educational
campaigns. The prevention and suppression strategy is currently probably insufficient from fall to spring
in these areas. It should also be extended in fall as the season at risk seems to extend beyond the end of
summer (Fréjaville and Curt 2015).

Conclusion

This study presents information and models for understanding and reducing ignitions resulting from
different causes in southeastern France, based only on information classified as “well-established” and
suited for a local-to-regional strategy of prevention and pre-positioning of fire  crews. It  reveals the
importance of the uses and misuses of fire by people, which account for 94% of the total burned area,
and a regional and seasonal distribution for each cause that fits with the regionalization of fire activity
(Fréjaville & Curt 2015). Negligence and intentional ignitions predominate with respect to fire number
and the area burned, respectively. A zero burn policy (i.e.  banning all  fires)  is neither realistic  nor
desirable in Europe (Silva et al., 2010). We thus believe that preventing and suppressing fires requires
local compromises between short- and long-term actions, acceptable by the population (Montiel and
Herrero, 2010; Vélez 2009; Collin  s et al  ., 2013). The predicted changes in socioeconomics, landscape
organization and land use could result in new patterns of ignition causes in future decades, and this may
in turn significantly alter the future fire regime in a synergistic or antagonistic way with climate change
(Fréjaville and Curt 2015). In the future, georeferenced data for ignition with decametric accuracy, more
reliable  and  harmonized  databases  on  fires  (Camia  et  al.  2010;  Collective  2011)  and  standardized
description  of  ignition  causes  (Camia  et  al.,  2013)  would  favor  a  better  European  policy  for  fire
prevention and suppression in a context of global changes (Bedi  a et al  ., 2014).
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Table 1. Summary of the environmental and socioeconomic variables used for the boosted regression tree (BRT) modelling

Name Acronym Description Data Source
Forest Cover FOR Cover of forests (all types) computed as a 

percentage of the 2*2 km pixel 
Corine Land Cover database (2000 and 2006) and 
National Forest Inventory database

Shrubland Cover (ha, log-
transformed)

SHRUB Cover of shrublands (all types) computed as 
a percentage of the 2*2 km pixel 

Corine Land Cover database (2000 and 2006) and 
National Forest Inventory database

Agropastoral Cover (ha, log-
transformed)

AGRPAST Cover of agropastoral lands computed as a 
percentage of the 2*2 km pixel 

Corine Land Cover database (2000 and 2006)

Artificial Cover (ha, log-
transformed)

ARTIF Cover of artificial surfaces computed as a 
percentage of the 2*2 km pixel

Corine Land Cover database (2000 and 2006)

Urban Vegetation Cover (ha, log-
transformed)

ARTIF Cover of urban vegetation computed as a 
percentage of the 2*2 km pixel

Corine Land Cover database (2000 and 2006)

No Fuel Cover (ha, log-transformed) NOFUEL Cover of areas with no flammable fuel such 
as urban areas

Corine Land Cover database (2000 and 2006)

Fuel Cover (ha, log-transformed) FUELCOV Connectedness of flammable fuels in the 2*2 
km pixel

Corine Land Cover database (2000 and 2006) and 
National Forest Inventory database

Slope Angle (°) SLOPE Slope angle Digital Elevation Model (resolution 100 m) 
National Geographic Institute

Elevation (meters asl) ELEV Elevation above sea level Digital Elevation Model (resolution 100 m) 
National Geographic Institute

Aspect (code) ASP Coded in 8 classes (N, NE, E, SE, S, SW, W, 
NW)

Digital Elevation Model (resolution 100 m) 
National Geographic Institute

Density of habitations (n, log-
transformed)

HOUSE Density of all habitations in the 2*2 km 
pixels

Digital Elevation Model (resolution 100 m) 
National Geographic Institute

Density of infrastructure (n, log-
transformed)

INFRASTR Density all industrial infrastructure (e.g. 
power plants and garbage dumps) and 
networks including railways

National Geographic Institute, and French Ministry
for Industry (communal level)

Density of roads (n, log-transformed) ROAD Density of roads of all categories in the 2*2 
km pixels

Digital Elevation Model (resolution 100 m) 
National Geographic Institute, and French Ministry
for Transport (communal level)
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Index of tourist infrastructure TOURIND Density of tourist infrastructure and activities
including resorts, hotels, camping, pooled 
into a synthetic index

Digital Elevation Model (resolution 100 m) 
National Geographic Institute, and French Ministry
for Tourism (communal level)

Index of Unemployment UNEMPL Unemployment rate  (2010) National Geographic Institute (communal level)

Table 2. Test of prevalence of each cause of ignition according to the season. The table indicates the observed proportion for each cause and each season, and 
in parentheses is the difference between the observed value and the predicted value calculated using 10,000 random (Monte Carlo) iterations. Negative 
differences in parentheses (-) indicate that ignitions are less frequent than expected if randomly distributed, and positive values (+) indicate that ignitions are 
more frequent than expected. The test indicates the statistical significance threshold: * p < 0.05 ; ** p < 0.01 ; *** p < 0.001

Season
Cause of Ignition SPRING SUMMER AUTUMN WINTER Total

LIGHTNING 0.05 (-0.05) *** 0.2 (+0.1) *** 0.02 (-0.08) *** 0 (-0.1) *** 0.10
INTENTIONAL 0.11 (-0.09) *** 0.31 (+0.11) *** 0.16 (-0.04) *** 0.08 (-0.12) *** 0.20
ACCIDENTAL 0.12 (-0.01) 0.17 (+0.04) *** 0.11 (-0.01) 0.05 (-0.07) *** 0.12
NEGLIGENCE

PROFESSIONAL
0.43 (+0.07) *** 0.17 (-0.2) *** 0.47 (+0.11) *** 0.63 (+0.27) *** 0.37

NEGLIGENCE
PRIVATE

0.29 (+0.08) *** 0.16 (-0.05) *** 0.23 (+0.02) ** 0.23 (+0.02) *** 0.21
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Table 3. Test of prevalence of each cause of ignition according to the fire size classes. The table indicates the observed proportion for each cause and each fire
size class, and in parentheses is the difference between the observed value and the predicted value calculated using 10,000 random (Monte Carlo) iterations.
Negative differences in parentheses (-) indicate that ignitions are less frequent than expected if randomly distributed, and positive values (+) indicate that
ignitions are more frequent than expected. The test indicates the statistical significance threshold: * p < 0.05; ** p < 0.01; *** p < 0.001

Fire Size Classes (ha)
Fire Causes < 1 1-10 11-50 51.100 101.200 > 200 Total

LIGHTNING 0.12 (+0.02) *** 0.06 (-0.04) *** 0.04 (-0.06) *** 0.07 (-0.03) 0.09 (-0.01) 0.07 (-0.03) 0.10

INTENTIONAL 0.2 (0) 0.18 (-0.02) *** 0.29 (+0.1) *** 0.36 (+0.16) ***
0.42 (+0.22)

***
0.41 (+0.22) *** 0.20

ACCIDENTAL 0.12 (0) 0.12 (0) 0.12 (0) 0.14 (+0.01) 0.08 (-0.04) 0.2 (+0.08) ** 0.12
NEGLIGENCE

PROFESSIONAL
0.31 (-0.06) *** 0.49 (+0.12) *** 0.39 (+0.03) 0.31 (-0.06) 0.28 (-0.09) * 0.16 (-0.21) *** 0.37

NEGLIGENCE
PRIVATE

0.25 (+0.04) *** 0.15 (-0.06) *** 0.15 (-0.06) *** 0.12 (-0.09) *** 0.14 (-0.07) * 0.16 (-0.06) 0.21

13

http://www.publish.csiro.au/?paper=WF15205


Author-produced version of the article published in International Journal of Wildland Fire, 2016, 25, 785-796. The original publication is available at http://www.publish.csiro.au/?paper=WF15205. DOI: 10.1071/WF15205

Table 4. Classification of the main fire causes in southeastern France. The table shows, for each cause, an indication of their frequency based on the Prométhée 
database, the predominant fire season, the predominant location of hotspots, the main drivers, the probability of generating large fires (> 100 ha), and the main 
management options

Cause of
ignition

Frequency (%) Seasonality
(predominant

season)

Location of
hotspots

Main drivers Probability
of

generating
large fires

Management options

Number
of fires

Burned
Area

Natural
(Lightning)

10.1 6.1 Summer Mountain
(coastal,

hinterland)

Lightning strikes Low No options
Enhance lightning monitoring

Intentional 19.8 42.9 Summer Northern
Corsica, coastal

lowlands

Agriculture,
pastoralism, pyromania

Very high Regulation of burned areas and agro-
pastoralism

Consultation on management plans
Law enforcement

Surveillance of pyromaniacs
Accidental 12.3 18.7 Summer Mediterranean

coastline,
Rhône Valley

Infrastructure
(transportation, power

lines, power plants,
garbage dumps),

houses

High Protect and manage fuels in source
areas (shrub clearing, grass mowing)

Regulated garbage dumps

Ignitions due 
to negligence 
by 
professionals

36.6 20.5 All year except
summer

Hinterland mid-
elevation

mountains

Use of fire for
pastoralism,

agriculture, forestry

Low Regulation, professional information
(even in non-summer season),

prescribed burning by specialist teams

Ignitions due 
to negligence 
by private 
individuals

21.2 11.7 All year except
summer

Lowlands and
mid-elevation

mountains

Use of fire for recreation
or for vegetation

management near houses
and private inland

properties

Low Regulation, public information
Education campaigns

Law enforcement during season of risk
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Figure captions

Fig. 1. Location of the study area and map of elevation

Fig. 2. Cumulated number of fires and total burned area in the study area (1973-2013) according
to the Prométhée fire database. Pixels are 2*2 km

Fig. 3. Location of the hotspots for each main fire cause. The hotspots correspond to the isopleth
surrounding 90% of ignitions, determined using the Getis-Ord G* statistics

Fig. 4.  Relative contribution of the variables to the final BRTs for each cause. The variables are
regrouped into the main classes (fuels, topography, and socioeconomic variables)
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Appendices

Fig. 5. Probability of ignition for each cause modeled using the BRT procedure. Values are the

fits from the final BRT model

Fig. 6. Boosted regression trees for the lightning fires (FOR: density of forests; FUELCOV:

covering  by  flammable  fuels;  POP:  population  density;  HOUSE:  housing  density;

ROAD:  road  density;  SHRUB:  shrub  density;  AGRPAST:  density  of  agropastoral

lands;  SLOPE:  slope  angle;  ASP:  predominant  aspect;  LANDCOMP:  index  of

landscape complexity;  ARTIF:  density  of artificialized land covers).  For  details  see

table 1

Fig. 7. Boosted regression trees for the intentional fires. The curve represents the mean value

for  20  models.  Values  located  above  0  are  statistically  significantly  and  positively

associated with intentional fires, while values below 0 are statistically significantly and

negatively associated with intentional fires. The stars indicate the variables which have

been kept after the drop-off procedure

Fig. 8. Boosted regression trees for the accidental ignitions. The curve represents the mean

value for 20 models. Values located above 0 are statistically significantly and positively

associated with accidental ignitions, while values below 0 are statistically significantly

and negatively associated with accidental  ignitions.  The stars  indicate  the  variables

which have been kept after the drop-off procedure

Fig.  9.  Boosted regression trees for the ignitions due to negligence by professionals.  The

curve represents the mean value for 20 models. Values located above 0 are statistically

significantly and positively associated with ignitions by negligence from professionals,

while  values  below  0  are  statistically  significantly  and  negatively  associated  with

ignitions by negligence from professionals. The stars indicate the variables which have

been kept after the drop-off procedure

Fig. 10. Boosted regression trees for the ignitions due to negligence by private persons. The

curve represents the mean value for 20 models. Values located above 0 are statistically

significantly  and  positively  associated  with  ignitions  by  negligence  from  private

persons, while values below 0 are statistically significantly and negatively associated

with  ignitions  by  negligence  from private  persons.  The  stars  indicate  the  variables

which have been kept after the drop-off procedure
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