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The domain must be decomposed
A bit of history

Domain decomposition methods were initiated by Hermann Schwarz circa
1870 in order to prove the existence of solutions to the Laplace equation for
domains constituted by the union of overlapping subdomains of simple shape.

The idea was to build a sequence of solutions on each subdomain such that
the difference in the overlap tends to zero thanks to contractive fixed point
iterations.

In the absence of overlap, the fields must be continuous at the interface and
the fluxes must be balanced (action-reaction principle). But it is a bit more
complex to make stationary iterations converge.

Then the theory of PDEs improved (Sobolev spaces and variational
approaches), and so did the linear solvers (Krylov solvers) and domain
decomposition methods are now a powerful framework for modeling,
computing,. . .
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Principle of DD

(1) Take a domain

(3) Assume each subdomain is able to rule itself correctly
(in independent processors)
Ñ Have a good local solver
(4) Deal with interactions
Ñ Make iterations !

In mechanics interactions are local, that is to say only through the boundaries.
Anyhow local phenomena can have long-range effects.
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The ingredients of DD methods

Know your neighbors well

The solution is strongly influ-
enced by the properties of the
neighbors.
One subdomain needs to have
a good knowledge of its
neighbors through well cho-
sen boundary conditions, or
well built preconditioners.

Anticipate long-range effects

Basically information goes through one subdomain by iteration.
This means that the number of iterations explodes with the number of subdomains.
Saint-Venant’s principle enables to tell a priori what the long-range effects will be.
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Message passing point of view
Distributed memory

Distributed memory is the classical model for large scale computations.

Each processor has exclusive access to its memory where its subdomain data is.

Exchanges must be scheduled in order to communicate. The basic operation is
send/receive between two processors

http://www.skirt.ugent.be/skirt/_parallelization_m_p_i.html
Latency is a problem so that an objective is to limit communications. Also
synchronism is appreciated (data must be available at the right moment), load
must be balanced between subdomains.

In reality

Architectures are hybrid and hierarchical, codes must adapt with the help of high
level optimized libraries.
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Two categories of communications
Neighbors communication

It is necessary to exchange data (displacements, nodal reactions) with neighbors.
Often all subdomains must communicate with all their neighbors at the same time.
This is known as a sparse operation.
Collective commmunications
In order to spread the long-range information and to optimize the solving (using
dot products in Krylov solvers), it is required to have all-to-all reductions.
A typical operation is : each subdomain owns a double, you want all the
subdomains to known the sum.

http://cs.umw.edu/ finlayson/class/fall16/cpsc425/notes/16-collective.html
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Local interactions
Basic subdomain solves

Continuous displacements on the interface

û2b ´ û1b “ 0 ñ û2b “ û1b

Balanced reactions on the interface
λ̂

2
N ` λ̂

1
N “ 0 ñ λ̂

2
N “ ´λ̂

1
N

Resolution of Dirichlet problem on Ωpsq Resolution of Neumann problem on Ωpsq

A better representation of the neighborhood than Dirichlet or Neumann bcs can be
achieved using (generalized) Robin conditions.
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Typical algorithm with two subdomains
Dual approach (FETI), primal approach (BDD)

=

= -

Resolutions of
  Dirichlet problems

Resolutions of 
Neumann problems

SplittingSplitting

Kinematic admissibility

Static admissibility

//

//

+ coarse problem

BDD

FETI

+ In that case stationary iteration does not work so Krylov solver is mandatory
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Long range effects, Saint-Venant’s principle
Scale separation

We study the effect of given distributions of traction at the boundary of one
subdomain.

Resultant R1 “ R2 Resultant R2 “ R1 Resultant R3 “ 0

Tractions with identical resultants have similar long-range effects.

Tractions with null resultant only have localized effects.

Null resultants identify with the orthogonal to rigid body motions.

So we know what should be globally transfered, to do so we use what we call a
coarse grid.
The analysis is not as straightforward for complex cases (heterogeneities,
subdomains with bad shapes) but theory is now clear (cf Geneo coarse space).

P. Gosselet Solvendo est dominium 15



Saint-Venant principle is not enough . . .

Figure: Beam with straight decomposition
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Saint-Venant principle is not enough . . .

Figure: Beam with irregular decomposition
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Saint-Venant principle is not enough . . .

Figure: Beam with straight decomposition
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Saint-Venant principle is not enough . . .

Figure: Beam with straight decomposition
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. . . when local features have long-range effects
but cures exist

Decomposition with irregular domains

Local contributions to the search direction
The irregularity triggers unnecessary local effects.

One solution is to predict bad modes and removes them a priori (Geneo)
another is to find the optimal combination at each iteration (FETI-S)
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Extension to nonlinear problems

Newton-Krylov-Schur approach

Find global displacement u such that

fintpuq ` fext “ 0

linearize and solve with DD.

outer
Newton

Inner Krylov
(tangent systems)
DD for //
DD preconditioner 

Schur-Newton-Krylov approach

Find interface displacement ub such that
$

’

&

’

%

@s, f s
intpusq ` f s

ext “ 0
us “ ub on the interface
nodal reactions are balanced

linearize.

outer
Newton Inner Krylov

(tangent DD systems)

// inner Newton

The objective is to replace Krylov iterations (exchanges) by independent inner
Newton iterations.
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Performance

Figure: Localized plasticity problem

Increment
0.2 0.4 0.8 1 1.3

of loading

Spread of
Elastic 1SD plastifies Several SD plastify

nonlinearity

Primal/Classic 1 1 0.75 0.8125 0.815

Dual/Classic 0.5 0.75 0.833 1.25 2.96

Mixed/Classic, Q “ Kbb 0.5 0.75 0.667 0.75 0.778

Mixed/Classic, Q opti 0.5 0.75 0.583 0.563 0.667

Table: Ratios of cumulated global iterations between nonlinearly localized and classic methods
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Performance

Figure: Localized plasticity problem

Increment
0.2 0.4 0.8 1 1.3

of loading

Spread of
Elastic 1SD plastifies Several SD plastify

nonlinearity

Primal/Classic 1 1 0.745 0.806 0.809

Dual/Classic 0.474 0.701 0.766 1.159 2.734

Mixed/Classic, Q “ Kbb 0.5 0.753 0.664 0.745 0.775

Mixed/Classic, Q opti 0.5 0.753 0.579 0.557 0.662

Table: Ratios of cumulated Krylov iterations between nonlinearly localized and classic methods
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Performance

Figure: Localized plasticity problem

Increment
0.2 0.4 0.8 1 1.3

of loading

Spread of
Elastic 1SD plastifies Several SD plastify

nonlinearity

Primal/Classic 1.5 1.75 2 2.438 2.778

Dual/Classic 0.5 1.5 2.667 4.75 14.444

Mixed/Classic, Q “ Kbb 0.5 1.25 1.917 2.316 2.667

Mixed/Classic, Q opti 0 1.25 1.5 1.563 2.222

Table: Ratios of cumulated local iterations between nonlinearly localized and classic methods
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Risks

Depending of the chosen boundary condition and of the nature of the nonlinearity
their may be limits on the domains of existence of local Schur complements
(Dirichlet-to-Neumann or Neumann-to-Dirichlet or Robin-to-Dirichlet).
In that case local Newton iterations would be waste of time.

Figure: Two critical cases

The expected cure is finding good mixed (Robin) conditions.
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Verification with DD
Objective

Verification aims at insuring that the underlying (FE) discretization is
sufficient to obtain a certain quality in the computation.

The quality is measured through a global error norm or through quantities of
interest.

Verification is expensive, and domain decomposition methods enable to cut
the cost.

Basically we need to reconstruct fields in H1 and Hdiv

(a) |ecr ûN , σ̂Ωit“1 ´ ecr ûN , σ̂Ωit“20| (b) |ecr ûN , σ̂Ωit“7 ´ ecr ûN , σ̂Ωit“20|

Figure: Convergence des contributions élémentaires à l’estimation d’erreur
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Separation of the contribution to the error

ř
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Figure: Enveloppe de l’erreur due à la discrétisation et évolution du résidu
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Modeling with domain decomposition methods
The non-overlapping way

When integrated early in the design phase, domain decomposition can be used to
model the system as subdomains connected by functional interfaces.
This way we can model:

Assemblies with contact, friction, adhesion

Cohesive interfaces like in laminated composites

Perfect joints (of course)

Laminate/laminate 

contact

Bolt/laminate 

contact

Stacking sequence [0 902 0]s Stacking sequence [0 90]s

Figure: Bolted composite plates (16 plies).
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Modeling with domain decomposition methods
The non-overlapping way

When integrated early in the design phase, domain decomposition can be used to
model the system as subdomains connected by functional interfaces.
This way we can model:

Assemblies with contact, friction, adhesion

Cohesive interfaces like in laminated composites

Perfect joints (of course)

Figure: Discretization (12 106 dofs), 10 600 subdomains, 29 CPUs
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Modeling with domain decomposition methods
The non-overlapping way

When integrated early in the design phase, domain decomposition can be used to
model the system as subdomains connected by functional interfaces.
This way we can model:

Assemblies with contact, friction, adhesion

Cohesive interfaces like in laminated composites

Perfect joints (of course)

Figure: Damage in the interfaces after the 70th increment.
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Modeling with domain decomposition methods
The overlapping way

Figure: Structure defined by nested models(Dassault
aviation)

Nested models are common in
the industry. In order to take
into account all interactions
(global Ø local) DD algorithm
can be applied (in nonlinear).
The matter in the zones where
finer models exist is a parameter
equivalent to a Robin bc.

A global model (plate
+ 1D connector) is
patched by a 3D
representation of the
bolted zone.
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Conclusion

In Latin “I decompose” is solvo from which derives “I solve”. Indeed solving an
equation is understanding how it behaves when decomposed.

Currently solvers manage billions of degrees of freedom with mild nonlinearity
on hundreds of thousand cores, in few minutes.

In practice, bottlenecks for industrialists are the pre/post-processing.

Current challenges:
Optimal finding and handling of long-range effects / multilevel DD.
Robust nonlinear solvers / best bcs.
Intelligent splitting, load balancing.
Parallel verification and mesh adaption.

Daniel Rixen’s contributions in the field are outstanding:
Taking into account heterogeneities in the preconditioner
Anticipating long-range effects beyond Saint-Venant’s principle
Improving solvers to avoid the spread of perturbations
Early contribution in today’s most efficient family of solvers (FETI-DP)
Handling of MPCs which is crucial for industrial applications
more to come
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Thank you for your attention

Figure: Made in Belgium (adapted from Gelluck)
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